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Let R be a semiprime ring, G a finite group of automor-
phisms of R and R the fixed ring. We investigate the
associated Morita context (K¢, R, R, R*G), where R*G is the
skew group ring. We then apply these results to two situa-
tions: (1)G is X-outer (2)R is |G|-torsion free.

0. Introduction and preliminaries. Let R be a ring, G a
finite group of automorphisms of R and R® = {x € R|2° = « for all
g €G}. There has been considerable interest in the past years in
studying connections between RY and R. The two major ways to
approach the subject were the direct approach, and via the skew
group ring R+G which we denote by S. In this paper we inves-
tigate a third way which was used in the commutative case by
Chase, Harrison and Rosenberg [5], and was suggested to us by
S.A. Amitsur.

We consider an associated Morita context [RY R, R, S] with
(@, ¥) = Syee(@y)’ and [x,y] = X,s2y” g, for all @,yeR. This
context incorporates all the relevant ingredients. The fixed ring is
known to be nonzero in three major situations: (1) [11] R is semi-
prime and G is X-outer. (2) [4] R is semiprime and |G |-torsion free
(3) [11] R has no nilpotent elements. Since in the third situation
to(x) = Speex’ might turn out to be 0 for all xe R [7], we apply
the results of §1 only to the first two cases. It seems however
plausible that by changing the context one could deal with the
third situation by similar techniques.

Throughout the paper we assume that R is a semiprime ring,
an immediate consequence of which is that [ , ] is a nondegenerate
bilinear form. Another consequence is: if _#7(S) = 0 where s (*)
is the prime, Jacobson, locally nilpotent or nil radieal, then " (R%) =
0 [Lemma 1.2]. In §1B we investigate properties of the context
when also ( , ) is assumed to be nondegenerate. We prove, among
the rest, that (R, R) is essential in R? and that when R? is semi-
prime then R is Goldie (Artinian) iff R” is Goldie (Artinian); when
R is Artinian then (, ) is onto. [Theorem 1.6 and Lemma 1.3.]
Some of the results were proved by Montgomery [15]. Since R is
semiprime, it is a faithful R°-module, however, it need not be a
faithful S-module. In §1C we investigate the annihilator of R in
S, which turns out to be the annihilator (right or left) in S of a
two sided ideal of S, namely the ideal [R, R]. When (, ) is non-
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degenerate and R® is prime then this annihilator is proved to be a
minimal prime ideal of S. [Theorem 1.14.] We give equivalent
conditions to faithfulness [Theorems 1.16, 1.17], and furthermore
investigate the context when R is assumed to be S-faithful. Among
the rest, we show that (R, R) and [R, R] are essential in R” and S
respectively, that (, ) is nondegenerate, and that d(R) =
|G *d(,«R°), where d denotes the Goldie dimension. [Theorem 1.15.]
We also show that ¢ (R%) =0 iff 4 (S) =0 with _#(*) as above,
and that R? is primitive iff S is primitive [Theorem 1.18]. When
R? is assumed to be an Ore domain we prove, among the rest, that
S is a prime Goldie ring with Q(S) = (Q(R?%)),, where n = d(;S)
[Theorem 1.19]. In §1D we assume S to be semiprime and prove,
among the rest, that ( , ) is nondegenerate and that § = S/Anny(R)
is Goldie iff d(,¢R) < o and the singular ideal of R® is 0, and then
R and R¢ are Goldie and Q(S) = End ,«(Q(R)). [Theorem 1.22.] In
§1E we consider the context under the assumption that 1e R and
(,)or |, ] is onto, or equivalently when R is a generator for
w6 or ¢ # respectively. Since R = End;(R), then [, ] being
onto implies by the Morita theorem that R is a finitely generated,
projective R%module, S = End 4(R) and R®,«R=S. If both (,)
and [, ] are onto then R is called a G-Galois extension of R’ [5],
and then, among the rest, R is Morita equivalent to S. We show
that when R is a semisimple Artinian ring and a faithful S-module
then R is a G-Galois extension of RY [Theorem 1.28]. In proving
the results of this section we use extensively results of Amitsur [1].

In §2 we apply §1 to situations (1) and (2). By Fisher and
Montgomery [8], S is semiprime in both, and in case (1) R is S-
faithful. Moreover, if in case (1) R is G-prime, primitive or
A" (R) =0, with _#°(*) as above, then the same is true for S.
Hence if R enjoys one of these properties so does RY [Theorem 2.3].
We thus give, among the rest, an affirmative answer to question
11 [10]. We also show that in case (1) (R, R), [R, R], [R, RN R
and [R, B] N R® are essential ideals of R% S, R and R° respectively;
that S is Goldie iff R is Goldie iff B is Goldie and that if R is an
Ore domain then Q(S) = (Q(R%), [Theorems 2.2, 2.3]. If R is semi-
simple Artinian or if R¢ is simple then R is a (G-Galois extension
over R [Theorems 2.4, 2.5]. This extends a theorem of Azumaya
and Nakayama [3]. When R is simple, [ , ] is onto hence results
of [14, 19, 20] follow directly.

