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We study symmetric shift registers defined by
(xly Yy xn) e (wzy crty Lny xn+1)

where 2,.; = x; + S(xs, - -+, z,) and S is a symmetric polynomial
over the field GF(2).

Introduction. In this paper we study symmetric shift registers
over the field GF(2) = {0, 1}. In [2] we introduced the block strue-
ture of elements in {0, 1}* and developed a theory about this block
structure. In this paper we will use the results in [2] about the
block structure to determine the cycle structure of the symmetrie
shift registers.

The symmetric shift register 8, corresponding to S(x,, ---, x,)
where S is a symmetric polynomial, is defined by

03(371, ) xn) = (xZ; ) x?ﬁ-l) where Ty = Ty + S(xZ; Ty x'n) .

g is the minimal period of A€{0, 1}* with respect to 0, if ¢ is the
least integer such that 64(A4) = A. Then A —6,(4) — --- - 0L(4A) = A
is called the cycle corresponding to A. We will for all S solve the
following three problems:

1. Determine the minimal period for each A € {0, 1}".

2. Determine the possible minimal periods.

3. Determine the number of cycles corresponding to each mini-
mal period.

Moreover, the problems will be solved in a constructive way, a
way which will describe how the minimal periods and the number
of cycles can be calculated. In [1] (see also [2]) we reduced all the
problems to the case S = K, + --- + E,., where E; is defined by

B, -+, @) =1 if and only if 3 a;=1.
j=2

In this paper we will only study S = E, + -+ + E,.

I will now roughly describe the structure of the proof. TFirst
we need a definition. Suppose .Z < {0, 1} is a set such that for
all Ae _# there exists an 7 > 0 such that 65(4)e_#. Then we define
Index: #Z —{1,2, ---} and +: #Z — _# in the following way:

Let 7 > 0 be the least integer such that 6i(4)e._#; then we
define Index (4) = ¢ and (A4) = F5(A).

In the proof we need only consider certain subsets .# which
can be represented in a nice way. Each Ae_# is uniquely deter-
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mined by its block structure. In [2] we proved how we can deter-
mine the block structure of 4(A) by means of the block structure of
A. We continue in this way and calculate the block structure of
v*(A), ¥*(A), ---. Finally, we find a ¢ such that A and % A4) have
the same block structure. Hence A = %(A4). Then

IndeX (A) -+ Index (Q/f‘(A)) + -0 4 Index (’lﬁ‘q—l(A))
is the minimal period of A .

Next we give a short outline of the paper. Section 2 contains
some definitions and notations. In §3 we compute « for a certain
subset .# and describe the main ideas. In the §§4, 5 and 6 we
solve the Problems 1, 2 and 3 respectively for the set _# In §7
we generalize the results to all Ae{0, 1}*. This generalization will
not be difficult.

2. Preliminaries. We must repeat some of the definitions from
[2]. First we define the blocks of Ae€{0,1}* ([2], Def. 3.1). Intui-
tively an i-block is 7 consecutive 1’s in A. 0, denotes ¢ consecutive
0’s in A and 1, denotes ¢ consecutive 1’s in 4 for ¢ = 0.

We need some notation. We write @, --- a, = (a,, ---, a,) €{0, 1}*.
If A=a,---a,e{0, 1}*, we define

fla, -+ - a;) = (the number of 1’s in @, --- a;)
— (the number of 0’s in a, --- a;) .

If r<i<j=<sand (r*1 or j+s) we writea,---a;<a, - a,
Moreover, a A b denotes the minimum of a and b, and we define w(-)
by w(a, -+ a,) = 2L, a,.

We divide the definition of blocks into two parts by first defining
1-structures and O-structures of A. A l-structure (0-structure) is a
generalization of ¢ consecutive 1’s (respectively 0’s) which is succeeded
by g 0’s (respectively 1’s). We will say that a block B, is on level
1 if it is contained in a chain B, > B, > B, > --- > B, of blocks.

DEFINITION 2.1, Part 1. Suppose A =a, --- a,€{0, 1}".

(a) Suppose a, = 1. Let s be the maximal integer such that
D=a, - - a, satisfies

(1) 0<f(ar"'a’i)§f(a'r'°'a’s) for’ie{’l","',S}
and

(2) fr=i£j<s, then fla,---a;) > —(p + 1).
By definition D is a l-structure with respect to p.

(b) Suppose a, = 0. Let s be the maximal integer such that
D =a, --- a, satisfies
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0> fla, - a) = fla,---a) for ief{r,---, s}.

By definition D is a O-structure.

DEFINITION 2.1, Part 2. (a) Suppose A =a,---a,c{0,1}*. We
define the blocks in A with respect to p by induction with respect
to the level of the blocks in the following way: (The l-structures
are defined with respect to p.)

Level 1. We decompose A in the following way A = 0, B, 0,,B; - - -
B,0,,,, where B; is a 1l-structure. By definition B, ---, B, are the

blocks in A on level 1.

Level 2. Suppose B is a block on level 1. We decompose B in
the following way

21 B=1B1,B,---B,l, where B; is a 0-structure .

tm+1

By definition B,, ---, B, are the blocks in 4 on level 2 which are
contained in B.

Level 3. Suppose B is a block on level 2. We decompose B in
the following way

2.2y B=0,B0,B,---B,0, where B; is a l-structure .

tm+1

By definition B,, ---, B, are the blocks in A on level 3 which are
contained in B.

We continue in this way. If ¢€{38,5,7, ---} and B is a block
on level 4, we decompose B as in (2.1). If 716{4,6,8, ---} and B is
a block on level 7, we docompose B as in (2.2).

(b) Let B be a block in A on level i. Then we define level
(B) =1, type (B) = | fAB)|A(p + 1) and m(B) = |f(B)|. Moreover, if
type (B) = ¢ we say that B is a g¢-block or that B is a block of
type q.

We illustrate Definition 2.1 by the example »p = 2 and
A=0100111001011011000010110110011101

| I I W N R A Y
B1 [ B21 Ba ! B4 B5 Bs le
. B | B, |

B,

where

B, B,, B,, B,, B, and B, are blocks of type 1
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B, and B, are blocks of type 2
B, and B, are blocks of type 3
B, B,, B, and B, are blocks on level 1
B,, B,, By, B, and B, are blocks on level 2
B, is a block on level 3.

We establish the convention that B always denotes a Dblock.
Moreover, we suppose k& and p are fixed integers such that 0 = k <
k+ p<mn—1. The block structure is always determined with respect
to p and we always work with S=E, + .- + E,,,. We write
6 = 6s. These conventions do not concern §7.

If A=a,--:a, we write [, (a;,---a;) =1 and r,(a,--- a;) = j.
Next we define d(B) which measures how far the block B is to the
left in A. Suppose A =a,---a,. We define

da, -+ a;) =3 — 3 {g Atype (B): 1(B) = j}
— 2 {g Atype (B): r(B) < j} .

If Bis a block of A, then we define d(B) = 0 if [,(B) = 1. Otherwise,
d(B) =dJ a, ---a;) where j=1[0,B)—1and q=type(B).
In our example in this section we get

(d(By), d(B,), d(By), d(By), d(B;), d(By)) = (1, 5, 6, 10, 11, 15)
(d(By), d(By)) = (3, 7)
(d(By), d(B.)) = (2, 4) .

3. Main ideas. In this section we let v,, ---, 7,4, be fix integers
such that v, =0 for ¢ =1, ---,p and 7v,,, > 0. Moreover, we will
only work with A €{0, 1}* which contains v, 4-blocks for i =1, ---,
p + 1, and such that w(4) =k + p + 1. That is; A contains (k +
p+ 1) 1s.

