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It is shown that in normed linear spaces compact sets
can be approximated by compact absolute neighborhood
retracts in the following sense: If X is a compact subset
of a normed linear space, then for every ¢ > 0 there exists
a compact absolute neighborhood retract that contains X
and has the property that each point of the retract is within
¢ of X. If the choice of ¢ is sufficiently large, the retract
can be chosen to be an absolute retract.

Suppose that X is a compact subset of a Banach space B. Then
the closure of the convex hull of X, conv(X), is a compact absolute
retract that contains X. Browder [4] has shown that if U is an
open subset of B that contains X, then there exists a compact
absolute neighborhood retract R* such that X € R* S U. Both of
these results have proven to be useful in Fixed Point Theory. See,
for example, the work of Browder mentioned above and the work
of Gérniewicz and Granas [9].

Let X be a compact subset of a normed linear space N. The
purpose of this paper, Theorem 1, is to show that there exists a
compact absolute retract R such that XC RC N. Further, it is shown
that if U is an open subset of N that contains X, then there exists
a compact absolute neighborhood retract R* such that X & R* CU.

1. Preliminaries. Absolute retracts and absolute neighborhood
retracts for metric spaces will be denoted by AR and ANR respec-
tively. We use the notation d(x, E)(d(x, y)) for the distance from a
point = to a set E (to a point ). A continuous function f: X — R
will be called a retraction if R & X and f(x) = x for each xeR.

LEMMA 1. Let (N, | |) be an infinite dimensional normed linear
space, X be a compact subset of N, F be a finite dimensional subspace
that is disjoint from X, and ¢ be greater than 0. Then there exists
a finite dimensional subspace E that contains F, is disjoint from X,
and for all xe X, d(x, E) < ¢.

Proof Let U, be an open subset of N. We show that there
exists a finite dimensional subspace F, that contains F', meets U, and
is disjoint from X. Let B be the closure of an open set that is
contained in U and is disjoint from X. For each be¢ B, let FE, be the
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subspace generated by b and F. Suppose that for each such b, E, N
X # @. Let b, be an arbitrary sequence in B, and let v, ¢ E, N X.
Now b, can be expressed in the form b, = v, + t,x, where v, € F and
t, is a real number. The sequences ||v,| and |{,| are bounded, and
the sequence x, lies in the compact set X. Thus there exist subse-
quences v,,, ¥y, t.,, vectors ve F, x € X and ¢ € R such that b,, = v, +
t, %, — v + tx. Since Bis closed v 4 to € B. Thisleads us to conclude
that B is compact contrary to the fact that B has nonempty interior.
Therefore, there exists a subspace E, satisfying the desired properties.

Now cover X with a finite collection of open sets U,, U,, ---, U,,
each with radius less than ¢/2. By applying the result in the above
paragraph n times, we are able to construct a finite dimensional
subspace E that contains F, is disjoint from X, and meets each of
the U;. Let xeX. There exists a U; and a y € F such that «, y e
U;. Then d(z, E) < d(z, y) < &, and this completes the proof.

DerFINITION 1. [5] Let (&, ] |) be a normed linear space. Then
the norm is said to be strictly convex if for all z, ¥ not equal to 0,
|z + vl = ||z]| + ||¥] implies that ¥ = px for some p > 0.

Assume that (N, ] |]) is a strictly convex normed linear space
and E is a finite dimensional subspace of N. It was observed in [2]
that for each x e N there exists a unique closest point, denoted by
#(x), in E. That is, ¢(x) € E and d(z, ¢(x)) = d(xz, ). The resulting
function ¢: N — E, which is called a metric projection, has the
following properties that are easily verified [2, 12].

(&) ¢ is continuous,

() ¢ is idempotent: ¢* = ¢,

(ZF,) ¢ is homogeneous: ¢(tx) = té(x) for allt e R and € N, and

(F) ¢ is quasi additive: ¢z + y) = é(x) + y for all xe N and
ye K,

We establish .&%. Let ze€ X and suppose z, is a sequence that
converges to x. Without loss of generality we may assume that 4(x,)
converges to some point y ¢ E. Then ||z — y|| = lim,_.. ||z — é(x,) | =
d(xz, E). So y = ¢(x), and we conclude that ¢ is continuous.