Let us define some terms, for a complete survey see [18]. Let
R be a semiprime ring, (that is, without nontrivial nilpotent ideals),
Z the filter of essential ideals of R, and R, the (left) quotient
ring of R with respect to % . Then Rc R, denote by C = center
of R,. For any g€ Aut(R), ¢ has a unique extension to B_,. Define
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¢, = {we R, |or = vz, for all xe R}. We say that g is X-inner if
é, # 0. This is a generalization of the usual notion of inner. By
[12] ¢, = Cx,, a cyclic C-module. If ¢, = 0, then g is called X-outer.
For any group G C Aut (R), let G., be the set of X-inner automor-
phisms in G. If G.. = {1}, we say that G is X-outer. The algebra
of the group B = 3,cq 8,.

A ring related to both R and G is the skew group ring R+G
which will be denoted henceforth by S. The ring S is defined to
be 3,.c P B, with addition given componentwise and multiplication
given as follows: if «,ycR and g, heG then (xg)(yh) = xy’ 'gh.
Note that yg = gy°. We define R_+G similarly. If s =>,7r,9¢€S8,
then the support of s is the set supp(s) = {g € G|r, # 0}. Fisher
and Montgomery [8] have proved an important connection between
G, and ideals of S. They showed:

THEOREM 0.1 [8]. Let R be a semiprime ring, and G a group
CAut (R) (not necessarily finite). Let I be a nonzero ideal of S,
and let x = > ,r,g be an element of I of minimal support. Then
supp () C Ginn, and = a >, 2,9, where ac R and x,€¢,. In parti-
cular, if G is X-outer then every monzero ideal of S intersects R
nontrivially.

They used this result to prove the important:

THEOREM 0.2 [8]. Let R be a semiprime ring and G a finite
group of automorphisms of R. If either R has mo |G|-torsion or G
1s X-outer then S is semiprime.

The proof of Theorem 0.1 which essentially appeared in [15],
depended on a notion of linear independence introduced in [11]. A
different and more elementary approach was used in [13, Lemma 1.5]
for prime rings and can be extended to semiprime rings by the
methods of [7, Lemma 1.5].

A Morita context [1] is a set M = (R, V, W, S) and two maps
(,)and [, ]; where R and S are rings, V is an R — S bimodule
and W is an S — R bimodule. The map (, ): VQs W—R is an
R — R bilinear map, and [, ]: W®zV -8 is S— S bilinear.
Furthermore, these maps satisfy the following associativity con-
ditions: 1, Q[ , 1=(, )®1, and [, ]®1=1&®(, ). That is,
for all »,v' €V and w, w'e W we have: v-[w, v'] = (v, w)-v" and
[w, v]-w" = w-(v, w').

We shall also use the following known notions and symbols:
Let . # denote the category of left R-modules. Let .M be a left
R-module, then d(zM) — the Goldie dimension of M as a left R-
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module is the supremum of the length of direct sums of submodules
of M. In particular, M will be said to be uniform if d(;M) = 1.
A submodule ,EcC .M is essential (large) in (M if EN U= 0 for
every nonzero submodule U of M. The (left) singular submodule
Z(zM) ={me M|Em = 0, for some essential left ideal £ of R}. By
Anng,(M) we denote {re R|rM=0}, it is an ideal of R. If Ann,M=
0 then M is called a faithful R-module. M is called torsion-free if
rm = 0 implies = 0 or m = 0. For any nonempty subset A of R
we define rz(A) = {re R|Ar = 0} and by 4(4) = {reR|rA = 0}. Let
R be a semiprime Goldie ring. Denote by Q(zR) or in short Q(R)
its classical ring of quotients, and for each left R-module .M denote
by QM) = M@®:Q(R), its module of fractions. If Z(M) = 0 then
by [21, Cor. 2.8], M®:Q(R) is an injective envelope of M. A
ring R is called prime if whenever A, B are ideals of R with AB=
0, then A =0 or B=0. It is called G-prime (with G c Aut (R)) if
the same holds for 4, B which are G-invariant ideals. It is easy
to see that if S is prime then R is G-prime, which was shown [13]
to imply that R is semiprime.

1A. The associated Morita context. Throughout, let R be a
semiprime ring and G a finite group of automorphisms of R. Let
S = R*G, then R may be viewed as a right or left S-module as
follows: for any s = 3,7r,0€S and re R, define: s-» = G 7r,9)r =
v and r-s = 3, (rr,). This definition extends the product in
R. Note that the S-submodules of (R(R,) are the G-invariant left
(right) ideals of B. In order to differentiate between the product
of » and s as elements of S and the above module action, we shall
throughout indicate the module action by a dot. R is obviously an
Rf-bimodule, and in fact R is an R — S and an S — RY bimodule.
In order to differentiate between the two let V= (R; and W =
sl Let t =3,.09 be the formal sum, then for any 7€ R, t,(r)
is formally 7-¢t (or ¢-7). If 1€ R then ¢ is an element of S. Let
us record some easily verified facts:

(1) gt=tg =1t for all ge G. Hence St = Rt and tS = tR,

(2) if s€8S and r<€ R then srt = (s-r)t and trs = t(r-s),

(3) for any re R and ge@G, r-t =t-r = 174,

(4) for any xe R¢ at = tx,

(5) if r, ¥ € R then (rv)-t = - (r't) = (tr)-7'.