In [2] we deseribed how the blocks move by applying the shift
register. We will reformulate these results by introducing new
notation. First we have to repeat a lot of the notation from [2].
Moreover, we will mention some of the problems we must solve and
describe the main ideas on an example.

In [2] we defined (¢ =1, ---,p + 1)

a;=m+ 10— 27, — 4y, — 0 =207, — 20(Ve + o Vi) -

(8.1)
m=k+p+1—7—2v%—8v— -+ —(®+ L7, .

Since «; and m are very important constants, we will give an inter-
pretation of them. To do this we define a subset .2 {0, 1}" in
the following way
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wA)=k+p-+1.

A starts with 0 or a (p + 1)-block .

A contains v; i-blocks for ¢ =1, -+, p + 1.
A ends with a (p + 1)-block .

(3.2) Ae # —

In the §§3-6 we will study this subset, and in §7 we reduce the
general problem to _# It can be proved that

(3.8) a; = max {d(B): B is an i-block in A}

for each Ae_# For some Aec_~ we will have equality in (3.3).
Next, we will give an interpretation of m. We use the function
f(-) defined in § 2. From the definition of blocks we have f(B) = p + 1
when type (B) = p + 1. We suppose Ae_~. Then it can be proved
that

m =3, {f(B) —(p +1): B is a (p + 1)-block in A}.
m is in a way the sum of the superfluous 1’s in the (p + 1)-blocks
in A.
The subset _#Z we defined in (3.2) is very important. We will
now study the key map +: # — _# defined by
if Ae_u, then +(A) = 6°(A) where 7 is the least integer

3.4
3-4) such that 6‘(A)e_# Moreover we define Index (4) =17 .

In [2] we called this map @, Moreover, if v,,, = 1then @ = @,
in [2]. By Lemma 4.11 (the case <v,,;, = 1) and Lemma 4.13 in [2]
there exists a bijective correspondence (which we also call )

(3.5) 4r: {the blocks in A} —— {the blocks in (4)}

which satisfies Condition 4.9 in [2]. That implies that the map (3.5)
have a lot of nice properties which we describe now. We have

type (B) =type (y(B)) and  [f(B)] = |f(v(B))]

where f is as in §2. In [2] we also write m(B) = | f(B)|. But the
most important thing which Condition 4.9 in [2] gives us is the fol-
lowing: Let 7 be an integer such that 1< 7<= p + 1 and

B, .-, B,

7

are the i-blocks in A ordered from left to right. Then there exists
an integer 7 (depending on %) such that

V(Bras), ¥(Bria), -+, ¥(Br), (B, -+, ¥(B,)
are the i-blocks in +(A4) ordered from left to right. Moreover, there
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exists an integer B (depending on %) such that

d(B;)) — B when d(B)=< B

d(y(B)) = d(B,) — B + a, otherwise .

We calculated these integers » and @ in [2]. Unfortunately, these
calculations are very complicated. We will return to these calcula-
tions in Lemmas 3.3 and 3.4. Moreover, we proved in [2] (Lemma
4.1(b) in [2]) the following fundamental result:

If A, A’e _# and there is a correspondence B—— B’
between the blocks of respectively A and A4’ such that

(3.6) and d(B) = d(B’) for each block B
f(B) = f(B’) for each (p + 1)-block B,
then 4 = A’.

Now we need a simple way to describe the block structure. To each
Ac _# we define (p + 1) vectors which contains all information about
the block structure of A.

DEFINITION 8.1. Let Ae_# Suppose 1=<i<p+1 and
B, ---, B

i

are the ¢-blocks in A ordered from left to right. If 1<41< p, we
define

D(A4) = (d(B, -+, d(By)) .
If i =p + 1, then we define

D,,.(4) = (d(B)), -, d(Br,,,)) X (f(B)
—@+1D, -, f(Br) —®+ 1)

where f is as in §2. As a convention we let D,(A) be the empty
veetor if v, = 0.

The last part of D,,,(A), namely (f(B)—(® + 1), .-, f(By,,,) —
(p + 1)) tells us how large each (p + 1)-block in A is. Let A be as
in our example in § 2. Then % = 34 and by putting »p =2 and k = 15
we get Ae_# Moreover, we get

7. =6, v =2, Yy =2, a, =15, a, =8,
a, =5 and m=2.

D,(4) = (1,5, 6, 10, 11, 15) , D,(A)= (3,7 and
D(A)=(2,4) x(1,1).

3.7
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These results from [2] indicate that we must solve the following
3 problems: Let Ae_#Z

1. Let % be an integer such that 1 <7< p + 1. How can we
obtain D,(+'(4)) = D,;(A)?

2. How can we determine an integer ¢ such that D,(4'(4)) =
D,(A) for all te{1, ---, p + 1}.

3. Suppose we have solved Problem 2. By (3.6) we have «(4) =
A. How can we determine an integer “per” such that '(4) = *7(4)?

By using Definition 3.1 we can define a map

9=D XD, X ++- XD, .
By (3.6) g is a bijective correspondence
9: A ——9( A ).

One of the main ideas in this paper is that we work with g(_#)
instead on _#Z For example, later we will count some subsets of
#. Then we instead count the corresponding subset of g(.#). In
[2] we described g(_#) in a nice way as in the following lemma.

LEMMA 3.2. (a) If 11 =< p, then
‘D’L(‘-/Z):{(tl’ "‘9t7i):1§tl§tzé ce étTtéaz}'

We use the convention that D(.#Z) = {(D)} where (D) is the empty
vector, when v, = 0.

(b)
Dp-)-l(‘/z) = {(tl’ °c .’ t7p+1) >< (sl? o ‘! Srp+1): tl g O’ sz g 0,
S+t s, =mt+s =Sty =1, 07— 1)
and tr,. + 8, = Qpu} .
(e)

p+1
9(A) = X DA .
ProOF. The lemma is a reformulation of Lemma 4.1(e).

Instead of : # — _# we will later use the corresponding map
on g(.#). That is; we will find a map + such that the following
diagram commutes:

¥ v
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+ will be defined implicitly in Lemmas 3.3 and 3.4. We do not need
an explicit definition of .

The next two lemmas describe how we calculate D,(4(4)) from
D,(A).

LemmA 3.3. (a) Suppose Ae #Z and 7v,,=1. We define
Py *t 00T and B, + -, B tnductively in the following way:

Br=1
7, = the number of p-blocks B in A such that d(B) = 3, .

Bi = P+ 1—1) +2r + 47 + 615+ -0 + 2(p — 1,
7, = the number of i-blocks B im A such that d(B) < 83, .

Suppose 1 < i < p and D(A) = (¢, ---, t,). Then we have

DL("/T(A)) = (ta"1+19 Tty tz”iy t;, Tty t;)
where ,
tita,—B: of =7

¢ =
Lot~ B otherwise .

Moreover, D, ,(4(A) = D,.,(A) and 0 < B, < a, for 1 <1< p and
Index (A) = (n +p+1) +2r +4r,+ -+ +2:p7, .
We also write r,(4) = r, and B;(4) = B;.

