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The linearly ordered net spaces are introduced in this
paper. This concept is a generalization of both the sequential
spaces and the linearly ordered base spaces. The funda-
mental properties of this class, including mapping properties,
are presented. Various applications of a general nature are
given as well as some applications to weak covering axioms.
The class of lo-net spaces is characterized as the class of
well-ordered net spaces.

I. Introduction. In this note the large class of linearly ordered
net (lo-net) spaces is introduced, the fundamental properties of this
class are presented and the study of applications is initiated. The
lo-net spaces are very useful simultaneous generalizations of sequen-
tial spaces and linearly ordered base spaces. The applications of
sequential spaces are numerous and well known. The linearly ordered
base (lob) spaces were studied by Davis [6] and applications of a
general nature were presented along with the beginnings of important
applications to weak covering axioms. In [7] the applications of
lob-spaces to various weak covering axioms were studied extensively.

Section 2 contains the definitions of the notions associated with
the linearly ordered net spaces, as spaces with the weak topology
generated by a class of subsets. The fundamental structural
properties and some of the basic applications are presented in §3.
In §4 some of the results of {6] and [7] are reexamined from the
broadened view of lo-net spaces. The subtle differences between
lo-net and very lo-net spaces are illustrated by examples. In
particular, Lemma 2.3.1 of [7] is not true and a corrected version
is presented along with its lo-net version. Finally the true nature
of the lo-net spaces as a generalization of sequential spaces and lob-
spaces is revealed in §5, where the class of lo-net spaces is charac-
terized as the class of well-ordered net spaces.

11. Preliminaries. A linearly ordered net (lo-net) is a net whose
directed set is linearly ordered. The collection of linearly ordered
nets @y in a space X determines a natural cover [9] of X. Many
of the notions in this study are specific applications of concepts and
properties introduced and developed by Stan Franklin [9]. A
topological space X will be called a linearly ordered net (lo-net) space
provided Hc X is closed if and only if for every convergent lo-net
in H, say z,— 2, we have xc¢ H. That is X is a lo-not space
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provided X has the weak topology determined by the collection @),.
The class of lo-net spaces is very large including all sequential
spaces and lob-spaces. (A space is a lob-space provided every point
has a nhood base which is linearly ordered by set inclusion [6].)
The lob-spaces and results of [6] are the primary motivation for
this work. The terminology used by Arhangelskii, very k-space, is
quite indicative of the property described and I use it as follows:
X is a wery lo-net space if for each xeccl(H) there exists a con-
vergent lo-net (x;) in H such that z,—>x. For each Ac X, let
lo-cl (A) = {p: p is the limit of a convergent lo-net in A}. Recall
the essential subtle point that lo-cl (4) is not necessarily closed,
even in a lo-net space. For each Ac X, let A° = A, A' = lo-cl (4),
for any fixed ordinal B3 where A* is defined for each a < 3, if g =
v -+ 1, define A’ =lo-cl(4") and if B is a limit ordinal let A® =
U{4* a < B}. The lo-net characteristic of a space X, MX), is the
least ordinal « such that A* = cl (4), for each A C X. X is a lo-net
space if and only if A(X) exists, and in this case AMX) £ (H(X)*
where t(X) is the tightness of X. X is a very lo-net space provided
MX) =1. The lo-net spaces are particularly cases of the £2-net
spaces studied by Jerry Vaughan [12], and in fact, they are the
well-ordered net spaces (§5).

iIIlI. Lo-net spaces. In this section we present various properties
of lo-net spaces and some fundamental applications of lo-net spaces.

THEOREM 3.1.

first countable —— Frechet —= sequential

l l l

lob-space = very lo-net space = lo-net space

The quotient space obtained by attaching the 0 of the 1/n-
sequence, S;, to each countable ordinal in [0, w,] is a lo-net space
which is not sequential and not very lo-net. Every lo-net closed
set is sequentially closed, but sequentially closed does not imply lo-
net closed as [0, w,) is sequentially closed in [0, @] but not closed.
However in countable sets we have the following.

THEOREM 3.2. FEwvery countable sequentially closed set is lo-net
closed.

Proof. Let H be a countable sequentially closed set, and let
{p;: ne L} be a lo-net in H where p, —»p. From Lemma 5.1, let W
be a well-ordered cofinal subset of L. Since H is countable, if
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cf (W) > w, {p;: ve L} must be constant on a cofinal subset of W.
Since there is a constant subnet converging to », peH. If
cf (W) = w, choose an increasing sequence {\,: % € @} which is cofinal
in W. Then since {p; : ncw} is cofinal in {p;: x€ L}, p,, — p. Since
H is sequentially closed, pc H. Thus H contains each of its lo-net
limit points and is lo-net closed.