Now let us define:

(,) VR W-—R? by: (v, w) =ts(vw) =vw-t for any »eV and
we W. Obviously (,) is an R%bimodule homomorphism and
furthermore (v-s, w) = (v, s-w) for any ve V, we W and seS. For,
(v-s, w) = ((v-8)w)-t, however s, weS, hence (v-s)w = v-sw, thus
({(v-s)w) -t = v-(swt). By (2) swt = (s-w)t, thus v-swit = v-((s-w)i),



A MORITA CONTEXT RELATED TO FINITE AUTOMORPHISM 41

which by (5) equals (v(s-w))-t=(v, s-w). Next define[, ]: W@, .V —
S by: [w, v] = w X, v’ 'g = wtv. The map [, ] is an S-bimodule
homomorphism. For, if s€ S, then s[w, v] = s(wiv) = (swt)v which
by (2) equals ((s-w)t)v = [s-w, v]. Similarly, [w, v]s = [w, v-s]. Now
let zeR% then by (4) [wz, v] = [w, xv]. Finally, we show that
these maps satisfy the associativity conditions: »-{w, v'] = (v, w)v’
and [w, v]-w' = wl, w'). Well, v-[w, v'] = v-(wtv') = (v-wt)v’ which
by (5) equals (v, w)v'. The second condition is proved similarly.
Note that for any we W, ve V, [w, VI[W, v]) is a right (resp.
left) ideal of S and (v, W)((V, w)) is a right (resp. left) ideal of RF.
In particular, [W, V] is an ideal of S and (V, W) is an ideal of R°.

LemMA 1.1, If weW then w'={veV|[w,v]=0} is a G-
invariant right ideal of R contained in rx(w). Similarly, v' =
{we W|lw, v] = 0} is a G-invariant left ideal of R contained in
(D).

Proof. Let ve W* and ge G then [w, v*]=[w, v-g] =[w, v]g=0.
Hence w' is G-invariant, the rest is obvious.

A Dbilinear form f: A X B— C where A, B, C are additive groups
is called nondegenerate if for any 0 = acAand 0 =be B, f(a, B) =0
and f(4,b) = 0. A consequence of the previous lemma is that [ , ]
is always nondegenerate when R is semiprime.

LEMMA 1.2. Let R be a semiprime ring. Then:

(@) [, ] s nondegenerate.

(b) Let _47(*) denote one of the following radicals: lower, locally
nilpotent, Jacobson or mil. Then 4 (S) =0 implies .+ (R%) = 0.

() If I is a minimal left ideal of S then V-I is a simple
Rf-module.

Proof. (a) Since R is semiprime, rz(w)=s= R and +#4(») # R,
hence the result follows from Lemma 1.1.

(b) By [1, Corollary 23], [w, 4 (B*)V]cC 4+7(S).
The result now follows from part (a) and the semiprimeness of R.

(¢) If V-I=0 then we are done. Otherwise, assume that
0 %« JCV-I, where J is a left R°-submodule of R. Then by part
(a), [W,J]=#0; thus 0 == [W, J]c[W, V-I] =[W, V]IcI1 By mini-
mality of I, [W,J]=1. But then, V.[W,J]= V-I, however, V.
[(W,J]=(V, W)JcJ. Hence we have: JcV-I=(V, W)JcJ,
which implies J = V-1I. We have shown that V.I is a simple R®
module.
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1B. (, ) is nondegenerate. In the following we prove some
consequences of nondegeneracy of ( , ). Most of them are noted in
(1] and [15].

LEMMA 1.3. Let R be a semiprime ring and assume ( , ) s
nondegenerate then:

(@ [W,V]w=0 implies w=0 and v-[{W,V]=0 implies
v = 0.

(b) 4V, W)=rV, W)=0. In particular, (V, W) is an
essential ideal of R°.

(© If AcCR* and 7,4A4)=0 (/6A) =0) then rz(4) =0
(7=(4) = 0).

(d) If E is an essential left ideal of R, or an essential R°-
submodule of R, then (V, E) is an essential left ideal of RC.

(©)  d(uoR?) = d(:R) = d(xR) < |Gld(,0R%).

Proof. (a) By [1, Corollary 3].

(b) Assume #(V, W) =0 for some reR. Then (V,)V, W)=
(V[r, V], W) = (V, [r, V]- W) = (V,»(V, W)) =0. Thus by non-
degeneracy of ( , ) we have (V, )V = 0 which by semiprimeness of
R and nondegeneracy of ( , ) implies » = 0. Similarly, »,(V, W)=0.

() For any A C R?, (V, 4#(A) C 4(A) and (rx(4), W) Cr,«(4).
Hence if 7 _4(4) =0, then by nondegeneracy of (, ), 7x(4) =0.
Similarly 7,(4) = 0.

(d) Assume FE is an essential left ideal of R and let A be a
left ideal of R® then ENRA +# 0. Thus choose rcR and acA
such that 0+ racE. But then 0= (V,ra) =(V,r)acA hence
(V,E)NA=0. The rest follows similarly.

(e) d(,cR% = d(sR) by [1, Corollary 3].

The proof that d(zR) < |G|d(,«R°) is the same as in [9] since non-
degeneracy of ( , ) implies that any nontrivial G-invariant right
(left) ideal of R intersects R nontrivially.

COROLLARY 1.4. If R® is an integral domain, R is semiprime
and ( , ) is nondegenerate then [w, v] = 0 implies w = 0 or v = 0.