Proor. (a) ®(A) in Lemma 4.11 in [2] is equal to +(A4). By
Lemma 4.11(b) and (d) in [2] B; = #,(A) and », = », where z,(4) and
r; are used in Lemma 4.11. Then it is not difficult to see that this
lemma is a reformulation of Lemma 4.11 in [2]. O

LeEMMA 3.4. (a) Suppose Ae . #Z and v,,>1. We define
Vprsy ** oy T a0 By, ++, By tnductively in the following way:
Bpi1 = A(B) + f(B) — (p + 1) where B is the first (p + 1)-block in A .
Tpy1 = 1

By :46p+1 + 27’p+1
r, = the number of p-blocks B in A such that d(B) < 3, .

Bi= Bps1 + 20y + 470y + -+ + 20 + 1 — )1,y
r, = the number of i-blocks in A such that d(B) = 3; .
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Suppose L <1< p and D(A) =, ---,t;). Then we have
Dl(q}"(A)) = (t:‘i—i-l} Ty t?”iy t{, t Ty t':‘z)

where
¢ {tj"f‘ai”"ﬁi if JE=1
Tt — B otherwise .

Suppose D, (A) = (b, -+, tr,,) X (8, =+ +, 8r,,). Then we have
'D:D+1<¢\(A>) = (t;, t;, Y t"fp+1’ ti) X (82; ) sTp_H’ 81)
where

th = {ti—"ﬁpﬂ of =2
! bt Qs — B = Ay — 8 of J=1.

Moreover, we have 0 < 3, < a; for L <1< p and
Index (A) = Bpyy + 20, + 41, + - -+ + 2(p + D1y -
We also write r,(A) = r, and B;,(4) = B;.
Proor. Since ¢ is equal to @, in [2] this is a reformulation

of Lemma 4.13 in [2].
We will illustrate this lemma by our example in §2. We get

B:=2+1=3 B=3+21=5 Bi=38+21+4-1=9
7y=1 7, =1 =3,

Since D,(A) = (1, 5, 6, 10, 11, 15) and «a, = 15 we get

D(y(A) =(10—-B, 11 -8, 16—-8, 1 +a, — B3, 5+ a,— B, 6 +a,— B)
=(1,2,6,7,11,12).

Since D,(A) = (3,7) and a, = 8 we get
Dy(p(A)) = (T — B2, 3 + . — B) = (2, 6) .
Since Dy(4) = (2, 4) x (1,1) and @, =5 we get
D(y(A) =4 - By, 2+a;,—B) x (1, 1) =(1,4) x Q1.

In our forthcoming proofs we need not know what +(A) looks like.
But, if we want, we can successively construct

K, = Ky(y(4) — K, = K(y(4)) — Ki(y(4)) = ¥(4)

as in the proof of Lemma 4.1 in [2]. We will only sketch this
method:
K, = 01111000001111
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since K, is the unique vector satisfying: K, contains only 3-blocks,
D,(K,) = D,(A) and the length of K, = n — 2v, — 47, = 14.

By putting in 1100 or 0011 between certain positions in K, we
get a vector K, which only contains 2- and 3-blocks and satisfies:
D(K,) = D,(A) for i =2,3 and the length of K,=mn — 2v, = 22.
we get

K, = 0111001110000011001111 .

By putting in 10 or 01 between certain positions in K, we finally
get:

¥(4) = K; = 0101101100111010010000110100101111 .

Next we will determine ¢ such that D;(4*(A4)) = D;(4). To do
this we must be able to determine D;(4?(A)) directly from D;(A).
We will develop a method in Lemma 3.6. First we need more
notation.

DEFINITION 3.5. When it is clear which 4 € {0, 1}" we are working
with, we define (s =0,1,2, ---)
Bi(8) = Bi(v'(A)) and 7(8) = 1(¥*(4))
Zy8) = Bi0)+---+Bi(s—1) and  Fs) =ri0)+---+ri(s—1).

LEMMA 3.6. Suppose Ae _#, 1= j=<pand D(A) =, ---, ).
Then we determine Dy(y°(A)) in the following way:
We determine integers f and B* such that

ZBis) = fra; + B* and 0=p8*<a;.

We let r* = the number of coordinates t, in D;(A) such that
i, = B
Then we have

Di(4*(A)) = gy =+, by thy =7, Th) where
t,+a; —B* when 1=i=7r*
ot — B when 1> 1™,

If r*=v;, then D(y*(A)=(t, ---, t;;,).) Moreover, FZs)=f-v;+r*.

¢

PROOF. We suppose the lemma is true for s, and we will prove
that it is true for (s + 1). We write

Dj(y*(A) = (uyy * -+, ur,) -

By Lemma 3.3 or Lemma 3.4 we have (8** = B,(s) and »** = r,(s))
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Di("l"s-*-l(A)) = (Upwegsy ** °, u/”j’ Uy, * i) Urse) Wwhere
, u + a; — B* for 1= r**
u, = .
o u — B for i > r**.

We suppose 8* + B** = a; (the case g* + @** < a; is treated analo-
gously). We observe

by =ty —B S, — BT B
Hence we get
DJ("/"B(A)) = [(t;'*+ly ) t;j: t;; Tt t:l)’ t:)+1; ) )

= I(7"/1’

u'r**ly ur'*+1, " ')

and

D (A) = (t, -++, b5 8, -+, 8))  where
C[ita;— () if 1SiZ0
St — (B + B — ay) if i>wv.

”
1

(Forexample,ifl< i< vweget:t) =t +a;,— 8" =, +a;, — 8% +
a; — B** =1, + a; — (B* + 8% — ay).
Now we will prove that this is in accordance with the lemma:

Fs + 1) =fa; + B* + g** =(f + Da; + (B* + 8" — ) .
If 1 <7< v, then we have
=@ +a,— BN+ R —a;=t+p —a; S+ —a;.
If v <1=Zr* then we have
t=C+a; =)+ R —a; =t + 8 —a; > B+ B —a;.
If » > »*, then we have
>R zZp+ B —a;.

Hence, v = the number of coordinates ¢, in D;(4) such that ¢, <
g* + B — aj.
We observe v = r* + ** — ;. Hence,

B3+ 1) =F)+r**=fv;+r*+r* =+ D7+

and the proof is complete.

Now we return to our example. We divide the treatment into
5 steps:

Step 1. Wehave D,(A) = 3,7 anda,=8. Ifp*=0,1,2, .-, 7
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respectively in Lemma 3.6 we get that D,(4°(A4)) is equal to (3, 7),
2,6),1,5),4,8),3,70,(26),1,5), (4, 8 respectively. Hence, 3* =0
or 4 gives D,(:*(4)) = (3.7) and therefore

(3.8) Dy(*(A)) = Dy(A) —= Z(s) is a multiple of 4 .

Step 2. In the same way as in Step 1 we get
(3.9) D,(4*°(A)) = D,(A) — <Z(s) is a multiple of 5.

Step 3. By using Lemma 3.4 we get

DyA) = (2,4) x 1, 1) Bi(A) =3 r(4) =1
Dy(p(A)) = (L, 4) x (L) Bu(y(A) =2  7(y(4) =1
Dy(y*(A4) = (2,49 x (1, D).

Hence, we get D,(A) = Dy(4*(4)) = Dy(4*(4)) = --- and

%(2>:5, %(4):10, IR %(2'X3)25'X3’ e
F2) =2, A4 =4, -, RBy2-Xy) = 2-X,, - -+

where X, is an integer.

Step 4. We will determine Y such that D,(+"(4)) = D,(A) for
1=2,3. By Step 3

Y =2.X, for an integer X,.
By Lemma 3.4 and Step 3

BUY) = 3, i) + 2rs) = BUY) + 25(Y)
= Z2X;) + 2#,(2X,) = bX, + 4X, = 9X, .

