NOTE ON EXPONENTIAL POLYNOMIALS

LÁSZLÓ SZÉKELYHIDI
It is known that every finite dimensional translation
invariant subspace of measurable functions on a σ-compact
locally compact Abelian group consists of exponential poly-
nomials. This paper extends this result for continuous
functions on arbitrary commutative topological groups. An
analogous characterization is proved for trigonometric poly-
nomials using Fourier transformation.

In this paper joining with the investigations of Engert [3] and
Laird [5] we prove that every finite dimensional translation
invariant subspace of continuous functions on arbitrary commuta-
tive topological groups consists of exponential polynomials. Our
method is similar to that of [3] but we prove the important lemma
of Engert in a simpler way using generalized polynomials. In
contrast with [3] and [5] here the main emphasis is on functional
equations. In the last part we prove an analogous result for bounded
continuous functions using the Fourier transform of almost periodic
functions. We note that translation invariant finite dimensional
subspaces of the space of finite signed measures on a commutative
topological group can be characterized in a similar way by the
same technique.

If \(G \) is an Abelian group then an additive function on \(G \) is a
complex valued function \(a \) such that \(a(x + y) = a(x) + a(y) \) for all
\(x \) and \(y \) in \(G \). A multiplicative function on \(G \) is a complex valued
function \(m \) such that \(m(x + y) = m(x)m(y) \) for all \(x \) and \(y \) in \(G \).
If \(n \) is a positive integer then we mean by an \(n \)-additive function
on \(G \) a complex valued function on \(G^n \) which is additive in each
variable. We define generalized polynomials on \(G \) as functions
satisfying the so called Fréchet equation: \(A^{n+1}_y f(x) = 0 \). (Here \(A_y \)
denotes the difference operator: \(A_y f(x) = f(x + y) - f(x) \) and \(A^{n+1}_y f =
A_y (A^n_y f) \)) Functions with this property are called generalized polynomials of degree at most \(n \). It is well-known (see e.g., [2], [6], [8])
that every complex valued generalized polynomial of degree at most
\(n \) can be uniquely expressed in the form \(\sum_{k=0}^{n} A^{(k)} \) where \(A^{(k)} \)
is the diagonalization of a \(k \)-additive, symmetric function \(A_k \), that is
\(A^{(k)}(x) = A_k(x, x, \ldots, x) \) (\(A^{(0)} \) is a constant). For more about gener-
alyzed polynomials on groups see [6], [8].

If \(G \) is a topological Abelian group then by a polynomial on \(G \)
we mean a function of the form \(p(x) = P(a_1(x), \ldots, a_n(x)) \) where \(P \)
is a complex polynomial in \(n \) variables and \(a_i \) \((i = 1, \ldots, n) \) is a
continuous additive function. An exponential polynomial on G is a function of the form $\sum_{i=1}^{n} p_i \cdot m_i$ where p_i is a polynomial and m_i is a continuous multiplicative function. By a trigonometric polynomial on G we mean a linear combination of characters, that is continuous multiplicative functions into the complex unit circle.

A multi-index $\rho = (p_1, \ldots, p_n)$ is an n-tuple of nonnegative integers and if (a_1, \ldots, a_n) is a complex n-tuple, then a^ρ is defined to be $a_1^{p_1} \ldots a_n^{p_n}$. (For more details on the notation see [3], [4], [5].)

Theorem 1. Let f be a continuous function on the topological group G such that the complex linear space spanned by $\{\Delta y f: y \in G\}$ is a finite dimensional space of polynomials. Then f is a polynomial.

Proof. Let a_1, \ldots, a_n be a finite set of continuous additive functions such that all polynomials in the subspace V spanned by $\{\Delta y f: y \in G\}$ are built up from these functions and $\{a^\rho\}$ are linearly independent for $|\rho| \leq N$. Then

$$\Delta y f = \sum_{|\rho| \leq N} (P/y) a^\rho$$

holds for all y in G. We see that f satisfies the Fréchet equation $\Delta^{N+1} y f = 0$ and hence we have the representation

$$f = \sum_{k=0}^{N+1} A^{(k)}.$$

This yields

$$\Delta y f(x) = \sum_{k=0}^{N+1} [A^{(k)}(x + y) - A^{(k)}(x)].$$

On the right hand side we have only one member which is of degree N in x. This is $A_{N+1}(x, x, \ldots, x, y)$. It follows that

