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Suppose {H, ( , •)} is a complete inner product space and
Hi is a dense subspace of H. In case T is a linear trans-
formation from Hi to H± (perhaps not bounded), a necessary
and sufficient condition is obtained in Theorem 1 for the
existence of an inner product ( , )i for Hλ such that (i) the
identity is continuous from {flΊ,( , )J to {#,(•, •)} and (ii) T
is bounded in {-Hi, ( , )J When this condition holds, the
inverse-shadow inner product is defined on Hl9 for sufficiently
large positive numbers β, by (x,y)β,τ = Σ£=o ((T/β)*x, (T/β)»y).
An extension of Theorem 1 provides a necessary and sufficient
condition for the existence of an inner product ( , )i for Ht

such that {Hlf ( , )J is complete and (i) and (ii) hold. This
latter condition, stated in Theorem 5 in terms of a pair of
inverse-shadow inner products, depends on a description of
those complete inner product spaces {Hlf ( , )i}> with H± dense
in H, for which (i) holds. According to this description,
given in Theorem 4, each such inner product ( , )i is a scalar-
multiple of an inverse-shadow inner product ( , )s,c> where
C is a bounded operator on H mapping H± to Hι and δ — 1.

This pattern was developed in an investigation, other results
of which are in [4]. If JBi is a linear subspace of H, ( , )i i s a n

inner product for Hlf and the identity is continuous from {Hlf ( , )J
to {H, ( , •)}, {flΊ, ( , )J ίs s a id in [6] to be continuously situated
in {H, ( , •)}• The setting in Theorem 4 of a pair of complete inner
product spaces, one continuously situated in the other, is discussed
in [1], [2], [6], and [7]. Additional results in Theorems 2 and 3
relate the shadow inner product, the inner product ((1 — T*T/β2) , •)'
in those theorems, and the inverse-shadow inner product ( , ) β > τ .
In contrast to Theorem 4, an example at the end of the paper shows
that {Hu ( , )βtT} may be complete even when the closure in H x H
of T is not a function.

Here is an example to which Theorem 1 applies (with i ϊ = JBΓJ.

Start with a complete infinite dimensional inner product space
{H\ ( , •)'}> a one-tό-one (continuous) operator T on Hr with range
a dense, proper subspace of H', and a closed subspace Z of Hf such
that ZΠ T(Hf) is {0}. Now, with P the orthogonal projection of Hf

onto ZL, there is, by the Axiom of Choice, an algebraic complement
JBΓj. of Z in Hf of which T(H') is a subspace and, with ( , •) the
inner product on Hx such that (xf y) = (Px, Py)f, {Hu ( , •)} i s c o m ~
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390 GEORGE GOLIGHTLY

plete and for x in Hx (x, x) <; (x, x)f. Yet the restriction of T to Hx

is not continuous in {jHi( , •)}• Of course, the above construction
uses the Axiom of Choice, as the result of [8] implies it must.
However, this use is not in constructing T but in selecting the
subspace Hx of Hf.

Throughout the paper, {H, ( , •)} is a complete infinite dimensional
inner product space and Hx a dense subspace of H. If some varia-
tion of the symbols '(•, •)' denotes an inner product for the space
S, then the corresponding variation of ' | | IΓ denotes the corresponding
norm for S. For instance, Hα?]!^ = [(as, x)β,τ]

1/2 An operator on
{H, ( , •)} is a continuous linear transformation from all of H to
(into) H. A closed operator in {H, ( , •)} is a linear transformation
from a dense subspace of H to H whose graph is closed in H x H.
If Z and Zf are two subspaces of H such that Z Π Z' is {0} and H
is the linear span of Z and Z'f then Z is said to be an algebraic
complement in H of Zr and that linear transformation φ on H such
that φ is the identity 1 on Z and 0 on Z' is called the algebraic
projection of H onto Z with kernel Z'. If Z is a subset of H, Z
is the closure of Z in H.