By (3.8) <Z(Y) must be a multiple of 4. Hence, the possible
values of X, and Y = 2. X, are

X.=4,812 --. and Y =2816,24, ---.
Direct calculation gives us
H8) =9, Z(16) = 18, BA(24) = 27, ete.

Later, of course, we must do this in a more sofisticated way. But
at the present stage, this will obscure the ideas.

Step 5. We will determine Y such that D(4"(4)) = D(A) for
©=1,2,3. The possible values of ¥ are Y =28,16,24, ---. By
Lemma 3.4 we have
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FUY) = 3, Bo) + 208) + 4rs) = YY) + 2(Y) + 4A(Y) .

Hence, by Step 3 and Step 4 we get
FB(8) = Zy(8) + 27,(8) + 4.57,(8) = 20 + 18 + 32 = 70

which is a multiple of 5. Hence Y = 8 is the least Y such that
$(A) = A.

Now I will try to sketch thoroughly the ideas on the case S =
E, + E,,, + E,.,. Instead I will delete the general proof of how the
minimal periods are determined. We suppose A€_#; v,., > 1 and
again we divide the treatment of A into 5 steps.

Step 1. Suppose D,(A) = (t, -+, t,). We will find a formula
similar to (3.8). To do this we define 4, in the following way:

Ift,=..-=¢ =1and ¢, >1 we define 4, ---, ¢, -+, &) =
(s — 1, ooty — L b5, -+, 1) Where t; = --- =t = a, .

By Lemma 3.4 we get

Dy(p(4)) = A(D(4))
D4(A)) = 4E4 5@ (D,(A)) = AZ(DA)

D(y(A)) = o = AZ9(Dy(A)) .

The next problem is to determine when A5(D,(A)) = D,(4). First
we observe that this is true for @ = a,. Next we let a be the least
a such that A3(D,(A)) = D,(A). We will now describe how D,(4)
looks in this case. We must have a, = ra for an integer ». We
let v be the maximum integer such that ¢, < a. By definition of A7
we get

ABD(A) = rpn— @, -, b, —a, o, —a, -, b+ 0, — )
= D,(A) .

Now we get obviously that D,(4) must have the form

D2(A) :<tn "'ytr»t'1+a, ...,tr+clr’ ceey
(3.10) Part 1 Part 2
Fl—i—(fr-l)a, ---,tr—i—('r~—1)al)
Part r

where a, = ra.
Now we will prove that (3.10) is a sufficient condition. There-
fore we suppose (3.10) is true. Then we get by Lemma 3.2 that
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b=+ —-1Da=a, and t,>0.

Hence
[ and trps > @

Hence, 4*(D,(A)) = D,(4).
We let af be the least a such that 4%(D,(4)) = D,(4). We get

Dy(y*(A)) = D(A) = Z(s) = X,a for an integer X, .
Moreover, if <Zi(s) = X,a¥, then
(3.11) F(s) = X;vf where v = 2—572 .
2

We prove (3.11) as follows: If 0 < z < 7, then by (3.10) the num-
ber of coordinates less than or equal to z-af is z-v¥. We suppose
By(s) = (wr + 2)af = wa, + z-aFf where 0 £z <. By Lemma 3.6
we get

FB(8) = w, + 2vF = (wr + )77

and the proof of (3.11) is complete.
Step 2. Suppose D,(A) = (t,, -+, t;). Analoguosly with Step 1
we define 4, in the following way:

Ift,=.--=t =1and ¢, >1 we define 4, ---,¢) = (. — 1,
bppo — 1, ooyt — L8, -+, 1) Where t; = -+ =t, =@, .

We let a* be the least integer such that A%(D,(A)) = D,(4). Analo-
gously with Step 1 we get

D,(v*(A)) = D(A) = Z(s) = X,aF for an integer X,

and

If -%(3) = Xlaf, then %(S) f=~ X1'7;k Where ’Yf — ai* ,.),1 .

1

Step 3. Suppose Dy(A) = (£, *++, &) X (8, *++, 87,). Now we will
determine when D,(44(4)) = D;(4). Again we define a function 4,
in the following way:

Aa(tly Tty t7’3) X (su Sgy "ty 37’3) = (t;’ ) t;y t;) X (32; Tty Sry 81)

where
[t o= (st t)=a,— s for i=1

t = -
tt—(31+t1) for 7,:2,3,-..’73'

We observe by Lemma 3.4 that
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Dy(p(A)) = Ay(Ds(A)), - -+, Dy(4*(A)) = A4(Dy(4)), -+ .
By definition of 4, we have for 1 < ¢ < v, that
Ag(tly Tty tTa) X (31) ) 373)
= (tt'z'-i-l; Tty t;;? t;ly Tty tl'll) X (sq+l7 crty Srgy 8y 0y, sq)
(3.12) {where
p t,+a;,— (s, +t) for i=1,.--,¢q
\ Ct— (s, + 1) for i=q+1, ..

For example if ¢ =2 and 7 > 2 we get

t=t— (G +t)=20—(68 +1t)—8—F— (s + 1)
=t¢—(82+t2).
Specially, if ¢ = v, we get (s;, + t;, = a; by Lemma 3.2)
t,,;’zti—*—ag‘—(-grz“}‘tra):ti for /i:].,"',')'gu

Hence, 43%D,(A)) = D,(4).
If D(A) = (¢, --+, %) X (84, *++, 8r,) and 1 < ¢ < 7, we have by Lemma
3.4 that

D3("!w(A)) = (tl’l'-!-ly Ty t;';! t;.,y cee) X (3q+1’ ttty 8rg 8y vy, sq)
where
it + @ — (B(0) + - -+ + Bylg — 1))
= =t +a,—Bg for 1si=5¢

%
lti —(Bs0) + -+ + Bslg — 1))
=t, — ZBiqQ) for 1 >4¢q.

1”7

Hence,
(3.13) ZQq) =8, +t, for 1=qg=1,.

The next problem is to determine when A7(D,(A)) = D,(A). Next
we suppose v is the least integer such that A7(D,(A)) = D,(A). Then
we have <, = rv for an integer », and by (3.12) we get that D,(4)
has the form

D3(A)=(t1, "',tT’t1+a’ e+ a, e,
L o |

Part 1 Part 2
(3.14) Itl + (/r - 1)“’ ) tT + (’r - 1)“{)
Part »

X(Slr"':87’181;"';sn”'ysly'nysf)
— g e ) | S|
Part 1 Part 2 © Part r
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where ar = a, (which is equivalent to @ = s; + ¢;). (We get directly
from (3.12) that (3.14) is true with « =s,+¢,. But this is equivalent
to ar = a, because s;, + t;, = (s; + £;) + (r — Da = a, by Lemma 3.2.)

We let v be the least integer v such that Ai(D,(A)) = D,(A).
Then we have

Dy(4"(A)) = D(A) = Y = X;v¥ for an integer X,.
Moreover, if Y = X,v¥, then

(3.15) Z(Y) = X,af where af = 'ia,.

s
We prove (3.15) as follows: By (3.13) and (3.14) we have
Q%) = byrs + Spry = qaf for 0=¢qg <7,
where » = «v,/v¥, and
BorvE) = B(V) = 8, + b, = a4y = ray,

and (3.15) follows.