Proof. Assume [w, v]=0, for we W and v€ V. Then 0=[w, v]-
W = w(, W). If v+ 0 then by nondegeneracy, 0= (v, W) R".
Since ,4((v, W)) = 0 we deduce from Lemma 1.3¢c that w = 0.

COROLLARY 1.5. Let R be semiprime, ( , ) nondegenerate and
Z(,¢R%) = 0. Then Z(,cR) =0 and Z(zR) = 0.

Proof. Let E be an essential left RY submodule of R then by
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Lemma 1.3.d (V,E)N E is an essential left ideal of R¢. Since
7,((V, E)N E) =0, Lemma 1.3.c implies that r:(V,E)NE) =0
hence 7z(E) =0, and thus Z(,;R) =0. Now, if E is an essential
left ideal of R then [,.c E° < E is essential G-invariant left ideal
of R, thus (V, nE)cnE’CE. By Lemma 1.3.d (V, N EY is
essential in R% hence as above 7,(E) = 0.

THEOREM 1.6 [18]. Let R and R be semiprime rings and
assume ( , ) is nondegenerate. Then:

(a) RY is Goldie if and only if R Goldie, and then QGR) =
QU aR).

(b) R% is semisimple Artinian if and only if R is semisimple
Artinian, and then ( , ) is onto.

(a) Is proved as in [18] using Lemma 1.3, Corollary 1.5 and
an argument as in [6].

(b) A criterion for being semisimple Artinian is having no
nontrivial essential left (right) ideals. Hence (b) is proved using
Lemma 1.8.b,c and part (a). Also, by Lemma 1.8.b (V, W) is essen-
tial In RY hence equals it. That is, ( , ) is onto.

1C. R is a faithful S-module. Since we deal with a semi-
prime ring R, V and W are faithful R%modules. However, they
need not be faithful S-modules (Example 2.1). We shall consider in
the following lemmas Anng,V and AnngW, and then proceed to the
case in which they are 0. Since these annihilators are ideals in S,
Theorems 0.1 and 0.2 are applicable. First an easily verified:

REMARK 1.7. If z,€¢9, and veV (we W) then v-x,9 = z,v
(X9 -w = wi,).

Let A be an ideal of S, denote by min (A) the set of elements
of A of minimal support; min (4) is obviously an R-submodule of S.

ProproSITION 1.8. Let R be a semiprime ring. Then min (Anng W)=
min (Ann,V).

Proof. Let semin (Anng V'), then by Theorem 0.2, s =a > 2,9,
with aeR and xz,€¢,. Let veV, then by Remark 1.7, 0 = v-s =
v-(aXx,9) = Jx,va. Since v was arbitrary, we have (Jz,)Ra = 0.
By [16] there exists an [e & such that (Jx,)IC R and I(Zx,)CR.
Hence aRXx,I is a right ideal of R of square 0, thus aRXx, = 0.
By Remark 1.7 this implies that s-W = 0. Hence min (Anng V)C
Anng W. Similarly, min (Anng W) < Anng V. Hence min (Anng V) =
min (Ann, W).
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COROLLARY 1.9. Let R be a semiprime ring. Then AnngV =0
if and only if Anng W = 0.

Since [ , ] is nondegenerate, it is easy to verify

LeMMA 1.10. Let R be a semiprime ring. Then Anng W =
W, V] and Anng V = r[W, V1.

COROLLARY 1.11. Assume S is a semiprime ring, and [W, V]
is an essential right (left) ideal of S them W is a faithful S-
module.

Let us note in passing a result which can be easily deduced
from [4].

LEMMA 1.12. Let R be a semiprime ring. If s = Xr,g € AnngW
then Zr, = 0.

The following appears in the proof of {1, Theorem 20] for
general Morita contexts. It gives a correspondence between prime
ideals of R? and S.

LemMA 1.13. Let R be a semiprime tring. Let P be a prime
ideal of R° then Py = {seS|[W, VIs[W, V]c[W, PV]} is a prime
ideal of S. Symmetrically, if @ is a prime ideal of S then

Qo= {we RV, W)a(V, W)C(V, Q-W)} is a prime ideal of R’ .

THEOREM 1.14. Let R be a semiprime ring and assume ( , ) 18
nondegenerate. If R° is a prime ring then Anng (W) is a minimal
prime tdeal of S.

Proof. Since R is a prime ring, P = 0 is a prime ideal of R°.
Hence by Lemma 1.18 Py = {seS|{W, VIs[W, V] =0} is a prime
ideal of S. We show that P, = Anny(W) and then since Anng (W)N
R =0 it is a minimal prime by [13]. Well, obviously Anng (W) P;.
Conversely, let se P, then [W, V-[s- W, V]] = 0. By nondegeneracy
of [, ], we get 0= V-[s-W,V]=(V,s- W)V, implying (V,s-W) =
0. Now by nondegeneracy of (, ) it follows that se Anny(W).
Hence P; = Anng(W) and the result is proved.

In the following we prove several consequences of S-faithfulness.
We show, among the rest, that the Morita context has nice proper-
ties and that [W, V] and (V, W) are essential. But first a defini-
tion. A finite set of elements {x,Jc R_ is called C-weakly inde-
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pendent if Xcx, = 0, where ¢; € C, implies ¢z, = 0 for all 4.

THEOREM 1.15. Let R be a semiprime ring and assume ;W (or
Vs) 18 S-faithful, then:

@) 7[W, V]=4[W,V]=0, in particular, [W,V] is an
essential right (left) ideal of S.