THEOREMS AND EXAMPLES

THEOREM 1. Suppose that T is a linear transformation from
Hx to Hx. In order that there be a norm \\-\\i for Hx such that (i)
there is a positive number c such that || || ^ e|| ||i on Hλ and (ii) T
is continuous in {Hl9 || | |J it is necessary and sufficient that there be
a positive number β such that for x in E.x Σ?=o \\(T/β)px\\2 converges.
In case there is such a norm \\ \\19 if β is a number exceeding the
operator-norm for T in {Hl9 || ||i} then for x and y in Hλ the formula
(B, y)β,τ = Σiv=o((T/β)px, (T/β)py) defines an inner product (x, y)β>τfor
Hx such that

(1) there is a positive number d such that for x in Hx \\x\\ ^
\\*h.τ SL d\\x\\u

( 2 ) for x in Hx l i m ^ \\{Tlβ)px\\βtT = 0, and
(3) for x and y in H, (Tx, Ty)β>τ = β2[(x, y)β>τ - (x, y)].

Proof. In case there is a positive number β for which
Σ"=o \\(T/β)px\\* converges on H19 we have for x and y in H± and n
a positive integer,

p=0
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vl/2/ n \l/2\l/2/ n \l/2
:) (Σ>UTIβYy\ή ,

so that Σ" = o {{Tjβ)pxt (T/β)py) converges absolutely. Moreover, the
formula (x, y)βtT = Σ~=o ((T/β)px, (T/β)py) defines as inner product for

Suppose that there is a norm || - ||j_ for Hλ for which (i) and (ii)
hold. Suppose n is a positive integer, β is a positive number, and
r is a number greater than 1 such that for x in HL r\\ Tx\\x <̂  β||cc||i
Then for x and y in ^

p=0

(A)

Σ

Thus, for x and y in i ^ the series Σ?=o ((T/β)px, (T/β)py) converges
absolutely and, replacing y by x in (A), we have

(B) Σ II (T/β)>x II2 ̂  ca(||sc |k)V/(r2 - 1 ) .
0Σ

2>=0

Note that (1) follows from (B) with d = cr/(r2 - 1)1/2. To establish
(2), observe that for x in Hx

(ίl(τ/β)px \\βtTγ - Σ ii{τiβ)>+<x ||2 — ^ o
q=zQ

a s p > oo f

since ΣΓ=o ||(Γ/iδ)ff^ll2 converges. The equality (3) is established by
noting that

(Tx, Ty)βtT

= ±((T/β)pTx,(T/β)pTy)
p=0

= /32 Σ ((27/3)% (Tlβ)>y)
p=l

= βf'ΣHTIβYx, (TlβYy) - (x, y)

= β2K%, v)β,τ - {x, v)].

The following example is offered in connection with Lemma 1.
This lemma is useful in the proof of Theorems 3 and 4.
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EXAMPLE 1. Suppose that S is the subspace of L2[0, 1] of all
absolutely continuous / on [0,1] such that / ' is in L2[0,1] and for
such f Tf— / ' , so that T is a closed operator in L2[0, 1]. Suppose
H, is the set of all f in S such that for p ^ 0 Tpf is in S and
Σ?=o Γ I Tpf\2 converges. Then H, is a dense subspace of L2[0,1]
and, with β = 1 and (/, flr),iΓ = Σ~=o Γ [2V][T*flr]* on Hl9 {Hl9 (., .),.Γ}

Jo

is complete.

LEMMA 1. Suppose that T is a closed operator in {H, ( , •)}
β > 0. TTiew, the set H2 of all x in H such that for p > 0 x is in
the domain of Tp and Σ~=o \\(T/β)px\\2 converges is a linear space
such that T(H2) lies in H2. Also, if ( , -)βtT is the inner product
for H2 given, as in Theorem 1, by (x, y)βtT = Σ?=o {(Tjβ)px, (T/β)py)
then {H2, ( , -)β>τ} is complete. In case T is self-adjoint in {H, ( , •)}>
then the restriction of T to H2 is self-adjoint in {H2, ( , -)βiT}.