Step 4. Next, we will determine Y such that D,(v''(4)) = D,(A)
for i1 =2,38. By Step 3 we must have Y = X,-vF. Moreover in
this case

Z(Y) = B(Y) + 228(Y ) = Xyaf + 2Xy75 .
Moreover, by Step 1, we must have
Z(Y) = X,af for an integer X, .
Hence, we get the equation X,af = X,a¥f + 2X,v¥.
Step 5. Next, we will determine Y such that D,(v"(4)) = D,(A)
for + =1,2,3. By Step 2 this is true for ¢ = 2,3 if and only if

there exist integers X, and X, such that X,af = X,af + 2X,v¥ and
Y = X,v}. Moreover by the previous steps we have

B(Y) =Xt , BY)=Xy¥, FY)=Xoaf and
B(Y) = Xv¥ .

Hence,
ZBY) = Z(Y) +2(Y) + 4Z(Y) = Xyaf + 2XvF + 4Xvi .
Moreover, by Step 2 we must have

F(Y) = X,af for an integer X, .
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Hence, we get the equation

Xof = Xoaf + 2XvF + 4X,vF .

Conclusion. «"(A) = A<= D,(4"(A)) = D(A) 1 =1, 2, 3« There
exists integers X,, X, and X, such that
Xeaf = Xpaf + 2Xv§
Xaf = Xaf + 2XvF + 4X vy
Y = X;v¥.

Let X,, X,, X, be the least integral solution. Then (Z(Y) = X,v}
follows from Step 2)

S Tndex (#(A)) = 3, B(6) + 2(s) + 47:(8) + 61,(s)
=ZY) +2Z(Y) +4Z(Y) + 6.2(Y)
= Xaf + 2X ¥ + 4Xv¥ + 6 XvF

which is the minimal period of A.
If Ae # and v,,, = 1 we must use Lemma 3.3 instead of Lemma

3.4. Then we have always D,(4#v(A)) = D,(A). Hence, we need only
to modify Steps 4 and 5 as follows.

Step 4. By Lemma 3.3 we get &Z(Y) =Y. We must have
FUY) =Y = X,a} for an integer X,. In this case Z(Y) = X,v}.

Step 5. By Lemma 3.3 we get
BY) = ’z:; (2 + 21,(s) = 2 + 298(Y) = 2Y + 2X,75 .

We must have Z(Y) = 2Y + 2X,;vF = X,f for an integer X,. In
this case Z(Y) = X,vf.

Conclusion. A = "(A) « There exist integers X, and X, such
that X,af = Y and Xaf = 2Y + 2X,v¥. Suppose X,, X, is the least
solution. Then we get
-1 Y—1
§ Index (44°(4)) = 82=:) [(n + 8) + 21.(s) + 41,(s)]

=Y(n +3) +22(Y) + 42(Y)
= Y(n + 8) + 2X,vF + 4X,v

which is the minimal period.

4. The minimal periods. Now I will formulate the results
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from §3 for a general p and very roughly sketch the proof. As
before

wA)=k+p+1

A starts with 0 or a (p + 1)-block

A contains v, i-blocks for ¢ =1, ---,p + 1

A ends with a (p + 1)-block .

A€ # =

The blocks in A are determined with respeet to p. D,(A) (¢t =1, ---,
p + 1) is defined in Definition 3.1.

DEFINITION 4.1. Let Ae._# be given.
(a) Suppose 1< j=<p and D(A) =, -+, t,). We define 4;
in the following way:

If t=---=t, =1 and ¢,,,>1 we define
4,(¢,, ""tT,‘) = (4 — 1, ey by 1,t, "':t:‘)
where t; = --- =t, = «; .

Let af be the least integer such that
AH(D(A) = Dy(A) .
(b) Suppose D, (A) =, ---, tr,,) X (8, -+, 81,,,). We define

A,,, in the following way:
Ap+1(tly ) t?’p+1> X (31, Tty sTp_i.l) = (t;; Uty t;p+1y t;) X (32; Tty STp+19 sl)

where
Apry — 8, for 7=1

= .
t,— (s, +t) for i>1.

Let v}, be the least integer such that

A3H(D, 1 (A)) = D,u(A).

(¢) If 1£1= p, we define v} = v,-af/a;. Moreover, we define

— *
op, = ap+1"7p+1/’7p+1-

As in the previous section we can prove that v} (1 < ¢ £ p) and
at,, are integers.

THEOREM 4.2. Suppose Aec_ We associate p equations to A
in the following way:

(») ay-X, = a5 X, + 275.,X
-1 a3, X,, = G Xpw + 273X, + 4750 X0

) X = apaX, + 20X, + 4K + o+ 2p7ia X,
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If v, = 0, we replace equation (i) by X, =0. We let X, ---, X, be
the least integral solution of the equations.

Then X,,af., + S0 20-vF- X, is the minimal period of A with
respect to the shift register (X, «--, ,) — &y, - -, Tupy) Where

Tht1 = ¥ + (Ek + oo+ Ek+p>(x27 ) x'n> .

If v,=0fori=1,---,p, we observe that the minimal period
= X,y + 20 + 75X = @y, + 20 + U7y = (75/Vpe) (@ —
20 + Dpid) = (Vi Vpr)(@ + 0 + 1).

The existence of the minimal solution X, ---, X,,, is proved as
indicated in §3 in [2].

Proof. We only sketch the proof since it is only a generaliza-
tion of the case p = 2 which we treated in § 3.

First we suppose v, > 1.

We get

D,.,(v"(4) = D,,(A) — Y = X, v}, for an integer X, ., .

In this case £, (Y) = X, jat,and &, (V) =X, vi,. 1<
we get (f v; = 0)

D" (A)) = Dj(A) — Z(Y) = X;af for an integer X;.

In this case we have Z(Y) = X;v}.
Suppose X, ---, X,,, satisfy the equations. Put Y = X, v}
We prove by induction that

(4.1) F(Y)= Xaf when v;,#0 and 1=Zi=9p.
Suppose (4.1) is true for i =p,p — 1, ---, 5 + 1. Then we have

BLY) = ZBp(Y) + 285,(Y) + -+ + 20 + 1 — 3)Fp(Y)
= Xpnain + 275X + o 200 + 1 — 5 Xpn = af X .

Hence (4.1) is true for j=1, ..., p. Then we get +"(4) = A and
w(A) = 0*(A) where

t = ZBpu(Y)+22((Y)+ -+ +20p + 1).92,..(Y)
P+1
= p+1a2‘+1 + % 2'1:"\/2('X1 .
Moreover, it is easily seen that all Y such that «'(A) = A is obtained
in this way.

Finally, we suppose 7,,, = 1 and v, = 0 for at least one 7 < p + 1.
We only sketch the proof since the proof is analogous with the case
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Yo > 1. We get
Y(A) =A== F(Y)=X,-a} when v,#0 and 1=Zi=0p.

In the same way as in §3 (the case 7v,,, = 1) this is equivalent
to: X, -+, X,, Y satisfy the equations (1), ---, (p)’ given by

,{Xq-a;‘ —Yp+1l-q+ 32— Xar i v,#0

(@) t=gt1

X, =0 if v,=0.

Let X, - -+, X,, Y be the least solution of the equations (1)’,- - -, (p)".

Then Y is the least Y such that 4"(4) = A. We calculate the mini-
mal period of A in the following way

AZBn+p+D+2Zz7@}=ﬂn+p+b+2é%%ﬂm

r
=Yn+p+1) + ZZi-ﬂ/f-Xi.