Md) [,]and (,) are nondegenerate.

(¢) (V, W) is an essential right (left) ideal of R°.

(d) To each g€ Gi.n associate an x, such that ¢, = Cx,, then the
set {&,}gcoinn 18 weakly C-independent.

() (V,s-W) =0 implies s = 0.

) d(,eR) = d(sS) = |Gld(zR) = |G ["d(,cR).

Proof. (a) is a consequence of Corollary 1.9 and Lemma 1.10.

(d) [,] is nondegenerate by Corollary 1.2. Now assume
(v, W) =10 for some veV. Then, 0= Wk, W)=[W,»]-W. By
faithfulness and nondegeneracy of [ , ] we deduce that v = 0.

(¢) Follows from (b) and Lemma 1.3.b.

(d If Yeux,=0 with geC, then by Remark 1.7 and since
¢, €C, we have (Jeux,9)W = W3¢z, =0. Hence, Yc,x,9 =0, but
then ¢,z, = 0 for each g.

(e) Follows from (b) and S-faithfulness.

(f) By [1, Theorem 2] d(,R) = d(,S).

Since S is a direct sum of |G| copies of R, d(zS) = |G|d(R).
However, d(sS) = d(xS) and d(zR) =< |G|d(,«R%) by (b) and Lemma
1.3.e. Hence d(;S) = |G[*d(,«R%).

The next two theorems constitute a generalization of [16,

Theorem 7] from domains to prime rings.

THEOREM 1.16. Let R be a semiprime ring. Then the following
are equivalent:

(1) S is a prime ring.

(2) W is a faithful S-module and R® is a prime ring.

Proof. (1)=(2) since [W, V] is an ideal of S, a prime ring,
Anng[W, V] =0. Hence by Lemma 1.10 (W is S-faithful. R® is
prime for by Lemma 1.18. Q.= {xeR*|(V, W)x(V, W) =10} is a
prime ideal of RY. However, since (W is a faithful S-module
Theorem 1.15.c implies that @, = 0.

(2)= 1) by Theorem 1.15.b (, ) is nondegenerate hence by
Theorem 1.14 Anng W = 0 is a prime ideal of S.

If R is assumed to be a prime ring we can show another equi-
valence which is implicit in the proof of [16].
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THEOREM 1.17. Let R be a prime vring, then the jfollowing are
equivalent:

(1) W is a faithful S-module.

(2) dimB = |Gu.l.

Proof. (1)=(2) follows from Theorem 1.15.d and the fact that
C is a field.

2)y=(1) if semin(Anng W) then s = alx,9, where acR. As
in the proof of Proposition 1.8 this implies that aRIYxz, = 0 for
some J€.% such that I¥x, C R. By primeness of R this implies
that ¢« = 0 or Y2z, = 0. Since B is a vector space over C of dimen-
sion |G| and since {z,|g € G,,,} generate B over C we have Yz,+0.
Hence a = 0, which implies s = 0. We have shown that Ann,W=0.

As a consequence of Theorem 1.15 and results from [1] we get
the following correspondences between S and Rf.

THEOREM 1.18. Let R be a semiprime ring and assume W is
a faithful S-module, then:

(@) A#7(S)y =0 if and only if 4 (R =0, where ./ (*) is one
of the following radicals: lower, locally nilpotent, Jacobson or nil.

(b) R is primitive if and only if S is primitive.

Proof. (a) By [1, Theorem 20 and Corollary 23] (V, _+(S)- W)
A (R and [W, _+"(R)V]c _+7(S). By Theorem 1.15 [, ] and
(, ) are nondegenerate hence the result follows from R’ and S
faithfulness.

(b) By Theorem 1.15.e, (V,s- W) = 0 implies s = 0. Hence by
[1, Theorem 27] if R is primitive then so is S. Symmetrically,
since [W, V] = 0, (where x ¢ R¥) implies « = 0, we have, as above,
the reverse implication.

When R? is an Ore domain and «W is a faithful S-module then
S has a very specific characterization.

THEOREM 1.19. Let R be a semiprime ring, W a faithful S-
module and R¢ an Ore domain, then:

(@) S 1is dense (in the semse of [1]) in End, -(R).

(b) S is a prime Goldie ring, with d(,S) = n = d(,«R) = |G|

(¢) QS) = End, (Q(R)) = (QE)),.

(d) d(sR) = 1.

(e) R and R, , are torsion-free.

Proof. Let us apply [1, Theorem 4] to the Morita context
(S, W, V, RY) with change of roles of the maps (, ) and [, ]. By
Theorem 1.15.b ( , ) is nondegenerate hence by Lemma 1.3.e d((W)=
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d(,eR% =1, hence (d). Furthermore, the product [ , ] satisfies by
Corollary 1.4 the property: [w,v]=0 if w =0 or » = 0; and by
Lemma 1.3.a the property: [w, V]-w = 0 iff w = 0. We have shown
that condition 2 of [1, Theorem 4] is satisfied in our context hence:

(a) follows from [1, Theorem 4 (3)].

(b) follows from Theorem 1.16 and Theorem 1.15.f.

(¢) follows from [1, Theorem 10.c.3] and Theorem 1.23.

(d) follows from Theorem 1.3.c or [1, Lemma 6].

We shall return to further properties of S-faithfulness in the
following sections.