LEMMA 2. Let N be a strictly convex normed linear space, E
be a finite dimensional subspace of N, R be an absolute neighborhood
retract in E,¢: N— E be the metric projection, and e be greater
than 0. Then ¢ (R) ={xeN: ¢(x)e R} and {xcs*(R):d(x, R) < e}
are absolute neighborhood retracts.

Proof. There exists a neighborhood U, of R in E and a retrac-
tion 7,.:U, — R. Set U = ¢"%(U,) and define r:U — ¢ Y(R) by »(x) =
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T + r.(¢(x)) — ¢(x). It follows by properties & and &, that » is a

retraction.
Next set A = {x €¢7(R): d(x, R) < ¢} and define s: ¢"(R) — A by

xif diz, R) < e
s(x) = [

d(w,R)—e] ex £ (e R) >
| e o) + g i de Bz e
The function s is a retraction. Since a retract of an ANR is an
ANR, the proof of the lemma is complete.

2. The approximation theorem. A function f: X — R will be
called compact retraction provided f is a retraction and R is compact.
If N is a normed linear space, and z € N, then B, (x)={y € N: d(x, y) < &}
is called an N-ball. In order to simplify the proof of the approxima-
tion theorem, we state the following definition.

DEFINITION 2. Let K be a compact subset of a normed linear
space N. Then an ¢-pair of K in N, denoted by (N, K, P*, P, ¢),
consists of ANR’s P* and P such that K < Int(P*), P* < P< N and
if x € P*, ye P and d(z, ¥) < ¢, then the segment [z, y] = {tx + 1—t)y:
0st<s1}< P

The proof of the approximation theorem is similar in certain
respects to [3, p. 108].

THEOREM. Let (N, || |) be a normed space and let X be a compact
subset of N. Then there exists a compact absolute retract R such that
XZ RS N. If U is an open subset of N that contains X, then there
exists a compact absolute meighborhood retract R* such that X <
R* CU.

Proof. A straightforward argument establishes the result when
the dimension of N is finite. In that which follows we assume that
the dimension of N is infinite.

Let D be a countable dense subset of X. Then the closure of
the linear span of D is a separable normed linear space that containg
X. Thus, without loss of generality, we may assume that N is
separable. Further, we may assume that X does not contain the
origin. Every separable normed linear space has an equivalent
strictly convex normed [5]. Consequently, we may assume that || ||
is strictly convex.

It will be shown that for n =1, 2,3, .-, there exists

(I,) a finite dimensional subspace E, 2 E,_,(F, = @) with metric
projection ¢,: N — E, such that if x€ X then d(zx, E,) <e¢, < ¢,.,/18
(e, = 18),
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(II,) a 3e,-pair of ¢,(X) in E,, (&, $.(X), P, P,, 3¢,),

(III,) an ANR A, = {x: z € ¢;%(P,) and d(z, P,) < 3¢,} (A4,= N) such
that X S Int 4,, A, < Int(4,_,) and P,_,N A4, = @(P, = @), and

(IV,) a compact retraction f,: A,_,— R, (B, = @, fo = @) that
satisfies R, N A, = P,, R, N R,_, = P,_,, f.(x) = fo_.(x) for x € bd(4,_,),
ful®) = ¢, () for xe A,,and if x € 4,_, and d(x, R,) < 8, then d(z, f,(x)) <
3€,_1.

Let ¢, = 1. By Lemma 1 there exists a finite dimensional subspace
E, such that if € X then d(x, F) <e, and XN E, = @. Let ¢:
N — E, be the corresponding metric projection. There exists a finite
number of points pi, - - -, pi, € ¢,(X) and corresponding E,-balls B, (i),

«+, B, x(p}) such that ¢,(X) < Int Uk, B. .(p)).

k
Set Pt =UB..p) and P, ={veE, d@ P}) =3} .