The proof will be complete if we can prove the following claim:
Suppose X, ---, X,,, is the least solutions (1), ---, (p). Let

(0 if v,=0
Y=2X,, d X, =
P+1 an ¢ iXt——Y._l:: if v, #0.

e

Then X,, - - -, X'p, Y is the least solution of the equations (1), ---, (p)/,
and

P ~ p+1 :
Yn+p+1)+>2-X,-vF = X, ok, + > 20- X,vF .
=1 =1

Now we will prove this claim. Since v,,, = 7, =1, then a,,, =
a¥.,. We use the definition of a,,, and get

p+1
Xp+1a:+1 + 2 27/ * Xz * ,Y;k
=1

+1 P R
= Y<n +p+1— Ilezm-) + Z‘.Ziv;“(Xi + Y%—) +2(p + D7, Y
1= =1

1

I

P A
Yn+p+1)+ > 20-vF-X,.
=1

Next we prove that the following 3 equations are equivalent (we
use af-v,/vF = a,):

+1 .
X, = X, 0k, + ”z 2t — v X,

arX, + oY = Ya,,, + Z, 2t — iviX, + Y Z 20t — 1),

t=3+1 t=3+1



SYMMETRIC SHIFT REGISTERS, PART 2 223

A P . A
Xaf =Yp+1—-1)+ tZ 20t — )X, + Z
=i+1
where

»+1
Z = Y(—a,. a3 A~ D+ i— (0 1)) :

Z =0 follows from the definition of a,,, and «,. Hence, the proof
of the claim is complete.
Finally we will include an alternative way to determine af and ~}:

PROPOSITION 4.3. Let Ac #Z.
(@) Suppose 1 < j < p. We define the map p; in the following
way: If D{(A) = (&, -, tr;), then
0i(D(A) = (dyy -+, dr))
where
to+a;—t, for i=1

dz': .
by — & for +>1.

Then 7} 18 the cycle period of (di, ---,d;;), that is; v} is the least
integer such that

(dT;‘+1, Y de; dl, Tty dT;) = (dl, Sty dT:,') .
(b) Suppose Dp—H(A) = (tly Tty tT,H.l) X (81) Tty sTp+1)' Th/en we
define
7]p+1(Dp+1(A)) = (dy -+, drpﬂ) X (81, vy Srpﬂ)
where
d, = b+ Qp — (t7p+1 + s"p+1) =t for 1=1
' i — (8 + 82) Jor i>1.

Then 3. 1s the least cycle period of (dy, -+, dr,.)) X (8, *++, 87,,,)-
That is; k.. is the least integer such that

(dT;+1+1; Tty dTp_H_y dl’ ) dT;.(_l) X (87;+1+17 ) 87p+1’ Syt 37;+1)

= (dly ) dTp_H) X (31, Tty 871,+1) .

Proof. (a) By (3.10) we have that ~} is the least integer such
that D,(A) has the form

-D:I(A) = (E’u ”';til';, ;tl + a.;!:y Y t?‘j -+ a;‘, )
Part 1 Part 2
4.2) Itl + (r—Daj, -, 7 + (r — l)a;l!‘) and
Part »
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Moreover, this is equivalent to that p;(D;(4)) has the form

(OJ(D](A)> = (dly Tty dT;'y dl! Ty dT}; Ty dl, ) dT);) and
i ) L 3 !
(4.3) Part 1 Part 2 Part »
dl+---+d7’;:0(f.

We indicate how this is proved: Suppose (4.2) is satisfied, then
d1:t1+ai—“t7j:t1 +aj’“ (t;}+(7‘~ 1)a;k)
=t + af — b=t — Uy = d,*j“ , ete.

Suppose (4.3) is satisfied, then

+1 yhEL

t—ti)+t=Sd +t,=af +t, ete
1=2

v

*
)
t7j+1 4

=

Since (4.2) is equivalent to (4.3), (a) follows easily.

(b) We define p; for j = p + 1 as in (a). Since (3.14) is analo-
gous with (3.10) we get as in (a) that v}, is the least common cycle
period for p,..(D,.(A4)) and (s, -+, s;,,). This is equivalent with
that v¥,, is the least cycle period of 7,.,(D,..(4)).

5. The possible periods. By Theorem 4.2 the minimal periods
of Ae_# are completely determined by (vf, ---, v¥,) since af =
(v¥/v)a,. We define

PER (7, -+, 734)
= X, ok, +2XvF +4XvF + oo+ 20p + Dvin X,

where X, ---, X,,, is the least solution of the equations corresponding
to (v¥, -+, v#.) in Theorem 4.2. Moreover, we let

m:k+p+1—‘71~2'\/2”“' M _(p+1)7p+1-
THEOREM 5.1. (a) The possible periods of the elements in _#
are:
{PER (vF, -, v (vF, -+, 7% corresponds to an Ae #Z} .

(b) There exists Ae.#Z corresponding to (v, ---, vi.) if and
only if

v v
— (7’:1:"320'%1)) ;- . (7’:1:;20'}"1) a%d

v Vs

,YP+1

m- are integers.

Proof. (a) is obvious. We let p, ---, 0,y %, be as in Proposi-
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tion 4.3. By Lemma 3.2 we get easily

P41 P+l
Pr X Pz X =+ X p, X vp_FI{Z(l D{(A): Ae .,»//} = § e
where
«4/7: = {(dly Tty d?’i): dl > 07 dj Z 0 (.7 = 2; Y ’Yi) and
di+ -+ +dy,=a) for 1=Z1=p and
‘/1/;4»1 = {(dly ) d7p+1) X (31, Ty 87’1,7“): dz = 07 8 = 0’
di+ -+ d,,, = —mand s, + - + 5, =m)
where m =k +p+1—v —2% — -+ — ® + D7y

By Proposition 4.3 we get {the possible (v, ---, v#,,)} is equal to
the set

p)?{the cycle periods of elements in ../7} .
i=1

Finally, we get easily that {the possible cycle periods of elements
in _#7} is equal to the set

.
«{7;": li— and a,- =

are integers}
7 Vs

for 1 <4 < p. Moreover, we get

{the possible cycle periods of elements in ._/;,,}

is equal to the set

Yot Vit Vi .
e SIEELE and m -2 are integers
Vp+1 Vo1 Vpi1

and the proof is complete.

6. The number of cycles. In this section we will count the
number of cycles & in

A ={Ae{0,1}*: 31 such that 0°(4) e _~#}

corresponding to a given (v¥, - -+, v¥,). That means: If Aez n _#
then (v, -+, v¥.,) corresponds to A. We let £ denote “the number
of elements in”. Moreover, we let _4; (i=1,---,p + 1) be as in
§5. That is;

A= {(dl, ey, d/”i):dl > 0’ da’ = 0 <j = 2’ ”"A/i) and
di+ - +d,=a} for 1=i=p and
N = {(dy, -+, d"p-H) X (8, =+, Srp+1): d; =0, s =0,
d, + - +d7‘p+1:ap+1”-m and s, + - —i—S-pr:’in}-
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THEOREM 6.1. Suppose X, -+, X,., is the least solution of the
equations corresponding to (v¥, ---, v¥.) in Theorem 4.2. Then the
number of cycles in _# corresponding to (v¥, <+, Vi) 18

Pp+1

g wi/Xp+17§+1
where
W,y = #{the elements in _1,,, with cycle period 3.}
and for L=< 759
5
wJ' = Z t‘Wj,t
t=1
where
Wy,e = ${(dy, - -+, dr;) € 475 with cycle period v} and d, =t} .
Proof. Suppose Ae._# corresponds to (v, .-+, v5.). In the
proof of Theorem 4.2 we prove that ¥ = X . v}, is the least integer
such that "(4) = A. Hence, there are X,,,7}., elements in _#Z on

the same cycle as A. Hence, the proof will be complete if we can
prove

#{Ae _«: A corresponds to (v§, -+, 7h)} = Zi":[i w, .