1D. S is semiprime. When S is assumed to be semiprime, R
is easily seen to be semiprime. In both applications of §2, S is in
fact semiprime, as noted in §0. In the following we prove con-
sequences of this assumption, some of which were proved in [15].
Next we define prime (semiprime) Morita contexts [22]. A Morita
context is said to be prime (semiprime) if for every 0 £ wveV,
0=v,eV, (v, Ww, =0 ((v, W)v = 0).

THEOREM 1.21. If S is a semiprime ring, then:

@ [, ]and (,) are nondegenerate.

(b) R and R° are semiprime.

(¢) R? is Goldie if and only if R is Goldie and then Q(R) =
Qe R).

(d) Rf is Artinian if and only if R is Artinian and then (,)
is onto.

(e) (V, W) is an essential ideal of R°.

(f) (R V,W,S) is a semiprime Morita context.

(g) S = S/Ann,V is a semiprime ring.

Proof. (a) [, ] is nondegenerate since R is semiprime. Now,
if (v, W)=0 then [W,v][W,v]=[W,v-[W,v]]=[W, (v, W)v] =0.
Hence by semiprimeness of S, [W, v] = 0 which by nondegeneracy
of [, ] implies » = 0.

(b) Follows from Lemma 1.2.b.

(e), (@) follows from (a) and Theorem 1.6.

(e} Follows from (a) and Lemma 1.3.b.

(f) If (v, W)» =0 for some v€V. Then, 0 =[W, (v, W] =
[W(v, W), v] =[[W, v]- W, »] = [W, v}’. Since [W, v] is a left ideal
of S this implies [W, v] = 0, hence v = 0.

(g) Since [W, V] is an ideal in a semiprime ring S, it is routine
that S/Ann,[W, V] is semiprime. Since Anny V = Anng[W, V], (g)
is proved.
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The following two theorems are consequences of Theorem 1.21
and {22, Theorem 3.5] and form a generalization of Theorem 1.19.

THEOREM 1.22. Let R be a ring. If S is semiprime then S =
S/AnngR is Goldie if and only if d(,R) < ooAa'nd Z(,¢R%) = 0. And
then R and R are semiprime Goldie and Q(S) = End (Q(R)).

Proof. By Theorem 1.21.a (, ) is nondegenerate hence by
Lemma 1.83.b (V, W)» = 0 if 0 #ve V. Furthermore, by Corollary
1.5 Z(,4R%) = 0 implies Z(,sR) = 0. The context is semiprime by
Theorem 1.21.f hence if d(,¢R) < e and Z(,«R) =0 then by [22]
S is Goldie. Conversely, if S is Goldie, then by Theorem 1.21.g it
is semiprime Goldie. Since R® is isomorphic to a subring of S it
inherits the chain condition on annihilators. Now by [22] d(,R)<
oo, hence d(,«R%) < o. Thus, since R? is semiprime it is semiprime
Goldie implying Z(,«R°) =0. By Theorem 1.6.a R is semiprime
Goldie and Q(R) = Q(,¢+R) and by §0. Q(,¢R) is the injective enve-
lope of ;R. Hence by [22] Q(S) = End +(Q(R)).

Note that if in addition to the above conditions we assume R“
is prime then the context is prime and § is prime.

As a corollary to Theorem 1.22 we have:

THEOREM 1.23. Let R be a ring and assume S is semiprime
and R is a faithful S-module. Then S is Goldie if and only if R®
s Goldie if and only if R is Goldie. And then Q(S) = End «(Q(R)).
Furthermore, R® is prime Goldie if and only if S is prime Goldie.

Proof. By Theorem 1.22 S Goldie implies R® Goldie. Now, if
R¢ is Goldie then by Theorem 1.15.f, d(,+R) < oo, hence by Theorem
1.22 R and S are Goldie and Q(S) = End _4(Q(R)). By Theorem 1.6.a
R is Goldie if and only if R¢ is Goldie. Finally, by Theorem 1.16
R? is prime if and only if S is prime.

1E. G-Galois extensions and related aspects. In [2], Auslander
and Goldman introduced the notion of a Galois extension of a com-
mutative ring. Chase, Harrison and Rosenberg [5] have given an
equivalent definition which was later used by Miyashita [14] for
noncommutative rings. Let us define a G-Galois extension. Let R
be a ring with 1, G a finite group of automorphisms of R, then R
will be called a G-Galois extension of R¢ with Galois group G if,
(1) Rf = t4(R), (2) there exist z,, ---, %, and ¥,, -+-, ¥y, in R such
that
1 ifg=1

ﬂxig:
P IR
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(Miyashita dropped (1) from his definition.) Obviously, (1) is equi-
valent to (, ) being onto R?. Condition (2) is equivalent to [ , ]
being onto S. For if [, ] is onto, then 1 = 3", [z, v,] for some
{x, v} C R, but then 1 = Saty, = 3%, S,ee@Y! 9 = Xgea (Zxy7 g,
hence (2) is satisfied. The converse is now obvious. Let us recall
a version of the Morita theorem [18].

THEOREM (Morita). Let V be a left A-module and B = End, (V).
Then the following are equivalent:

(1) Some direct sum of copies of ,V can be mapped onto A
(i.e., V is a generator for ,.#).

(2) Vi is a finitely gemerated projective B-module and A =
End (V).