COROLLARY 3.3. FEwvery countable lo-net space is sequential and
every countable very lo-net space if Frechet.

COROLLARY 3.4. If {x,} is a sequemce in a lo-net space and
{x,: € N} is not closed, then {x,} has a convergent subsequence.

The mapping properties of lo-net spaces are as follows.

THEOREM 3.5. X is a lo-net space (very lo-net space) [lob-space] if
and only if X is the quotient (pseudo-open) [open] image of alob-space.

THEOREM 3.6. The property of being a lo-net (very lo-net) [lob
space] s preserved wunder quotient (pseudo-open) [open] mappings.

THEOREM 3.7. The class of lo-net spaces is a coreflective sub-
category of the category of all topological spaces.

The next two theorems and Corollary 3.10 are generalizations of
theorem 2.2 in [6] to arbitrary cardinals and lo-net spaces. An
m-lo-net space is a lo-net space whose topology is generated by lo-
nets with ranges of cardinality < m. The character of the point x
in a space X, X(x, X) is the least cardinal a for which there is a
nhood base at x of cardinality < a«. The character of X, X(X) =
sup {X(z, X): x € X}. The pseudocharacter of the point x in a space
X, (x, X) is the least cardinal a such that {x} is the intersection
of £ a open sets.

THEOREM 3.8. Let « be a non-isolated point in an lob-space X.
Xz, X) < m if and only if there exist Mc X — {x} such that
card (M) £ m and zecl (M).

Proof. We will prove only the sufficiency. Let {x} be not open
and let M c X — {z} be such that card (M) < m and xeccl(M). Let
@, be a linearly ordered base at x. For each pe M, let U,c @, be
such that p¢ U,. If {U, pec U} is not cofinal in @,, then there is
Ue @, such that Uc U, for each pe M and thus UNM = @. Thus
{U,: p€ M} is cofinal and X(x, X) < m which completes the proof.
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COROLLARY 3.9. In a lob-space, the following are equivalent,

@@ XX)=m

(b) X is an m-lo-net space

(e H(X)=m

(d) If {x} is not open, then there exists a set M X — {x} such
that card (M) < m and zcecl (M).

THEOREM 3.10. If X is a T, lob space, X(x, X) < m if and only
if (e, X) < m.

Proof. The sufficiency is proven. Let {G,: @ € A} be a collection
of open sets such that card (4) < m and {&} = N{G.: ac A}. Let @,
be a linearly ordered nhood base at x. For each a€ A, choose
U,e @, such that U,cG,. If {U,: e A} is not cofinal in @),, there
isa U,e@, such that UcU,c G, for each acA. Thus U = {x}
and X(z, X) =w =m. If {U,«acA} is cofinal, then it is a nhood
base at x of cardinality < m and X(x, X) < m and this completes the
proof.

The next theorem improves both Theorem 2.3 of [6] and
Proposition 1.1 of [10], and supplies a different view of a similar
theorem in [8].

THEOREM 3.11. A T, lo-net space X s sequentially compact if
and only if it is countably compact.

Proof. We proof the sufficiency. Let {x,} be a sequence in X.
If {x,:neN} is closed, then it is countable and compact. Hence
{x,: me N} is first countable. If {x,:ne N} is finite there is a con-
vergent subsequence. If {x,:ne N} is infinite there is a cluster
point in {x,: » € N} and a subsequence converges to it. If {z,:ne N}
is not closed, then it is not lo-net closed. Since countable sequentially
closed sets are lo-net closed, by Theorem 3.2, {x,:n€ N} is not se-
quentially closed. Thus there is a sequence {z,,} in {x,} that converges
to some p¢{x,:neN}. Thus X is sequentially compact and this
completes the proof.

COROLLARY 3.12. If X, is a T, countably compact lo-net space
for each acw, the II{X,: acw} is countably compact.

COROLLARY 3.18. If X is a T, countably compact lo-net space
and (X) =< ¢, then card(X) < c.

IV. Further Applications. The introductory lemma in this
section is the essential tool used in the applications of lo-nets to
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various weak covering theorems. The published proof of Theorem
2.4 [6] was modified to be an argument using a linearly ordered
base. However, the unpublished proof of this theorem in the pre-
print of [6] is particularly relevant to the lo-net argument. A
variation of this construction is presented here as the proof of the
following lemma. It is given here for completeness and because it
shows clearly the essential interaction between lo-nets and closures of
unions which are at the center of the applications that follow.