The following argument is offered. In general (when T is only-
closed and not defined everywhere), H2 need not be dense in H.
Suppose x is in H2. Then Σ?=o ||(Γ/iS)pΓflj||2 = /32Σ£=i \\(T/β)px\\2, so
that Tx is in H2. To show that H2 is a linear space, suppose St

is the linear space of all JJ-valued sequences, S2 is the subspace of
Sx to which z belongs only in case Σ?=o ll^li2 converges, and for z
and w in S2 (z9 w) = Σ"=o ( ^ WP)> S O that {S2, < , •>} is a complete
inner product space. Suppose D is the set of all x in H such that for
p > 0 cc is in the domain of Tp and Γ the linear transformation from
D to Si such that for p ^ 0 (Γx)p = (Tfβ)px. Note that iί2 = T~1(S2),
a linear space, and that f, restricted to iϊ2, is a linear isometry
from {iϊ2, ( , )β>τ} onto a subspace of S2. Suppose y is a convergent
sequence in {ίί2, ( , )̂ ,r} Then Γ̂ / is convergent in S2, with limit
z in S2. Since, for p ^ 0 the sequence {(Tjβ)py, (TJβ)p+1y) has values
in the closed transformation T/β and limit {zp, zp+1} in H x if, 2 ^ =
(T/β)zp. Thus, for p ^ 0 ^p = (T/β)pz0, so that 2 = Γ20. Since T is
an isometry, 1/ has limit z0 in {£Γ2, ( , )̂ ,r} Suppose T is self-adjoint
in {H, ( , •)}• Then for x and 7/ in H2

(Tx, y)β,τ = Σ ((T/β)pTx, (T/β)py)
P=0

= Σ ((Γ//3)'», (T/β)»Ty) = (x, Ty)β,τ ,
p=0

so that T is self-adjoint on the complete space {H29 ( , )̂ ,2 }

EXAMPLE 2. This example shows that in case {H9 ( , •)} is
separable the set of linear transformations T with domain H and



SHADOW AND INVERSE-SHADOW INNER PRODUCTS 393

range lying in H for which there is a positive number β such that
Σ?=o Il(27/S)pα$||2 converges on H is not a linear space.

Suppose y is in H, \\y\\ = 1, and Y is the linear span of {y}.
Suppose {em}T is a complete orthonormal sequence in H Q Y. Suppose
for m > 0 um = em + (ml)y. The linear span U of {um}? is dense in
H. One sees this by noting that y = limm^oo(ujmϊ). Hence, for
p > 0 ep = up — (pl)y is in £7. Thus, the linear space Ό includes
both Y and HQY. Suppose that Z is an algebraic complement of
Y in H of which U is a subspace. Suppose φ is the algebraic
projection of H onto Z with kernel F and that C is the operator
on H such that Cy — 0 and for m a positive integer Cem = eΛ+1.
Since the operator-norm of C is 1, Σ~=o ||(C/2)pίc||2 converges on H.
Since for p > 0(0 - 1)* = (-1)*+1(0 - 1), Σ~=o II ί(Φ - l)/2]'s ||2 con-
verges on jff.

Suppose T is C + (̂  — 1) and m is the number-sequence such
that m1 = 1 and for % > 0 mw+1 = (n + 1)1 — mn. Then for n > 0
Γ»(βl) = en+1 + m.T/ and || Γ'^H2 = 1 + m2

TO. Note that for n^l
nl — (n — 1)1 ̂  mn^nlf so that mn+1 ^ ^ ! . Thus, for β > 0
Σ?-oll(Γ//3)%||8 diverges.

THEOREM 2. Suppose that {H'f ( , )'} is α complete inner product
space, T is an operator on {H'f ( , •)'}> α ^ ΉΊ ί s a dense subspace
of Hf such that T{H^) lies in Hx. Suppose, moreover, that there is
a positive number β such that for each of x and y in Hx (x, y)f =
Σ"=o ((T/β)px, (T/β)py). Then (i) β is not less than the operator-norm
for T in {H\ (-, •)'}, (ϋ) with T* the adjoint of T in {H\ (.,.)'}
and x and y in Hx (x, y) = ((1 — T*T/β2)x, y)f, and (iii) in case
Hf Φ Hi and {Hu ( , •)} is complete, so that H — Hlf then β is the
operator-norm for T in {H\ ( , •)'} and for T on Hj^ in {Hu ( , •)'}•