It is easy to see that P} and P, are ANR’s [3, p. 90] and it follows
that (E,, ¢.(X), P,, P¥, 3¢,) is a 3¢,;-pair of ¢,(X) in E;. Set A, ={x:xe
#7Y(P,) and d(x, P,) < 8¢,}. Clearly, X < Int A4,, A, & N = Int(4,) and
P,NA, = @nA = @. Set R, =conv (P,). There exists a retraction’
s: B, — R,. We define f,;: N— R, by f, = sog,. Clearly, R,NA, = P,
R, NR, = @ = P, fi(x) = fi(x) for x € bd(A4,) and f,(x) = ¢,(x) for x € A4,.
Suppose xe€ A, and d(x, R) <8. Then it is easy to see that
d(x, fi(x)) < 3e,. Thus, the four conditions are satisfied for the case
n = 1.

Now assume that for k=1, 2, ---,» the conditions can be
satisfied. We show that for & = » + 1, there exist appropriate func-
tions and sets that satisfy the conditions.

By condition (III,) we have X < Int(4,) = {z: x €¢;%(P,) and
d(x, P,) < 3¢,}. There exists an open set W, of N such that X &
W, <A, W,NnP, =, and ¢,(W,) S Int(P}). This follows from (IL,).
Let ¢}, =d(X, N —-W,).2 Set

87»+1 < min {5,‘/18, €:+1/8} *

By Lemma 2 there exists a finite dimensional subspace E,,, with
metric projection ¢,,,: N— E,,, such that if xe€ X then d(x, E,.,) <
€ni1, B S E,,, and XN E,,, = @. Thus, condition (I,,,) is satisfied.

There exists a finite number of points pi*, pz** .- pp'! €4,,,(X)
and corresponding F,-balls B,  .(pi*), ---, B. »(0i'l) such that
$n(X) S Int Ui_‘glﬂ B, .(0?*). Set

Ent1
-P;tk+1 = ‘LL=J1 B£n+1/2(p?+1) and P'n+1 = {x € Eﬂ+1: d(x; P:—l—l) é 36'n+1} *

! The retraction is constructed in such a manner that d(x, s(x)) < 2d(x, R,).
2 d(X, N—-W,) = inf{d(x, N —W,): 2z€ X}
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It is easy to see that P}, and P,,, are ANR’s [3, p. 90], and it
follows that (E,.., ¢...(X), Py, Payyy 36,00 18 2 3e,-pair of ¢,.,(X)
in E,,,. Thus condition ([],,,) is satisfied.

Suppose x€P,,,. Then there exists a B. ,(»!*") and a ye
B., ..:(®:™) such that d(x, y) < 3¢,,,. There exists a ze X such that
Gnii(2) € B, »(07*). Thus d(z, 2)=d(@, ¥)+dY, $un(?) +d$,1(2), 2) <
5¢,.,. We conclude the following:

(1) If xeP,,, then d(z, X) <be,_, .

Set A, = {#: v € ¢:1.(P,1) and d(z, P,,,) < 3¢,,,). By Lemma 2,
A,,, is an ANR. We have ¢,,(X) < Int P}, and if x€ X then
d(x, P,) <é&,;,. Thus, X<ZInt(A,,,). LetxeA,,,. Then d(z, ¢,.(2) =
3¢, and by (1) d(8,..(%), X) < 56,y So d(x, X) < 8,4, < &54a. Thus,
xe W, and it follows, from the fact that A,,, S W, < Int A, that
A,., S IntA,. By construction P,N A4,,, = @. Condition (III,,,) is
satisfied. We also note that ¢,(P,.,) & P}. This follows since
P..cW,.