We get by Lemma 3.2 that
#{Ae _#: A corresponds to (vf, ---, v¥.)}
= ﬁl#{Di(A): D,(A) corresponds to v¥ and Ae_#Z}.

Hence, the proof will be complete if we can prove 1 =i p+1)
(6.1) #{D,(A): D,(A) corresponds to v} and Ae #} = w, .

First we will prove that (6.1) is true for ¢ = p + 1. It is sufficient
to prove that the map

Dot (Dpin(A): Ae A} — N7

defined in Proposition 4.3 is bijective: Let (d, ---,d;,,) X (s, ==,
8r,.1) € A4 Then there exists one and only one D,,,(4) such that

77P+I(DP+I(A)) = (dh Sty dTp.H) X (sly Tty srp+1) .

This D,,(A) =@, -+, t,,) X (8, -, 81,,) 18 given by ¢, =d,, &, =
d, + 4 + 8, t,=d; + L, + s, ete.
Next we will prove (6.1) in the case 1 < p + 1, and we do the
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following observation (1t =1, ---, p):

To each (d,, ---, d;,) € _#; there exists exactly d, elements
D = D,(A) such that o,(D) = (d,, ---, d;,) where p, is as in
Proposition 4.3.

These elements are
<s,s+d2,s+d2+d3, ---,s+idj) where s =1, ---,d, .
j=2

(6.1) follows from this observation in the case ¢ < p + 1.
The next theorem gives us a way of calculating w,,, and w;,,.
THEOREM 6.2. (a) We let o(r, s, t) = the number of elements in
&Er,st)={d, ---,d)d,; =20, d,=r,d,+ --- +d, =1t and
(dy, -+, d,) has trivial period s} .
Then o(r, s, t) can be calculated inductively by the following formula:
t+s—r—2
0'(”"’3,15):( ° >“2{0‘<7"’§f"t7 :
s—2
i, are integers} .
s
() s the binomial coefficient.
(b) We let a(s, t) = the number of elements in

g(syt) ={(d1; "ty ds>:di20, d1+ "‘ds: t a’l’bd
d,, «--, d,) has trivial period s} .

Then o(s,t) can be calculated inductively by the following formula:
t —1
o(s, t) = < T ) -3 {0(%, —%)f,— and i, are integews} .
s—1 " s/ s s
(¢) The number of elements in

a(s’t)’:{(dl;“"ds):digo and d1+ e +ds:t}

. <s +t— 1)
8 .
s—1
@ w,,=0@,vHhal) for1<i=<pand 1=t =< af.
(e) Let m* = m-v¥./Yps. Then we have
Wopr = P10qy + o @y — 1177

where
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m* + vk, -1
P = 0(Vpsry Qs — M™) and g, = < ?

Vo — 1
¥, — m* + v, — 1>

7, =0V, m*) and g, = < .
Tp+1 — 1

Proof. (a)

{d, ---,d):d;=0,d,=rand d, + --- +d, =t}
={d,, ---,d):d;=z0and d, + --- +d, =t — 7}
= the number of ways to divide (¢ — ») 1’s into

(s — 1) groups
= the number of ways to put s — 2 0’s into
(t + s — r — 2) positions

_ <t +s—7r — 2)

B s — 2 )
We subtract those (d, ---, d,) with trivial period less than s. For
each s’ such that s/s’ and ¢/s’ are integers, (d,, ---,d,) —(d,, - -+, dy.)
is a bijective correspondence between

{(dh "',ds):oédi’ dlzlry d1+ e +ds:tand

d,, ---,d,) has trivial period s/s’}
and
&(r, sls', ts) .

By using these correspondences (a) follows.
(b) and (c) are proved in the same way.
(d) By definition w,, is the number of elements in the set

t% = {(dly ) di’z)eeﬁ/z‘: dl =1 and (dlr Tt d?’i)
has cycle period v}} .
The map from .o7 into &, v}, af) given by
(dly ) dTl) - (dly Tty dT:)

is bijective, and (d) follows.
(e) By definition w,,, is the number of elements in the set

& ={(dy, ---, dr, ) X (81, -+, 81,,,) € A5 Which
has cyecle period v}..}.
We define
S ={(dy, -, dr, ) X (8, 00, 8,01 d: 20, 8,20,
i+ - +di,, =, — m*, 8+ -0+ 85 = m™ and
(dy, ++-, dry,) or (s, ---, 87 ) has eycle period 7j..} .
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The map from .94 into .&4 given by
(dly Tty dTp_H) X (81; Y sTp+1) I (dly ) d)’;,_H) X (31, Tt ST;+1)
is bijective. We observe that
4 =10+ TG — Ty
where
7 = $B (Vi Apr — M) and q = &, m*)
r, = #g(’ﬁ;ﬂy 'm’*) and q. = 67('7:4-1, 0[;‘“ - m*)

and (e) follows.

7. The reduction. We will reduce the cycle structure problem
to the set studied in the §§ 3-6. First we need two lemmas. C< D
means C contained in D and C= D. If D=a, --a, we define
(teD=r=t=s) and f(t) = fla, - - - a,).

We need more precise notation. If we are working with 4 we

write
a,(A), v,(A) and m, instead of «,, v, and m .
LemMA 7.1. Suppose A =0,B,C0,B,C,---0,, Bswhere B, is a block
on level 1. Moreover, we suppose f(C;) = —type (B,) and 0> fi(t) =

—type (B;) for teC,.
Then we have

p+1
n + type (By) :<Z;2i7,;> +my + (G A+ e ),

and if type (B)Ztype (B) for i =1, -+, f then
atype(Bf)(A) = /mA;wil 4 e 4+ if =0.
P’I’OOf. We let Cf = Ocype(lzf) and consider A* = ACf = ()ilBlG'1 e

0,,B;C;.
As in the proof of Lemma 4.13 in [2] we get

the length of B, = f(B,) + >, {2-type (B*): B* < B},
the length of C; = type (B;,) + >.{2-type (B*): B* < C;}.
If type (B,) = » + 1, we therefore have

the length of B,C, = [f(B,) — (p + 1)]
+ > {2-type (B*): B* < B,C}} .
Otherwise,

the length of B,C, = 3 {2-type (B*): B* < B,G;} .
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Hence,

the length of A* =3 {f(B) — (p + 1): type (B,) = p + 1}
+ 3. {2-type (B*): B* a block} + (2, + --- + i)

41 . . .
=mA+<Z 27/'77,) +(/Ll+ v ‘*‘@f) .
i=1
The equivalence follows by the definition of a5, (4). ]

We write
(7.1) Orp = Opprosmyyy -

LEMMA 7.2. We suppose the block structure of A€{0, 1}* is deter-
mined with respect to p. Moreover, we suppose w(A) =k + » + 1.
Then we have

([Vp1:(A) #= 0 and o, ,(A) = m,] or
[z = sup {i: 7,(4) = 0} < p + 1 and a,(A) = 0])

— 0] (A) = 0] ,(A) for P >p and every j.

Proof. We suppose first v,,,(4) = 0. By Lemma 4.4 in [2] there
exists ¢ such that A = 6] ,(A) satisfies v,(4) = 7.,(4), a;(4) = a,(4),
m, = mjz, A ends with a (p + 1)-block, A starts with 0 or a (p + 1)-
block and w(4A) =k + p + 1.