Proof Since Hι is dense in H' and T continuous on Hr, the
operator-norm for T in {JET, ( , )'} is the operator-norm for T on ίZi
in {Hl9 ( , .)'}• Suppose that for x and y in Hx (x, y)' = Σ?=o ((T/β)px,
(T/β)py). Then for x in Hx

Thus, β is not less than the operator-norm for T in {H\ ( , •)'}•
Also, on Hx

{x, y) = (x, y)' - ((T/β)x, (T/β)yY

= ((1 -

so that (ii) is established.
To prove (iii), note that, since H' Φ Hu Hx is not closed in H'.
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Also, the identity function from [Hu ( , •)'} to {Hlf ( , •)} is continu-
ous. Since {Hlf ( , •)} is complete, the identity function from
{Hi, ( , •)} to {Hlf( , •)'} is not continuous. By the Closed Graph
theorem, the set Z of all || ||'-limits in H' of i^-sequences having
|| ||-limit 0 is nondegenerate. Since Z is the kernel of (1 - T*T/β2)1/2,
there is a nonzero point x of H' such that as = (T*T/β2)x. Thus,
(||Γa?|Γ)2 = /32(IMΓ)2 In view of (i), (iii) is established.

REMARK. Here I will describe why I call an inner product,
((1 — T*T/β2)-, •)'» a shadow inner product. The point of view taken
by the author is that one starts with {H, ( , -)}, a linear transfor-
mation T from H to H, not continuous in {H, ( , •)}> and a positive
number £ such that Σ~=o Il(ϊr//3)P |̂Γ converges on H. (T might be
the transformation φ — 1 of Example 2 with /5 = 2). One builds the
space {H, ( , )̂ tΓ} with a completion {H\ , •)'} so that H is a proper
subspace of Hr, dense in H'. Now T has continuous linear extension
to Hf, also denoted by T, with adjoint T* in {H'f ( , •)'}• Then by
Theorem 2, (a?, #) = ((1 - T*T/β2)x, y)f on H. The identity function
from {H, ( , •)'} to {H, ( , •)} is continuous. If {H, ( , •)} is complete,
by Note 5 of [4], the set Z of all || ||'-limits in H' of sequences in
Hwith l| ||-limit 0 is closed in Hr and also an algebraic complement
of H in H', and if P is the orthogonal projection of H' onto ZL

then ( , •) is equivalent on H to (P , P )' That is, the inner
product ((1 — T*T/β2)x, y)r on H is equivalent to the inner product
(Px, Py)f on H, the inner product in H' of the shadow of x in ZL

with the shadow in Z1 of y. Another point of view, starting
with a complete space {H\ ( , •)'}> a n operator T on {if, ( , •)'}> and
a dense, proper subspace Hι of H', and yielding a shadow inner
product ( (1-Γ*Γ) , •)' for H, such that {H^ ((1 - T*T) , -)'} is
complete, will be pursued in Example 3.

THEOREM 3. Suppose, as in Theorem 2, that {H\ ( , •)'} is a
complete inner product space, that Hι is a dense subspace of H',
and that T is an operator on {H\ ( , •)'} such that T(Ht) lies in Hx.
Suppose that β is a positive number and that, with T* the adjoint
of T in {H', ( , •)'}> (i) β is not less than the operator-norm for T
in {H\ ( , •)'} and (ii) 1 — T*T/β2 is a one-to-one transformation on
Hx. Then for x and y in H, the formula {x, y)" = ((1 - T^Tjβ^x, y)'
defines an inner product ( , •)" for Hι such that if ( , •) denotes
( , •)" on Hi then for x in H± Σ?=o II(T/β)px\\2 converges, with limit
not exceeding (||#|Γ)2 In case lim^oo(||(27/S)pa!||') = 0 on H19 then on
Hi (#> VΪ — (fl?, v)β,τ and if> in addition, {Hu ( , •)} is complete, so
that (1 - T*Γ//32)1/2(H1) is closed in H', and H' Φ H, then the restric-
tion of T to Hi is not continuous in {Hl9 ( , •)}• (Despite the conven-
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tion of the introduction, here ( , •) is not given beforehand).

