UNITARY ANALOGS OF GENERALIZED RAMANUJAN SUMS

KENNETH RICHARD JOHNSON
UNITARY ANALOGS OF GENERALIZED RAMANUJAN SUMS

KENNETH R. JOHNSON

The multiplicative properties of a certain type of generalized Ramanujan sum have been studied by several authors. In this paper we investigate the multiplicative properties of the unitary analog of this function.

Cohen [2] defined the unitary product of two arithmetic functions f and g, by

$$f \times g(n) = \sum_{d \mid n} f(d)g(n/d),$$

where $d \mid n$ indicates that d is a unitary divisor of n, i.e., $d \mid n$ and $(d, n/d) = 1$. He also defined a unitary analog of Ramanujan’s sum $c_k(n)$ by

$$c_k^*(n) = \sum_{(j, k) = 1 \atop j \equiv i \pmod{k}} \exp \left(2\pi i jn/k \right)$$

where $(j, k)_*$ denotes the largest divisor of j which is a unitary divisor of k. Cohen then demonstrated that, paralleling the Dirichlet product result, we have

$$c_k^*(n) = \sum_{d \mid (n, k)_*} d \mu^*(k/d).$$

Here μ^* is the unitary Möbius function and $\mu^* = 1^{-1}$ with respect to the unitary product ($1(n) = 1$ for all n). The function μ^* is multiplicative and $\mu^*(1) = 1$, $\mu^*(p^k) = -1$ for all primes p and positive integers k. It is easy to see that (3) may be rewritten

$$c_k^*(n) = \sum_{d \mid (n, k)_*} d \mu^*(k/d).$$

Cohen also defined $\phi^*(n) = c_k^*(0)$, and paralleling the Dirichlet case showed that $\phi^*(n)$ counts the number of integers unitarily semi-prime to n, i.e., the number of integers k such that $(k, n)_* = 1$. He also showed that $\phi^*(n) = i \times \mu^*(n)$, where i is the identity function, which is also analogous to the well known Dirichlet result.

Anderson and Apostol [1] defined a more general Ramanujan type sum by

$$s_k(n) = \sum_{d \mid (n, k)} f(d)g(k/d),$$

and studied the multiplicative properties of this new function. In
this paper we study the multiplicative properties of the unitary analog of \(s_k(n) \), defined as follows.

Definition 1. For arithmetic functions \(f \) and \(g \), let

\[
 s^*_k(n) = \sum_{d \mid (n, k^*)} f(d)g(k/d).
\]

The proof of the following lemma is straightforward.

Lemma 2. If \((a, k) = (b, m) = 1 \) then \((ab, mk)_* = (a, m)_*(b, k)_*\) and \((a, m)_*(b, k)_* = 1\).

Theorem 3. If \(f \) and \(g \) are multiplicative then \(s^*_k(n) \) has the following multiplicative properties:

(i) \(s^*_k(ab) = s^*_k(a)s^*_k(b) \) whenever \((a, k) = (b, m) = 1\)

(ii) \(s^*_k(ab) = s^*_k(a) \) whenever \((b, m) = 1\)

(iii) \(s^*_k(a) = s^*_m(a)g(k) \) whenever \((a, k) = 1\).

Proof. Suppose \((a, k) = (b, m) = 1\). Then

\[
 s^*_k(ab) = \sum_{d \mid (ab, mk)_*} f(d)g(mk/d) = \sum_{d \mid (a, m)_*(b, k)_*} f(d)g(mk/d),
\]

by Lemma 2,

\[
 = \sum_{d_j \mid (n, m)_*} f(d_1)g(m/d_1) \sum_{d_2 \mid (b, k)_*} f(d_2)g(k/d_2), \quad \text{since} \quad (d_1, d_2) = 1
\]

\[
 = s^*_m(a)s^*_k(b).
\]

This proves (i). Now let \(k = 1\).

\[
 s^*_k(ab) = s^*_m(a)s^*_k(b) = s^*_m(a) \quad \text{which is (ii).}
\]

Not let \(b = 1 \) in (i)

\[
 s^*_k(a) = s^*_m(a)s^*_k(a) = s^*_m(a)g(k).
\]

The function \(s^*_k(n) \) is multiplicative in another sense.

Theorem 4. If \(f \) and \(g \) are multiplicative then \(s^*_k(n) \) is multiplicative in \(k \) for each fixed \(n \).

Proof. Suppose \((k, m) = 1\) and \(n \) is fixed. Then

\[
 s^*_k(n)s^*_m(n) = \sum_{d_1 \mid (n, k)_*} f(d_1)g(k/d_1) \sum_{d_2 \mid (n, m)_*} f(d_2)g(m/d_2)
\]

\[
 = \sum_{d_1 \mid (n, k)_*} \sum_{d_2 \mid (n, m)_*} f(d_1)d_2g(km/d_1d_2) = \sum_{d \mid (n, km)_*} f(d)g(km/d)
\]

\[
 = s^*_m(n).
\]

The case \(s^*_k(n) = c^*_k(n) \) was proved by Cohen [2].