$$\sum_{|\rho| = N} (P/y) a^\rho = A_{N+1}(x, x, \ldots, x, y)$$

holds for all x and y in G. Since the right hand side is additive in y we have

$$\sum_{|\rho| = N} [c_p(y + z) - c_p(y) - c_p(z)] a^\rho = 0.$$

Here the functions $a^\rho (|\rho| = N)$ are linearly independent and we conclude that c_p is additive for all $|p| = N$. Hence $A^{(N+1)}$ is a polynomial. Repeating this argument for the function $f - A^{(N+1)}$ we get the statement by induction.

Theorem 2. Let V be a translation invariant finite dimen-
Proof. Let \(g_1, \ldots, g_n \) be a basis for \(V \), then for every function \(f \) in \(V \) the functional equation

\[
f(x + y) = \sum_{i=1}^{n} g_i(x)h_i(y)
\]

holds. Let \(x_1, \ldots, x_n \) be elements of the group \(G \) for which the matrix \((g_i(x_j)) \) is regular. We may suppose without loss of generality that this matrix is the identity matrix. We introduce the notations \(\vec{f}(x) = (f(x_1 + x), \ldots, f(x_n + x)) \), \(M(x) = (g_i(x_j + x)) \), \(\vec{h}(x) = (h_1(x), \ldots, h_n(x)) \) for all \(x \) in \(G \). Then we have the functional equation

\[
\vec{f}(x + y) = M(x)\vec{h}(y) .
\]

which shows that \(\vec{f} = \vec{h} \) and the subspace in \(C^n \) generated by the range of \(\vec{f} \) is invariant under \(M(x) \) for all \(x \). (\(C \) denotes the set of complex numbers.) We may suppose that this subspace is \(C^n \), then we have for all \(x \) and \(y \) in \(G \)

\[
M(x + y) = M(x)M(y) .
\]

The matrices \(M(x) \) commute for all \(x \) hence they can be transformed into triangular form simultaneously. Since after a similarity transformation our equation remains valid we may suppose that the matrices are all triangular from above. It is easy to see that the diagonal elements are all multiplicative functions. Let \(D(x) \) be the diagonal matrix for which \(M(x) - D(x) \) is strictly triangular from above for all \(x \). Then \(D(x + y) = D(x)D(y) \) and with the notation \(A(x) = D^{-1}(x)M(x) \) we have

\[
A(x + y) = A(x)A(y)
\]

and all diagonal elements of \(A(x) \) are 1. This equation means for the components \(A_{ij} \) of \(A \)

\[
A_{ij}(x + y) = \sum_{k=1}^{n} A_{ik}(x)A_{kj}(y) = \sum_{k=1}^{i-1} A_{ik}(x)A_{kj}(y) + A_{ij}(x) + A_{ij}(y) .
\]

We prove by induction on \(j - i \) that \(A_{ij} \) is a polynomial. For \(i = j \) this is trivial. Supposing that it is valid for \(j - i \leq l \) we see that

\[
A_yA_{j,i+1+l+1}(x) = A_{j,i+1+l+1}(y) + \sum_{k=i+1}^{j+l} A_{ik}(x)A_{k,i+1+l+1}(y)
\]

hence the subspace spanned by \(\{A_yA_{j,i+1+l+1}, y \in G\} \) is contained in the
subspace spanned by $1, A_{ik} (k = i + 1, \ldots, i + l) (l)$, that is, consists of polynomials. Thus by Theorem 1 all components of M are exponential polynomials. Finally, by

$$\tilde{f}(x) = M(x)f(0)$$

we conclude that f is an exponential polynomial.

Theorem 3. Let V be a translation invariant finite dimensional vectorspace of continuous bounded functions on a topological Abelian group which has sufficiently many characters. Then every function in V is a trigonometric polynomial.