Proof Note that, since 1 — T*T/β2 is a one-to-one function
when restricted to Hlf {Hlf ( , )"} is isometrically isomorphic to the
subspace (1 - T^T/βψXH,) of {H\ ( , •)'}• Thus, writing ( , •) in
place of ( , . ) " , {Hlf ( , •)} is complete if and only if (l-T*27/32)1/2(iϊi)
is closed in Hf. Suppose n is a positive integer and each of x and
y is in H^ We have

±((T/βYx,(T/βyy)
p=0

- Σ
p=0

= (X, y)> -

Hence, in case l i m ^ \\(T/β)px\\' = 0 on Hx then on Hx (xf y)f =
(x> v)β,τ- Now for x in Hx the number-sequence {\\(T/β)px\\'}™=0 is non-
increasing with limit ax. By (C), for x in Hι

p=0

Suppose H' Φ Hlf (x, y)f = (x, y)βtT on Hu and {Hu ( , •)} is complete.
Then, by Lemma 1, in case T on JÊ  is continuous in {Hu ( , •)}>
{fli, ( , •)'} is complete, so that Hι is closed in H'. Since fli is
dense in H' and ifx Φ Hf, Rx is not closed in H*. Hence, T on Ht

is not continuous in {Hl9 ( , •)}.

EXAMPLE 3. Suppose that on Z2 </, #> = Σi7=ofPQp and that # is
the point of I2 such that 2/0=1 and for p > 0 # p = 0. Suppose F
is the linear span of {y}, P the orthogonal projection of I2 onto YL,
and T the operator on ί2 such that T(c) is the sequence dt with
do = Σ?=i ^/2P + 1, di = Co, and for p > 1 d9 = c9J2**-K Now Γ*(c) is
the sequence e such that e0 = ^ and f or p > 0 ep = co/2p+1 + cp+J22p+1

and Γ*T(c) the sequence / such that /0 = c0 and for p > 0 / p =
[Σ?=i cg/2?+1]/2p+1 + cp/2**+ί. Hence,

= Σ [1 -

= Σ[ i- i /2 4 ί > + 2 ] | c J
2 > = 1

^ (63/64) Σ I d 2 -

V

£ l/22! > + 2
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By the above inequality,

(D) <Pc, Pc) ^ <(1 - T*2>, c) ^ (l/2)<Pc, Pc> .

Since (c, c> — (Tc9 Tc) ^ 0 on I2, the operator-norm for T does
not exceed 1. However, T\c) = g, where g0 = co/4 + Σ~= 2 <Λ-i)/233),
Λ = Σ~=i c,/2»+1, #2 = Co/8, and for p > 2 0P = (c3,_2)/24p-4. Computation
reveals that the operator-norm for T2 does not exceed 1/2. Hence,
lim^oo (Tpc, Tpc) is 0 on I2. Note that T(l2) Π Γ is {0}. Also, with
3 the £2-sequence such that for p >̂ 0 ^ is the sequence w with
wg = 2P+1 or 0 accordingly as q = p or not, Γ^ has limit ?/ in Z2.
Hence, y is in T(F). Since FTψ) is Γ 1, we conclude that T(l2) is
dense in I2.

Suppose Hx is an algebraic complement of Y in I2 and Γ(Z2) is a
subspace of .Hi. Then the formula (x, y)" = (Px, Py) defines an inner
product for Hλ such that {Hu ( , •)"} is complete. By (D), the
formula (x, y) — <(1 — T*T)x, y) defines an inner product for Ήγ

equivalent to ( , •)"• Of course, with β = 1, by Theorem 3 < , •> =
( , -)βyT on ίZΊ It is of interest to note that [{x, y)"]β,τ

( = Σ*7=o <PTpx, PTpy)) is equivalent to < , •> on H,. For

implies

on Hv

Note 1. An argument for most of the following, known to the
author through work of MacNerney [6], may be found in [1] (Lemma,
p. 316), in which it is partly attributed to Friedrichs [3]. No argu-
ment will be offered here.