LEMMA 4.1. If (%);cz 18 @ lo-net in U@ with x; — x, then either
there is some G € @ where x € cl (G) or there is a subcollection @' < @
and a choice function y on @ such that xecl ({y(G): Ge@').

Proof. Suppose x €cl(G) for each Ge@. Well order @. Let
N € L and let G, be the first set that contains x,. Suppose for each
a < B, \ and G, are such that

(1) if e Ure Gr, then N < A,

(2) 2,,€Ure Gr and

(38) G, is the first set such that x; cG.,.
Of particular importance to the definition of the choice function is
the following: if 7 < v, then x, ¢ U;., G;. Thus, 2, ¢G,and x, €G,.
Hence for n # v, G, = G,. If (A, a < B} is cofinal in L, then x;, —x
and we are finished by letting @' = {G.: @ < 8} and let y(G,) = z,,,
for each &« < 8. Then vy is a choice function on @' such that ze
cl ({y(G): Ge @Y.

If (i@ < B} is not cofinal in L we continue as follows. If
B =v + 1, then by hypothesis G, is the least set such that x; €G,,
z; ¢ Ur., Gy and if 2, € Uy, G then A <),. Since z ¢cl(G,), {\ 2, € G}
is bounded. Let N;e L be such that » <; for each x;€G,, and
let G; be the first set such that «,,¢G;,. If x,eUrsGr=
(Uro. GHUG,, then x <\, <rz 0or 2, €G, and )< s and in either case
A < Ng. Thus x;, ¢ U;.; G;. Otherwise, if @ is a limit ordinal, let
»s be any index such that A, < \; for each e < 8 and let G, be the
first set such that )\, <A, for each o < 3 and let G; be the first set
such that xzﬂeGﬁ. If z;€Uscs Goy then 2;,€G,, for a, < 3. Thus,
e U{Ga: @ < oy + 1} and N < Ngpyy < Xp. Also, if €, € Gy for v <G,
then A; < N\ < \; and this contradiction implies %, € Ures Gy Thus
appropriate A\; and G; are selected in either case. Since g is bounded
by card (L)*, the induction continues until a cofinal case is reached.
This completes the proof.

Theorem 2.4 [6] is the key theorem for the many applications
of lob spaces to the various weak covering theorems in [6] and [7].
This important theorem is true for the weaker notion of very lo-net
spaces and is restated here as a consequence of Lemma 4.1.
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THEOREM 4.2. [Davis] If X is a very lo-net space and U is a
collection of subsets such that pecl(U@) then either there exists a
G € @ such that x € cl (G) or there exists @' C @ and a choice function
y on @ such that x<cecl ({y(G): Ge@')).

Thus this class of pseudo-open images of lob-spaces suffices to
insure the validity of many results found in [6] and [7]. The natural
question is then if the weaker lo-net spaces suffice to prove Theorem
4.1. The counterexample is extremely simple and is a well known
lo-net space.

ExAMPLE 4.3. Theorem 4.1 is not true for lo-net spaces.

Consider the space S, = {(0, 0)} U{@/n, 0): ne N} U {(1/n, 1/m):
n, m€ N} in [1] and [4]. Let U, = {(1/n, 1/m): me N}. Then (0, 0) ¢
el (U,) for each » and any choice function ¥y on @ = {U,: n€ N}
selects one point y(U,) = p, in each U,. But (0, 0)¢cl ({p,: n € N}).

A space X is called a quasi k-space if a subset HcC X is closed
if and only if FFNC is closed in C for every countably compact
subspace Cc X. Theorem 4.2 has an interesting companion theorem;
Lemma 2.8.1 of [7]. However, Lemma 2.3.1 is false as the previous
example shows. S, is sequential and thus is a k-space. Hence S,
is a quasi-k-space. Since (0, 0)ecl (U@)\U{el (U,): ne€ N}, {U,: n€ N}
is not closure preserving. Any set formed by choosing a finite
number of points in each U, has no limit points. In particular, the
choice function must be defined on the closures of the sets in some
subcollection @’. This is a subtle point relating to the weak to-
pology induced by a class of sets and is extremely important here.
A corrected version of this lemma follows.

THEOREM 4.4. If X is a quast k-space and @ s a collection of
subsets which is nmot closure preserving, then there is a subcollection
@' < @ and a choice function y on {cl(G): G @} such that {y(cl (G)):
Ge®@'} has a cluster point.