Proof. Using the notations of the previous theorem we have that for every function f in V the functional equation

$$f(x + y) = \sum_{i=1}^{n} g_i(x)h_i(y)$$

holds. Since the functions g_1, f are bounded and g_1, \ldots, g_n are linearly independent, it follows from [7] that f, g_i, h_i are almost periodic functions on G. If \hat{G} denotes the dual of G we have by Fourier transformation, that

$$\hat{f}(\gamma)\gamma(y) = \sum_{i=1}^{n} \hat{g}_i(\gamma)\hat{h}_i(y)$$

holds for every y in G and γ in \hat{G}. Repeating this argument with respect to y we have that

$$\hat{f}(\gamma)\gamma(\tau) = \sum_{i=1}^{n} \hat{g}_i(\gamma)\hat{h}_i(\tau)$$

holds for all γ and τ in \hat{G}. If $\gamma_1, \ldots, \gamma_n$ are elements of \hat{G} such that the matrix $(\hat{g}_i(\gamma_j))$ is regular, then substituting γ_i for γ we have a linear system of equations for the unknowns $\hat{h}_i(\tau) (i = 1, \ldots, n)$ which is homogeneous if $\tau \neq \gamma_j (j = 1, \ldots, n)$. Hence we conclude that $\hat{h}_i(\tau) = 0$ for $\tau \neq \gamma_j (i, j = 1, \ldots, n)$ and by the inversion theorem h_i is a trigonometric polynomial for $i = 1, \ldots, n$. Since f is a linear combination of the functions h_i, we have that f is a trigonometric polynomial.

References

Received January 28, 1980.

Kossuth Lajos University
4010 Debrecen, Hungary
Pacific Journal of Mathematics
Vol. 103, No. 2 April, 1982

Alberto Alesina and Leonede De Michele, A dichotomy for a class of positive
definite functions ... 251
Kahtan Alzubaidy, Rank_2 p-groups, p > 3, and Chern classes 259
James Arney and Edward A. Bender, Random mappings with constraints on
coaescence and number of origins 269
Bruce C. Berndt, An arithmetic Poisson formula 295
Julius Rubin Blum and J. I. Reich, Pointwise ergodic theorems in l.c.a. groups ... 301
Jonathan Borwein, A note on ε-subgradients and maximal monotonicity 307
Andrew Michael Brunner, Edward James Mayland, Jr. and Jonathan Simon,
Knot groups in S^4 with nontrivial homology 315
Luis A. Caffarelli, Avner Friedman and Alessandro Torelli, The two-obstacle
problem for the biharmonic operator 325
Aleksander Calka, On local isometries of finitely compact metric spaces 337
William S. Cohn, Carleson measures for functions orthogonal to invariant
subspaces ... 347
Roger Fenn and Denis Karmen Sjerve, Duality and cohomology for one-relator
groups ... 365
Gen Hua Shi, On the least number of fixed points for infinite complexes 377
George Golightly, Shadow and inverse-shadow inner products for a class of linear
transformations .. 389
Joachim Georg Hartung, An extension of Sion’s minimax theorem with an
application to a method for constrained games 401
Vikram Jha and Michael Joseph Kallaher, On the Lorimer-Rahilly and
Johnson-Walker translation planes 409
Kenneth Richard Johnson, Unitary analogs of generalized Ramanujan sums 429
Peter Dexter Johnson, Jr. and R. N. Mohapatra, Best possible results in a class of
inequalities .. 433
Dieter Jungnickel and Sharad S. Sane, On extensions of nets 437
Johan Henricus Bernardus Kemperman and Morris Skibinsky, On the
characterization of an interesting property of the arcsin distribution 457
Karl Andrew Kosler, On hereditary rings and Noetherian V-rings 467
William A. Lampe, Congruence lattices of algebras of fixed similarity type. II ... 475
M. N. Mishra, N. N. Nayak and Swadeenananda Pattanayak, Strong result for
real zeros of random polynomials ... 509
Sidney Allen Morris and Peter Robert Nickolas, Locally invariant topologies on
free groups .. 523
Richard Cole Penney, A Fourier transform theorem on nilmanifolds and nil-theta
functions .. 539
Andrei Shkalikov, Estimates of meromorphic functions and summability
theorems .. 569
László Székelyhidi, Note on exponential polynomials 583
William Thomas Watkins, Homeomorphic classification of certain inverse limit
spaces with open bonding maps ... 589
David G. Wright, Countable decompositions of \(E^n \) 603
Takayuki Kawada, Correction to: “Sample functions of Pólya processes” 611
Z. A. Chanturia, Errata: “On the absolute convergence of Fourier series of the
classes \(H^\omega \cap V[v] \)” ... 611