Moreover, A has the form

A =0,BC0,BC, -0, B; asin Lemma 7.1.

If f=1, then A =0,B,.)

We suppose 6i,(A) =0i,(A) for " >p. If 4, %0, then
Wl p1(A) =k + » + 2+ w@,,(4). Hence, i, =0. By Lemma 5.7
in [2] we have

w(;,,(A) =k + p+1 where s=length of BC, .

In the same way we prove 4, = --+ =1;,=0. By Lemma 7.1
a,,,(4) = mz. Hence, a,,,(4) = m,. _

Next we suppose «,,,(4) = m,. Hence, a,,,(A) = m;. By Lemma
7.1 we have 4, + --- + i, = 0. Hence, type(B,) = p + 1. Moreover.
let j=inf{i > 1l:type(B,) =» +1}. Put C"="CB.C, - B;_,C;_
and B,”="B;. By continuing in this way we can suppose type (B,) = - - -
=type (B;) = p + 1. Hence, by Lemma 5.6(c) in [2] we get 6] ,(A) =
0i,,(A) for p' > p.

Finally we treat the case z = sup, v,(4) < p + 1. By Lemma 5.6
(a) in [2] we have 6] ,(A) =0,,,(A) where b, =p+1~2 and p,=2—1.
By Lemma 4.4 in [2] there exists q such that A = 8] ,(A) satisfies:
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74(A) = 7(4), a,(A) = a,(4), m, = m; = 0, A ends with a z-block,
A starts with 0 or a z-block and w(A) =%k + p + 1. Moreover, A
has the form

A =0,BC0,BC,--- 0, B; as in Lemma 7.1.
We suppose 6} ,(A) = 6] ,,(A) for p" > p. Asin the case v,,,(4) # 0

we prove i, = --- =4, = 0. By Lemma 7.1 a,(4) = m, = 0.

Next we suppose a,(4) =0. Hence, a,(4) = m; =0. By Lem-
ma 7.1 we have 4, + --- +14,=0. As before we can suppose
type (B) = --- = type (By) = 2. Hence, by Lemma 5.6 (c) we get

im(A) = 0i,p’(z) for " > p. O

Previously in this paper we have not mentioned the possible
values of (v, :+, 7,.;). However, by Lemma 4.1 in [2] we have
the following result (k, p and n are given)

(Y1, ***, Vpsu) 18 a possible vector if and only if

+1
Im = 0 such that m+p§‘,i-7i=k+p+1
=1
and

P+1
m+2- i, =n+p+1
i=1
(m corresponds to m defined previously).

The results obtained in this paper give a complete description of
the cycle structure of _# where

(7.2) _# = the union of all _# defined in (3.2) corresponding to
’ the possible vectors (v, - -, 7,4, satisfying 7,., # 0.

Now we start the reduction process. For .o c {0, 1}*, we define
the closure of .&7 with respect to 6 by

7 = {#'(A): Ae.}.
We let ¢ = 6,, and we define
F ={Ak=wlA)=wA)=k+p+1Vi}.

If A¢ &, then 6'(A) = C{(A) Vi, where Cla, -+-,a,) = ay -~ a,a, is
the pure cycling register. Hence, it is enough to study .&#. We
define

26, 5) ={Ae F:k+i=infw@(4) < w) =k + j}.

Then we have obviously that
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F = g 23, )

is a disjoint union. Hence, it is sufficient to determine the cycle
structure of the sets &(4, 7). First we need an observation:

Observation 7.3. Suppose 6 =6,, wA) =k+p+1 and 0
P’ < p. Then we have

h/p'_H 7& 0 and
Vprgz = 200 = Vo = 0= iIslfw(ﬁs(A)) =k+p—9".

Proof. This follows directly from the definition of the blocks,
or for example from Lemma 5.1 in [2].

We also need very precise notation. If we are working with p
we write af, v and m?® instead of «;, v, and m.

Case 1. 2(0,p + 1) = _# where _# is as in (7.2).

Proof. Let Ae £2(0, p+1). By Observation 7.3 we have v,,,#0.
By Lemma 4.4 in [2] there exists s such that 6°(4)e _# and the
claim follows.

Case 2. If 0Zi<j<p+1, we can determine (4, 7) in the
following way: Let ¥ =k + 4, p =7 —1—1 and let _#Z be as in
(7.2) with respect to % and p’. Then

TG, ={Ac Ay, =0 if i>0
TG, ) ={Ade #:a,, =m} if i=0

where a,,, and m are determined with respect to »p’. Moreover,
the closure of (i, j) with respect to 6., and 6, , respectively are
equal.

Proof. Let " =37 —1 and Ae =i, j). By Lemma 7.2 there

are two possibilities:

(1) If 420, %0, then aZ’,, = m?".

(2) If v»" %0 and v, = --- =75, =0, then a?” = 0.

We suppose first that 4 > 0. By Observation 7.3 we are in Case
2 with z = § — 7 since

E+p"+1—-—G—D=k+i2w@A)k+9" +1.

Il

Hence, we have a?” =a?, =0and v =2/, #0. Since, v?/,=---
voa =0 we have
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o, =abl, =0 and YE =Y =0,

By Lemma 4.4 in [2] there exists s such that 6; ,(A)e _# where
# 1is defined as in (7.2) with respect to &' and p'.

Next we suppose 7 =0. Then we are in Case 1 and p” = 2'.
Hence, we have a?, = m* and v%,, #+ 0. By Lemma 4.4 in [2] there
exists s such that 6} ,(4) e _# where _# is defined as in (7.2) with
respect to k' and p’'.

Case 3. If 0<i<j=p-+1, then
20,7 ={Ac #:m = 0}

where _# and m is defined with respect to ¥’ =% + 7 and p' = p — 7.
Moreover, the closure of =2 (1, j) with respect to 6, , and 6, ,, respec-
tively are equal.

Proof. Let Ae <2(i, j). By Observation 7.3 we have
(") Ve =" =70 =0.

Hence, m? = 0. Namely, if m® = 0, then (*) would not be true.
Moreover, by Lemma 5.6 in [2] we have

0;.,(4) = 6; (A) Vs

and there exists s such that 6; ,(4)e_# where _# is defined with
respect to k' and p’. Hence the proof of Case 3 is complete.

Case 4. If i = j, then £2(1, i) = @ except in the following case:
Ifk+p+1=mn,then FpPp+1,p+1) ={A=1}

The proof of Case 4 is obvious.

Finally we will mention how to determine the minimal period
for Ae{0, 1}* with respect to 4,, in the following 4 steps:

1. If wA)elk, ---,k-+p-+1}, then 6,,A) =¢&A) where
&a, - a,) =(a,--- a,a) and the problem is trivial. We therefore
suppose w(A)elk, ---, k + p + 1}.

2. We calculate w(4), w(8,,,(4)), ---, w3 ,(A)) and choose j such
that A* = 6] (A) satisfies

w(4A*) = lgggnw(ﬂ?;,p(A» = sup w(0;,,(A4)) .

3. Put p' = w(A*) —k — 1. Then we can use §,, instead of
6., (Lemma 5.6 (b) in [2]). We have w(4A*) =k + p" + 1.

4. Next we determine the block structure of A* with respect
to p’. We put j =sup{t:v7(4) =0}, and &’ = p"—jand »"”" =5 — 1.
Then we can use 6, , instead of 0,, (Lemma 5.6 (a) in [2]). More-
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over, we have w(A*) =k" + p” + 1 and 75/, (A*) = 0. Hence, we
can use Theorem 4.2.
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