Suppose {Hu ( , •)'} is complete and continuously situated in
{H, ( , •)}> in the sense that Hγ lies in H and there is a positive
number c such that || || ^ c|| |Γ on Hlf that Hx is dense in H, and
that B is the adjoint of the identity function from {Hlf ( , •)'} to
{H, ( , •)}> so that B is that linear transformation from H to ίZΊ
such that for x in Hx and y in H (x, y) = {x, By)'. Suppose C is an
operator on {H, ( , •)}• Then

(1) B is positive definite in {H, ( , •)} a n ( i t ^ e operator-norm
for 2? in {if, ( , •)} does not exceed c;

(2) with J51/2 the positive definite square-root of B in {H, ( , •)}
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and 5-1/2 = (B1/2y\ #1 = B1/2(H) and ( , •)' = (£~1/2 , Br™.) on Hx\
(3) if C(JT) lies in Hι then C is continuous from {JBΓ, ( , •)} to

{fli( )')
(4 ) if OB = JK7, then C£1/2 = B1/2C so that 0(1^) lies in Hx and

for x and 2/ in # , with x Φ 0, ||CJ31/2aHΓ/il-B1/2tf|Γ = l|Cfc||/INI and
(CJS1/2α;, JS1/22/)' = (Cx, y); hence, the operator-norm in {Hu ( , •)'} for
the restriction C± of C to i ^ is the operator-norm for C in {#, ( , )}
and if C is nonnegative in {H, ( , •)} Cx is nonnegative in {Hu ( , •)'};
and (5) if C(H) is dense in H and C is one-to-one the formula
(x, y)" = (C"1^, C"1^) defines an inner product for C{H) such that
{C(H), ( , )"} is complete and continuously situated in {H, ( , )} and
the adjoint of the identity function from {C{H\ (-, •)"} to {H, ( , •)}
is CC* on if, where C* is the adjoint of C as an operator of H
into itself. Moreover, for the adjoint C+: C(H) -> H of C: H-+C(H)
we have CC* - C+C (or C+ = CC*C~ι).

THEOREM 4. Suppose that Hx is a dense subspace of H. Then
in order that ( , )i be such an inner product for JHΊ that [Hu ( , )J
is complete and continuously situated in {H, ( , •)} it is necessary
and sufficient that for some operator C on {H, ( , )} and positive
number d Hx is the set of all x in H such that Σ?=o ||CP<B||8 converges
and, if each of x and y is in Hlf {x, y\ = d Σ?=o (Cpx, Cpy).

Proof. The sufficiency of the condition follows from Lemma 1.
To argue necessity, let e be a number such that for x in u^ ||cc||2 ^
edl^lli)2 and ( , •)' be β( , )i on H^ Then the complete inner product
space {Hly (-,•)'} is continuously situated in {H, (-, )} and the
operator-norm for the identity function from {JEZi, ( , )'} to {H, ( , )}
does not exceed 1. Hence, with B as in Note 1, the operator-norm
for B in {H, ( , •)} does not exceed 1. Suppose that C is (1 — B)1/2

on H, so that B = 1 - C2. Since BC = CB, by Note 1 CCHΊ) lies in
H19 the restriction of C to Hx is nonnegative in {Hlf ( , •)'}> and the
operator-norm for this restriction in {Hl9 ( , •)'}> does not exceed 1.
By Theorem 3, Σ?=o I|C^| | 2 converges on H,. (Note that {H\ ( , .)'}
in Theorem 3 is replaced by {Hu ( , )'} here and that T — C, 1 —
Γ*Γ = B, ((1 - C2)^, 2/)' = (Bx, y)f = (α, i/).) Suppose that {iϊ", (., .)"}
is the complete inner product space of all x in H for which
Σ?=o II Cpx ||2 converges with (x, y)" = Σ?=o (Cpίc, C^). Note that, since
J3i lies in H", H" is dense in H and (1 - C2)(£Γ) lies in Jϊ". Also,
by Lemma 1, C(H") lies in H" and the restriction of C to J ϊ " is
self-adjoint in JET". By Note 1, 1 — C2 is continuous from {H,(-, •)}
to {H'\ ( , •)"}• Suppose each of α and y is in If". Then, by
Theorem 2, (a, y) = (x, (1 - C2)i/)". (The {H\ ( , •)'} of Theorem 2 is
{#", (., •)"} now, /3 = 1 and T = C; the fli of Theorem 2 is £Γ" now.)
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Suppose z is in H, x is in H", and y is a sequence in H" with
limit z in H. Then