We set B,,, = {x: x¢€ E,.,Né;*(PF) and d(x, P}) < (23/18)¢,}. Sup-
pose xeP,,,. Then zeF,.,. Also, d(x, P})=d(x, X)+¢,. By Q)
and the definitions of P} and ¢,,,, we have d(x, P}) < 5¢,., + ¢, =
(23/18)¢,. We conclude that P,,, < B,,,. By Lemma 2 and the fact
that E,,, is finite dimensional, we have that B,., is a compact ANR.
Furthermore, it is clear that B,., S Int(4,). We defined

R;’:—i—l = an U Bn+1 U A'n+1 .

It is clear that R}, is a closed subspace of A, and by [3, p. 90] R, .,
is an ANR. So there exists an open subset U},, of R,,, in A4, and
a retraction r,.,:U¥,— R}.,. For each zcA,,, U B,,, there exists
a pair of neighborhoods M *, N such that dia (M) < e,,./2,
dia ¢, (M) < &,4y, NM' © MM S U¥,, and », (NF) S M. Set

Ui =U N 2ed,,UB, .} .

Now suppose € U,,,. Then it is easy to see that ¢,(4,.,(r,.,(2))) €
P,. We argue that the segment [¢,(6,..(7,+.(2))), ¢.(x)] & P,. Assume
7o)€ A,.,. Then there exists an M, such that «,r,.(x)eM,.
Since dia(M,) < €,../2, A, 7,4.(x)) < €,,,. By the definition of A4,,, it
follows that d(g,.1(7,u(®)), 74u@®)) < 8641a. BY (1) d(nis(1,11(2)), X) <
5¢,.,. From condition (I,), we conclude that if z€ X then d(z, P,) <
¢,. Combining the above we get

d(xy ¢n(¢'n+l(’rn+l(x)))) é d(w, 'r'n+1(w)> + d(/rfn+1(x)’ ¢,,+1(’r,,+1(x)))
+ d(¢n+1(rln+1(x))’ X) + G,n < 95w+1 + €u -

Thus, d(z, ¢,(x)) < 9¢,,, + ¢, and
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d(¢n(¢n+l(lr'n+l(x)))9 ¢%(x)) é 188n+1 + 281; < 38% .

By (II,) the segment [4,(n:i(75s:(®))), ¢.(@)] & P,. Suppose 7,.,(x)€
B,... As in the case above, d(z, r,.(%)) < ¢, Note that in this
case 7,,(2) = $pu(raa(®)). By the definition of B,,;, d(uii(7:u(2)),
Pa(Bnia(142(2))) = (23/18)e,. So

A&, $p(Pasi(Tais(®)))) S A@, 741(2)) + APns1(7042(2));, u(Bns1(T011(2))))
23

€ —E, .
< 'n+1+ 18 %

Thus, d(z, ¢,(x)) < €,,. + (23/18)¢, and

AGuBrrsas®), 5@ S B + 2e, < B, < 35, .

Thus, by (IL,) the segment [¢,($4+1(7411(%))), ()] P,. Finally, suppose
7..(®) € P,. As in the cases above, d(x, 7,..(®)) < €,,,. Since r,,(x) €
P, d(x, E,) < 6,.,. Thus, d(r,..(x), ¢.(x)) < 2¢,,,. But in this case
T11(®) = $u(Pnis(T0sa(®@))). S0 A(B4($011(T0ss())), $u(®)) < 26,4, < 3¢,. We
also conclude in this final case that the segment [4,(,..(7,..(x))),
$.(2)] S P,.

Set B,,, = P,UB,,,. ForeachxeU,,, define a, ,(x)=d(x, A, U
B,.) and b,,.(x) = d(x, A, —U,). We define

Sntit A,— R,

by
¢m(w) if xe An - Un+1 ’
0,41 (X) (B 11 (70 s (2)))) + (@i s(®) — b,ss(2))()
@y 4:(2)
o) = a"+1(x) = bn+1(x)

%11 (0)(Ba (P i1 (P01 (1)) + Bys1(®) = Cnis@) s (10 :(®)) ;¢
b'n+1(x)

Ay () = b,,(2)
Pnn(X): €A, .