Proof. For some subcollection @* ¢ @, U{cl (G): Ge @*} is not
closed. Then there exists a countably compact set C such that Cn
(U{el (@): Ge @*}) is not closed in C. Let @* be well ordered,
using an initial set of ordinals, and let v be the least ordinal such
that CN (U {cl(G,): @ < v}) is not closed in C. Then v is a limit
ordinal and for each « in a cofinal subset of [1, v), there is a point
z. € (CNel(G)\U{el(Gp): 8 < ). Choose this z, = y(cl (G,) from
each cl (G,) for this cofinal set of [1, ) and let @' be the subcollec-
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tion of @) is lexed by this cofinal set. Thus, {y(cl(G)):Ge @'} is an
infinite subset of C and thus has a cluster point. This completes
the proof.

Of additional interest is the following modified extension of
theorem 4.2. This extension to the lo-net spaces is a parallel theorem
to the previous theorem 4.4. This is parallel in the sense that this
theorem also uses the weak topology induced by a collection of sets,
namely the lo-nets, as theorem 4.4 used the countably compact sub-
spaces. However, it is completely independent because Examples
3.7 and 3.8 of Davis [6] also show there is no subeclass relationship
between lo-net spaces and quasi %k-spaces.

THEOREM 4.5. If X is a lo-net space and @ s a collection of
subsets of X which is mot closure preserving, then there s a sub-
collection @' C @ and a choice function y on {cl (G): Ge @'} such that
{y(cl(G)): Ge @'} has a cluster point.

Proof. For a subcollection @* @, U{el(G):Ge@*} is not
closed. Since X is a lo-net space, there exists a lo-net (x,) in
U{el (G): G € @*} converging to a point 2 which is not in U{cl (G):
Ge@*}. Thus, z¢cl(G), for each Ge@* and by the selection
process in Lemma 4.1 and [6, Th. 2.4] there exists @' < @* and a
choice function y on {cl (G): G € @'} such that z ecl ({ylcl (G)): Ge@}).
Thus {y(cl (G)): Ge @'} has a cluster point and this completes the
proof.

The following definitions are due to Briggs [5]. A collection of
subsets of a space X, @ = {H,: a € A} is a ppc-collection (W-ppc-
collection) provided: if BcC A is infinite (uncountable) and if p, and
gs € Hy; for each ge B and a # 8 implies p, # ps; and ¢, # ¢;, then
@ = {g;: B¢ B} has a cluster point whenever P = {p,: 3¢ B} has a
cluster point. A space is preparacompact (W-preparacompact) if
every open cover has a ppe-refinement ($-pp-refinement).

Since theorems 4.4 and 4.5 are true for the collection of closures,
we add further that @ will be called a strong ppe-collection (strong
W-ppe-collection) if the p, and ¢, can be chosen from the closures
of the sets H;. Also, a space will be sirongly preparacompact
(strongly W-preparacompact) if every open cover has a strong ppc-
refinement (strong MW-ppc-refinement). These notions were inde-
pendently introduced and studied by Nitta [11]. Observe in Example
4.2 the collection {U,: n & N} is a ppe-collection which is not a strong
ppe-collection.

THEOREM 4.6. |Davis [6]] Let X be a very lo-net space and let
@ = {G,: a e A} be an W-ppe collection of open subsets of X. If there
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exists a discrete collection {D;: B € B} of nonempty subsets of X such
that Dy, Gy for BeBc A, then {G,: B¢ B} is either countable or
closure preserving.

Theorem 4.6 is not true for lo-net spaces as the following example
shows.

ExampLE 4.7. Let T be the set of countable nonlimit ordinals.
For each geT, let S,(B) be a copy of the convergent 1/n-sequence
with limit point 0,. Let X be the quotient space formed by attaching
the limit point 0, of S,(8) to B in the ordinal space [0, w,], for each
BeT. X is a lo-net space. If G, = S,(B) — {0;}, for each BeT,
@ = {Gp: BT} is an YW-ppe-collection. If D, consists of any finite
subset of G, for each g€ T, then {D,: e T} is discrete. However,
{Gs: Be T} is neither countable nor closure preserving.

Theorem 4.6 has the following valid variation for lo-net spaces.

THEOREM 4.8. Let X be a lo-net space (or a quasi k-space) and
let @ = {G,: ae A} be a strongly YW-ppe-collection of subsets of X.
If there exists a discrete collection {D;: 8€ B} of nonempty subsets
of X such that D;CG,, for each B3€ BC A, then {G,: B € B} is either
countable or closure preserving.