Theorem 5. If \(f \) and \(g \) are multiplicative, and \(g(n) = \pm 1 \) for all \(n \), then for fixed \(k \) the function \(g(k)s^*_k(n) \) is multiplicative in the variable \(n \).
Proof. Choose \((n, m) = 1 \) and fix \(k \). Now

\[
g(k)s^*_*(n)g(k)s^*_*(m) = s^*_*(n)s^*_*(m), \quad \text{since} \quad g^*(k) = 1.
\]

Since both sides of the equality

\[
s^*_*(n)s^*_*(m) = g(k)s^*_*(nm)
\]

are multiplicative in \(k \) (by the previous theorem), it is enough to prove the same when \(k \) is a prime power.

\[
s^*_*(n)s^*_*(m) = \sum_{d \mid (n, k)_*} f(d_1)g(k/d_1) \sum_{d_2 \mid (m, k)_*} f(d_2)g(k/d_2)
\]

but since \(k \) is a prime power either \(d_1 \) or \(d_2 \) is 1, so \(g(k/d_1)g(k/d_2) = g(k)g(k/d_1d_2) \) and

\[
s^*_*(n)s^*_*(m) = \sum_{d_1d_2 \mid (nm, k)_*} f(d_1d_2)g(k/d_1d_2)
\]

\[
= g(k) \sum_{d \mid (nm, k)_*} f(d)g(k/d) = g(k)s^*_*(nm).
\]

In particular,

Corollary 6. For fixed \(k \), the function \(\mu^*(k)c^*_*(n) \) is multiplicative in the variable \(n \).

The Dirichlet analog of Corollary 6 was proved by Donovan and Rearick [4].

Theorem 4 is also useful in the proof of another unitary version of a Dirichlet result [1]. A somewhat weaker theorem of this type was proved by V. Sitah Ramaiah [6].

Theorem 7. Suppose \(g \) and \(f \) are multiplicative and \((n, k)_* = 0 \) for all \(n \). Then

\[
(5) \quad s^*_*(n) = \frac{F(k)g(N)}{F(N)}
\]

where \(N = k/(n, k)_* \).

Proof. After Theorem 4 it is sufficient to show that the right hand side of (5) is multiplicative in \(k \) and demonstrate the equality when \(k \) is a prime power. But \(F \) is multiplicative [2, Theorem 2.1]. Using this and the fact that \((n, k)_*(n, m)_* = (n, km)_* \) if \((k, m) = 1 \), it is easy to see that the right hand side of (5) is indeed multiplicative. So without loss of generality we may assume \(k = p^r = P \), a prime power. If \(P \mid n \), then \((n, P)_* = 1 \) and \(F(k)g(N)/F(N) \) reduces to \(g(P) \). If \(P \nmid n \) then \((n, P)_* = P \) and the right hand side
of (5) reduces to \(f(1)g(P) + f(P)g(1) \). In either case the value obtained is the value of \(s^*_r(n) \), thus establishing the theorem.

Corollary 8. \(c^*_r(n) = \phi^*(k)\mu^*(k/(n, k^*))/\phi^*(k/(n, k^*)) \).

Proof. As stated earlier \(\phi^*(k) = i \times \mu^*(k) \).

This particular special case of Theorem 7 has been proved by several authors [3], [5], and [7].

References

Received February 27, 1980 and in revised form August 24, 1981.

North Dakota State University

Fargo, ND 58105
Alberto Alesina and Leonede De Michele, A dichotomy for a class of positive definite functions ... 251
Kahtan Alzubaidy, Rank \(p \)-groups, \(p > 3 \), and Chern classes 259
James Arney and Edward A. Bender, Random mappings with constraints on coalescence and number of origins .. 269
Bruce C. Berndt, An arithmetic Poisson formula ... 295
Julius Rubin Blum and J. I. Reich, Pointwise ergodic theorems in l.c.a. groups 301
Jonathan Borwein, A note on \(\varepsilon \)-subgradients and maximal monotonicity 307
Andrew Michael Brunner, Edward James Mayland, Jr. and Jonathan Simon, Knot groups in \(S^4 \) with nontrivial homology .. 315
Luis A. Caffarelli, Avner Friedman and Alessandro Torelli, The two-obstacle problem for the biharmonic operator 325
Aleksander Całka, On local isometries of finitely compact metric spaces 337
William S. Cohn, Carleson measures for functions orthogonal to invariant subspaces ... 347
Roger Fenn and Denis Karmen Sjerve, Duality and cohomology for one-relator groups .. 365
Gen Hua Shi, On the least number of fixed points for infinite complexes 377
George Golightly, Shadow and inverse-shadow inner products for a class of linear transformations .. 389
Joachim Georg Hartung, An extension of Sion’s minimax theorem with an application to a method for constrained games 401
Vikram Jha and Michael Joseph Kallaher, On the Lorimer-Rahilly and Johnson-Walker translation planes .. 409
Kenneth Richard Johnson, Unitary analogs of generalized Ramanujan sums 429
Peter Dexter Johnson, Jr. and R. N. Mohapatra, Best possible results in a class of inequalities .. 433
Dieter Jungnickel and Sharad S. Sane, On extensions of nets 437
Johan Henricus Bernardus Kemperman and Morris Skibinsky, On the characterization of an interesting property of the arcsin distribution 457
Karl Andrew Kosler, On hereditary rings and Noetherian \(V \)-rings 467
William A. Lampe, Congruence lattices of algebras of fixed similarity type. II 475
M. N. Mishra, N. N. Nayak and Swadeenananda Pattanayak, Strong result for real zeros of random polynomials 509
Sidney Allen Morris and Peter Robert Nickolas, Locally invariant topologies on free groups .. 523
Richard Cole Penney, A Fourier transform theorem on nilmanifolds and nil-theta functions .. 539
Andrei Shkalikov, Estimates of meromorphic functions and summability theorems ... 569
László Székelyhidi, Note on exponential polynomials .. 583
William Thomas Watkins, Homeomorphic classification of certain inverse limit spaces with open bonding maps 589
David G. Wright, Countable decompositions of \(E^n \) .. 603
Takayuki Kawada, Correction to: “Sample functions of Pólya processes” 611
Z. A. Chanturia, Errata: “On the absolute convergence of Fourier series of the classes \(H^\omega \cap V[v] \)” ... 611