It is easy to show [2 or 18] that when 1€ R, then R*=End(R).
Furthermore, if [ , ] is onto S then 1=372, [w,, v,]. Let f: 3%, B—
S be defined by: &, », — 3%, [, v;]. Then f is an S-module homo-
morphism onto S. That is, if [ , ] is onto S, then (R satisfies (1)
with B = R®. Also, if [, ] is onto then it is mono [21, p. 113].
Similar remarks can be made if (, ) is onto. Finally, define
T: sl — o by: T(A)=V Qs A for any A eObj;.# and U: o #Z —
s by UB) = W@,: B, for any Beobj« 7 .

In the following we use R to denote both V and W. It is
understood, however, from the context of things, which module
structure we mean.

LEMMA 1.24. Let R be a semiprime ring with 1. If [, ] s
onto S then:

(a) R is a finitely generated projective R%-module.

(b) R is a faithful S-generator.

(¢) S = End_s(R) as an R°-module.

(d) The mapping [ , I: R@,« R — S is an S-bimodule isomor-
phism.

(e) The functor UT is naturally equivalent to the identity
functor on s A .

LEMMA 1.24'. Let R be a semiprime ring with 1 and let B =
End «(R). If (, ) is onto K% then:

() R is a finitely gemerated projective B-module.

(b)Y R is a faithful R°-generator.

(¢ RY= End(R).

(d)Y The mapping ( , ): R@s R — R is an R° bimodule isomor-
phism.

(e)) The fumctor TU 1is maturally equivalent to the identily
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Junctor on g # .
(Y Rf is a direct summand of +R(R.).

Proof. (a), (b), (¢), (d) follow from the remarks and the Morita
theorem, (e) follows from (d), (f) follows since i, is onto.
Consequently, a lemma which also appears in [5].

LEMMA 1.25. Let R be a semiprime ring with 1 which is a
G-Galois extension of R°. Then R° is Morita equivalent to S, in
particular:

(a) R is finitely generated, faithful and projective both as an
Rmodule and an S-module.

(b) S =End_(R) and R°=EndyR); S=;R@, R and R°=
1B ®s .

Furthermore, UT and TU are naturally equivalent to the identity
functor on s #Z and o Z respectively.

() R¢ is a direct summand of ,<R(R ).

Let #(zM) denote the lattice of R-submodules of M. We shall
briefly outline some connections between (. 4R) and #(;S). Let
o: ZL(eR) — FL(S) be defined by o(4) =[W, A] and 7: L£(;S) —
ZF(,aR) be defined by t(X)=V-X. Now ra(4)=V-[W, Al=(V, W)A
and ot(X) =[W, V- X]=[W, V]X. If 1c¢R and (, ) is onto then
70 = idg(RGR). In particular, ¢ is order preserving. Similarly, if
[, ]is onto then 7 is order preserving hence we have:

THEOREM 1.26. Let R be a semiprime ring with 1. If (, ) is
onto and zR is Noetherian (Artinian), then so is R.

Proof. If zR is Noetherian (Artinian) then since .S is a finite
free R-module it is Noetherian (Artinian), but then so is (S. The
result now follows since o is order preserving.

THEOREM 1.27. Let R be a ring. If S is a simple ring then:

(1) [, ] s onto S and W is a faithful S-module.

(2) Rf is primitive.

(8) If 1eS them (V, W) is the intersection of all monzero
ideals of R°, hence, in particular, it is a simple ring.

Proof. (1) Since R is semiprime, [W, V] # 0, hence as an ideal
of S[W, V]=S8. By Theorem 1.16 ;W is faithful.

(2) Foliows from Theorem 1.18.b.

(83) Let A be an ideal of R then AD(V, WAV, W) =
(V, WA(V, W)) =(V,[WA, V]-W). Since [WA, V] is a nonzero
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ideal of S it equals S. Hence AD(V, W).
We end with a situation in which R is a G-Galois extension of
RS,

THEOREM 1.28. Let R be a semisimple Artinian ring and a
faithful S-module and assume R (or S) is a semiprime ring then
R is a G-Galois extension of R°, and R is Artinian.

Proof. Since S is a finite free R-module, ;S hence S is
Artinian. By Theorem 1.18.a S is semiprime, hence semisimple
Artinian. By Theorem 1.15, [W, V] is an essential ideal of S, thus
[W,V]=S. That is, [ , ] is onto. By Theorem 1.15.b (, ) is
nondegenerate hence by Theorem 1.6.b ( , ) is onto. We have shown
that R is a G-Galois extension of R? ;R is Artinian by Theorem
1.26.

2. Applications, We shall apply results of §1 to two situa-
tions:

{1) R is semiprime and G is a finite group of X-outer auto-
morphisms.

(2) R is a semiprime, |G|-torsion free ring, where G is a
finite group C Aut (R).

As mentioned in the introduction, in both cases S is semiprime,
and in (1) R is also S-faithful. The following example suggested
by Montgomery shows that this need not be true in case (2).

ExAMPLE 2.1. Let R = M,(Q), where @ = rationals. Let x=

10 0 1 00
(0 1 O), y=<0 —1 0) and let g, k, gh denote the inner automorphisms
00 —1 0 01

of R determined by «, ¥ and xy respectively. Then G={1, g, h, gh)

is a (abelian) group of inner automorphisms of R. However x+y —
(xy + 1) =0, hence R-[xg — yh — xygh + 1] = 0. Thus R is not a
faithful S-module. Note that, as expected, dimyB = 8 < |Gim|.