Proof. Let B be uncontable and suppose {G;: 8 € B} is not closure
preserving. By theorem 4.5 (or theorem 4.4) there is a subset B, B
and a choice function y on {cl (G;): 8 € B} such that {y(cl (G,)): 8 € B}
has a cluster point. Let B, ¢ B, be such that for distinet elements
a, B e B, y(cl(G,) # y(cl (Gy)). For each ge B, choose any g;€ D,.
For g€ B, let p; = y(cl (Gy)) and for Be€ B — B,, let »; = ¢;. Then
{g;: B € B} is a closed discrete set, but {»,;: 3¢ B} has a cluster point.
This contradicts the fact that @ is a strong Y} -ppe-collection. This
proves the theorem.

Accordingly, the following variation of [6, Th. 3.3] is a valid
characterization of paracompactness in either lo-net spaces or quasi-
k-spaces.

THEOREM 4.9. If X is a regular lo-net space (or quasi k-space),
then X is paracompact if and only if X s irreducible and strongly
WR-preparacompact.

Also, if H is an YW-ppc collection and el (G,)  H, for each ac A,
then {cl(G,): a € A} is an W-ppe-collection. Thus Lemma 3.4.2 [7]
which uses quasi-k-spaces can also be stated for lo-net spaces and
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its validity follows from Theorem 4.8.

THEOREM 4.10. Let X be a lo-net space and let @ = {H,: a € A} be
an Y-ppe-collection such that for the collection {G,: a € A}, ¢l (G,) C H,
for each aec A. If there exists a discrete collection {D;: g€ BcC A}
of monempty subsets such that D, G,, for each [B€ B, then {G;:
B € B} is either countable or closure preserving.

With ppe in place of W-ppe the word countable may be omitted
from the conclusion.

Sheldon Davis has been gracious enough to carefully study the
preprint of this paper and has supplied the following results, which
extend various theorems in [7]. The proofs are easily excessible as
modifications of those in [7] and are omitted here.

THEOREM 4.11. If X is a normal (regular) preparacompact (or
W-vreparacompact) lo-net space, then X s collectionwise normal
(Hausdor(ff).

COROLLARY 4.12. If @ is property such that @ plus collection-
wise normality implies paracompact, then every mormal, prepara-
compact lo-net space which satisfies @ 1is paracompact.

COROLLARY 4.13. If X is a mnormal lo-net space, then X is
paracompact if and only if X is preparacompact and 6-refinable.

COROLLARY 4.14. If X is a normal lo-net space and X = U{F,:
n <€ w} where F, is closed and isocompact for each me€ w, then X is
isocompact (See Th. 2.6 of [7].)

COROLLARY 4.15. Isoparacompactness is F -hereditary in normal
lo-net spaces.

THEOREM 4.16. If Y is a preparacompact lo-net space and
f: X—Y is closed, continuous, finite-to-one, then X 1s paracompact.
(Proof of Th. 2.5 [7] suffices.)

COROLLARY 4.17. If Y is a lo-net space, f: X — Y 1is closed con-
tinuous, finite to one and X 1is isocompact, then Y is isocompact.

COROLLARY 4.18. If X = U{X,:ac A} is a lo-net space where
{X.:axe A} is a closed, locally finite collection and X, is isopara-
compact for each ac A, then X is isoparacompact.
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THEOREM 4.19. Ewvery preparacompact lo-net space is ppe-expand-
able. (See Th. 3.2. [7].)

THEOREM 4.20. If X is a mormal ppe-expandable lo-net space,
then any locally finite collection of closed sets has a ppc-expansion.

THEOREM 4.21. If X is a mnormal (regular) discretely ppe-
expandable lo-net space, then X is collectionwise normal (Hausdorff).

V. Well-ordered net spaces. In this section the true nature
of lo-net spaces as a generalization of sequential spaces and lob-
spaces, is revealed in the characterization, Theorem 5.2. The follow-
ing fact is essential.

LEMMA 5.1. For each linearly ordered set, there is a well-ordered
cofinal subset.

This lemma implies that the lob-spaces of Davis [6] are precisely
the spaces which have well-ordered local bases, wob-spaces (well
ordered by reverse inclusion). The quotient spaces of wob-spaces
would be characterized as those spaces which have the weak topology
generated by the collection of well-ordered nets. Thus, I define a
space X to be a well-ordered net space (wo-net space) provided X
has the weak topology generated by the natural cover of well-
ordered nets in X. Since lob-space=wob space, the classes of quotient
spaces are identical.

THEOREM 5.2. A space is a lo-net space if and only if it is a
wo-net space.

The properties of lo-net spaces presented in §3 should be re-
examined as wo-net space properties. The class of test spaces for
the wo-net spaces (thus lo-net spaces has been determined in [3] as
the test spaces for sequential spaces were determined in [2].

I would like to express my gratitude to the referee for sugges-
tions which have improved this paper.
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