(x, z) = lim (x, y) = lim (», (1 - C*)y)" = (a, (1 - C*)z)" ,

so that 1 — C2 is the adjoint of the identity function from {H", ( , •)"}
to {H,( , •)}• Hence, H" = (1 - Cψ2(H) = Hx and for x and # in
Hu by Note 1,

(x, v\ = a/e){χ, y)'

= (l/e)((l - CTmx, (1 - CTwy)

= dle)(x, y)"

The theorem is established, taking d as 1/e.

It may be noted that an argument for Theorem 4 could be
based on a theorem, Theorem 2 of [5], of the author and Note 1.
The argument given above is more closely related to the other
theorems of this paper.

THEOREM 5. Suppose that Hι is a dense subspace of H and T
is a linear transformation from ΈLX to Hγ. Then in order that there
be an inner product ( , )i for Hi such that {Hu ( , )J is complete
and continuously situated in {H, ( , •)} and T is continuous in
{Hu ( , )i} iί is necessary and sufficient that for some pair, β and
Ύ, of positive numbers and some operator C on {H, ( , •)} ΉΊ is th>e

set of all x in H for which Σ?=o IIC^II2 converges and for x in

Proof. To argue necessity, suppose b is the operator-norm for
T in {Hlf ( , )i} a n ( i β — 26. By Theorem 4, there is an operator
C in {H, ( , •)} and a positive number d such that ΈLλ is the set of
all x in H for which Σ?=o l|Cpα;||2 converges, with limit
N o w , w i t h e = (l/d)1/2, \\x\\ ̂  e\\x\\, a n d

itu/βy\\ t
p=Q p=Q

x U = (4/3) Σ ||C»!B IIs

0Σ
2>=0

on H19 so that the condition follows with 7 = 4/3.
To argue the sufficiency of the condition, suppose (a?, y\ —

^p=o(Cpx, Cpy) on Hlf so that {Hlf ( , )J i s complete and continuous-
ly situated in {H, (., .)}, and set (α?, »)2 = Σ*7=o((T/β)'x, (T/β)py) on
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HΊ. Now T on Hx is continuous in {H19( 9 )J and ||a?||2 ^ "X1/2II^ 1U
on i?i. Suppose Γ is not continuous in {.Hi, ( , )J Then, by the
Closed Graph theorem, there is an i^-sequenee x with limit 0 in
{Hl9 ( , )i} such that Tx has limit y Φ 0 in {J3Ί, ( , )i} Since | | s | | 2 ^
Ύ172!!^]!! on Hlf x has limit 0, and Tx limit #, in {Hlf( , -)2}. But
T# has limit 0 in {Hu ( , )2} Thus, ?/ = 0. This is a contradiction.

EXAMPLE. There is a dense subspace Hλ of JHΓ and a linear
transformation Γ on Hx such that T^Hi) lies in H19 the formula
(#, v\ — Σ7=o(Tpx, Tpy) defines on Hi an inner product such that
{Hlt ( , )i} is complete, and yet T is not a closed operator in

Suppose C is an operator on H such that the set H2 of all x
in H for which ^^\\Cpxψ converges is a dense proper subspace
of H. Suppose y is not in H2, JEZi. is the linear span of {y} and iJ2,
and φ is the algebraic projection of Hx onto ££> with kernel the
linear span Y of {y}. Suppose T is Cφ + 1/2(1 — φ) on .Hi. Since
C(£Γ2) l i e s i n -^2, Γp is Cp on iί 2. Since the set of all x for which
^Σ^=0\\Tpx\\2 converges is a linear space including both Y and H2,
this set is H,. Define (a, j/X to be Σ?=o ( Γ % ΓP2/) on Hx. Then H 2

is a complete subspace of {Hl9 ( , )i} Since F is one-dimensional,
{.Hi, ( , )i) ί s complete. Now, since y is not in H2, Cy Φ (l/2)y so
that T does not lie in C. Yet the closure ofTmHxH includes
C Hence, the closure of T in H x if is not a function.
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