Let us deal first with (1). Some of the results appeared in the
work of [11, 14, 15, 18, 19].

THEOREM 2.2. Let R be a semiprime ring and G be a finile
group of X-outer automorphisms. Then:

(a) (V, W) is an essential ideal of RC.

by [W, V], [W,VIONR and [W, V]N R® are essential ideals
of S, R and R° respectively.

() Rf is a semiprime ring.

@ (,)aend]|, ] are nondegenerate.

(@) d(,oR) = d(.S) < |GPd(,oRY.
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Proof. (a), (d) and (e) follow from Theorem 1.15. (¢) S is
semiprime, hence by Theorem 1.21, R is semiprime. (b) [W, V] is
essential in S by Theorem 1.15. Now let B=[W, VIN R, and A=
Anny(B). Then [AW, V] is an ideal of S. However, (AW, V]n
REC (AW, VINRIAW, V]l= (AW, V]n R)A[W, V] =0. Thus by
Theorem 0.1 [AW, V] =0 which by nondegeneracy implies 4 = 0.
Hence B is essential in B. Now by Lemma 1.3 (B, W) is essential
in R, However, since B is G-invariant (B, W)c BN R*=[W, VIn
R°.

Next we impose various conditions on the rings, (b) extends a
result of [11], (¢) gives an affirmative answer to Question 11 of [10].
(d) is partially proved in [15].

THEOREM 2.3. Let R be a semiprime ring and G a finite group
of X-outer automorphisms, then:

@) A4 (R° =0 if and only if A4°(S) =0 where +°(*) is one
of the: Jacobson, locally nilpotent or nil radicals. Thus 4" (R) =10
implies 47 (R%) = 0.

() R is G-prime if and only if S is prime if and only if R®
is prime.

() 8 is primitive if and only if R° is primitive. Thus if R
is primitive them so is RS,

(d) S is Goldie if and only if R® is Goldie if and only if R
18 Goldie, and then Q(._Sf ) = End _+(Q(R)).

(e) If R° is an Ore domain then S is a prime Goldie ring,
Q(S) = (Q(R?)), where n = d(sS) = d(,R) = |G .

Proof. (a) The first part follows from Theorem 1.18. Now if
A"(R) = 0 then since 4 (S)N R .4 (R) =0, Theorem 0.1 implies
that _#"(8) = 0, which by the first part implies that + (R = 0.

(b) It is easy to see that R is G prime if and only if S is
prime [13]. The rest follows from Theorem 1.16.

(¢) The first part follows from Theorem 1.18. Now, if R is
primitive then so is S [8], hence so is R“.

(d) and (e) follows from Theorems 1.23 and 1.19 respectively.

We shall next give instances in which R is G-Galois over R¢.
The following generalizes a result of [3] from simple Artinian to
semisimple Artinian rings.

THEOREM 2.4. Let R be a semisimple Artinian ring and assume
G s a finite group of X-outer automorphisms then R is a G-Galois
extension of R°. In particular, R° and S are Morita equivalent
hence semisimple Artinian, and S = End  R. Also, R is finitely
generated, projective and faithful both as an R° and an S-module,
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and R is Artinian.
Proof. By Theorem 1.28 and Lemma 1.25.

THEOREM 2.5. Let R be a semiprime ring with 1 and G a
finite group of X-outer automorphisms. If R° is a simple ring
then R is a G-Galois extension of RF.

Proof. By simplicity of R% (, ) is onto. Now by Theorem
22b [W,VINR?+0 is an ideal of R® hence 1e[W, V] implying
[ ,]1is onto. Thus, R is a G-Galois extension of R¢.

We next record results of [14, 19, 20] which were proved using
ideas similar to the ones in §1.

THEOREM 2.6. Let R be a simple ring and assume G is a finite
group of X-outer automorphisms of K. Then

@) [, ] is onto.

(b) RY is a primitive ring.
If in addition, 1 € R then:

(¢) R is a finitely gemerated projective R°-module.

(d) S =End_(R) and R is a faithful S-generator.

(e) (V, W) is a simple ring and is the intersection of all non-
zero ideals of RE.

Proof. S is simple by [8] hence the result follows from Lemma
1.24 and Theorem 1.27.
We conclude by considering case (2).

THEOREM 2.7. Let G be a finite group of automorphisms of a
semiprime, |G|-torsion free ring then:

(a) R° is semiprime.

(b) (V, W) is an essential ideal of R°.

(e) (, ) ts nondegenerate.

(d) R¢ is Goldie if and only if R is Goldie and then Q(zR) =
Q(RGR)' :

(e) Rf is Artinian if and only if R is Artinian and then ( , )
is onto. Hence, in particular R@yR = R* (as an R-bimodule),
B is Artinian and RY is a direct summand of _sR.

(f) S = S/AnngR is Goldie if and only if d(oR) < oo and
Z(,:R°) = 0, and then R and R° are semiprime Goldie and QS) =
End,o(Q(R)).

Proof. (a), (b), (c), (d) follow from Theorems 1.21 and 1.26, (f)
follows from Theorem 1.22.
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Added in proof. Theorem 2.3.c has been proved independently
by J. L. Pascaud in: Two results on fixed rings.
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