By & and <7, we have that if xeB,,,, then the segment
[z, $.(x)]EB,,,. It follows that f,,, is a compact retraction from 4,
tO Rn+1’ Rn+1nAn+1 = P%+1’ Rn+lan = Pm fm+1(x) = f'n(w) for re bd(An>
and f,.(@) = ¢,.(x) for x€A,,,. It is easy to see that if xe A,
then d(x, Rn+1) é 3 and d(x’ f'n+1(x)) é 3€n'

We have satisfied the conditions for & = n + 1; thus, the condi-
tions can be satisfied for all k. Set R = U, (B, UX.

We define f: N— R by
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Fl) = x: if zeX
Cfu@): if zeAd,,—A,.

It is clear that f is a continuous function for all x ¢ X. Now suppose
x€ X and let ¢ > 0. By (I,), there exists an M such that if n = M
then 3¢, < ¢/2. Choose a neighborhood N, of diameter < ¢/2 about
xin Ay. Thenif ye N,, d(f(y), ¥) <3ey <e&/2 and d(y, x) <e/2. Thus,
d(f(x), f(y)) < e and we conclude that f is continuous at x. It is
easy to see that R is compact and f(x) = « for each x ¢ R. Thus,
f: N— R is a compact retraction. The space R is the desired
AR.

Let U be an open set that contains X. Then there exists an »n
such that A, is a closed subset of U. Now A4, is an absolute neigh-
borhood retract for metric spaces. So there exists an open set V of
U that contains A, and a retraction »:V — A,. Then f|A,or is the
desired retraction, and R* = f(A,) is the desired ANR.

3. Applications. In this section, Theorem 1 will be used to
establish a number of results.
The following extension theorem is due to Dugundji and Granas

[7].

THEOREM 2. Let A be a closed subset of a normal space X and
let N be a normed linear space. Suppose that f: A— N is a con-
tinuous mapping such that f(A) is compact. Then there exists an
extension, F: X — N, of f such that f(X) is compact.

Proof. The Dugundji extension theorem [6] assures that f has
an extension F*: X — N. Theorem 1 implies that there exists a
compact AR R such that f(4A) £ R. There exists a retraction »: N —
B. The composition roF* = F' is the desired extension.

THEOREM 3. [11] Let X be an AR and let f: X — X be a con-

tinuous function such that f(X) is compact. Then f has a fixed
point.

Proof. By the Arens-Eells embedding theorem [1], X can be
realized as a closed subset of a normed linear space N.

There exists a retraction »: N— X from N to X. By Theorem
1 there exists a compact AR R such that f(X) S R. Set g = for|R.
Since every compact AR has the fixed point property, the function
g: R — R has a fixed point x. Thus, =z = g&) = f(r®)) = f(&). So
f has a fixed point.
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The Cech homology groups and the singular homology groups
of a compact AR are isomorphic [13, p. 145]. Theorem 1 implies
that in the class of compact subsets of an open subset of a normed
linear space the compact AR’s are cofinal. Thus we have the follow-
ing theorem.

THEOREM 4°. The Cech homology groups with compact support
and the singular homology groups of an open subset of a normed
linear space are isomorphic.

A multi-valued upper semi-continuous mapping ¢: X —Y is said
to be admissible if for each z € X, ¢(x) is compact and acyclic [8, 9].
The following theorem, which is a generalization of Theorem 2, is
an important special case of the principal result of [8].

THEOREM 5. Let X be an ANR and let ¢: X — X be an admissible
map such that $(X) is compact. Then the Lefschetz number of ¢,
Ag, can be defined, and Ap # 0 implies that there exists an xe X
such that x € ¢(x).

Proof. Gorniewicz and Granas [9] prove this result for the case
that X is a topologically complete ANR. Their argument carries
over to the incomplete case if Lemma 9.1 of [9] is replaced by
Theorem 1.

The following theorem, which is a special case of [4.4, p. 95, 10]
follows from Theorem 1 and Theorem 11 of [4].

THEOREM 6. Let X be an AR and f: X — X be a continuous and
locally compact mapping from X to X. If for some positive integer
n, fN(X) is compact, then f has a fixed point.
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