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This is a study of (spaces of) [weakly] compact linear
operators with ranges in Fréchet spaces. Characterizations
of such operators, extensions and refinements of Schauder’s
and Gantmaher’s Theorems, and results on the approximation
property of the space K(X, Y) of compact linear operators
are given, together with applications to [weakly] compact
operators on function spaces with the strict topology of R. C.
Buck. Finally, a new tensor product representation for
K*X, Y), X and Y Banach, is established, and compact sets
of compact operators on Banach spaces are characterized.
The main tools are extensions of Grothendieck’s DF techni-
ques.

Introduction. This paper is devoted to a study of (spaces of)
compact and weakly compact linear operators with ranges in Fréchet
spaces. The class of domain spaces is specified to be a class of
generalized DF spaces (gDF), which, besides its classical ancestors
(and thus all normed spaces), includes the duals of Fréchet spaces
under various of the common polar topologies, as well as all function
spaces with a strict-like topology as first introduced on spaces of
bounded continuous and of bounded holomorphie functions by R. C.
Buck [4].

Among the results are an extension and refinement of Schauder’s
and Gantmaher’s Theorems on the [weak] compactness of a linear
operator and its adjoint (§3, Theorems 3.1 and 3.2), a new tensor
product representation for the space K,(X, Y) of compact operators
and its dual K*(X, Y), X and Y Banach (§3, Theorem 3.4), or, more
generally, X ¢DF and Y Fréchet (§3, Theorem 3.3), characterizations
of operator norm compact sets of compact operators (§4), and a
proof of the approximation property for spaces of compact operators
(§1, Theorem 1.14).

The principal tools are extensions of Grothendieck’s classical DF
space techniques to the wider class of gDF spaces (generalized DF):
A locally convex space X is gDF, whenever (1) its strong dual is
Fréchet, and (2) its topology is localizable on the bounded sets, i.e.
linear operators into other locally convex spaces are continuous as
soon as their restrictions to the bounded sets are. Generally speaking,
“all” DF properties carry over to gDF spaces. The primary object
of §1 is to verify this for two of the most fruitful DF properties,
for which it has been an open problem. Extending the respective
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DF results of Grothendieck [16, I. 1, Thm. 2, p. 64] and [18, I, 1.3,
Prop. 5, p. 43], it is shown that (a) hypocontinuity implies continuity
for bilinear forms on the product of two gDF spaces, and that (b)
gDF spaces solve Grothendieck’s “Probléme des Topologies” [18, I,
1.1, p. 33]. Theorems 1.4 and 1.9 in §1 contain the precise (partly
more general) statements. These two results are the basic tools for
this paper. Also, they answer the corresponding problem of [26,
Probléme 2] in the affirmative.

Notation and terminology. As far as duality theory for locally
convex spaces is concerned, the terminology is that of J. Horvath’s
book [23] with the following exceptions: For (X, z) a locally convex
space (abbreviated by “les”), X, X,. and X, denote the topological
dual space X’ of (X, ) with the topology of uniform convergence on
the compact, the weakly compact and the bounded disks in (X, 7),
respectively. (A disk is a convex circled set.) Accordingly, X, and
X,. denote the original space X, endowed with the topology of
uniform convergence on the compact and the weakly = (X', X")-
compact disks in X;, respectively. In particular, the wec-topology on
X is just the restriction onto X of the Mackey topology z(X", X')
of X" with respect to X’. As usual [23] the Mackey topology of
(X, 7) itself (uniform convergence on the weak* = ¢(X’, X)-compact
disks in X') is denoted by z(X, X').

The convex circled hull of a subset A of a linear space X will
be denoted by I"A.

The space of continuous linear operators from an les X into an
les Y is denoted by L(X, Y), the space of continuous bilinear forms
from X xY into K by B(X, Y).

An operator ue L(X, Y), X and Y les, is called [weakly] compact,
if there exists a zero neighbourhood U in X such that «(U) is [weakly]
relatively compact in Y.

The space of compact linear operators from an les X into an
les Y is denoted by K(X, Y). L(X,Y) and K(X,Y) will always be
assumed to be endowed with the topology of uniform convergence
on the bounded subsets of X (=operator norm in case X and Y are
normed), as being indicated by L,(X, Y) and K,(X, Y).

1. Extensions of Grothendieck’s DF techniques. This section
is devoted to a discussion of the extension of the DF techniques to
the following wider class of locally convex spaces:

DEFINITION 1.1. [24, 25], [32, 34]: An les (X, z) is called gDF
(gemeralized DF space), if (1) its strong dual X; is a Fréchet space,
and (2) its topology is localizable on the bounded sets, i.e. linear



[WEAKLY] COMPACT OPERATORS AND DF SPACES 421

operators into other locally convex spaces are continuous as soon as
their restrictions to the bounded sets are.

Equivalently, (X, r) is gDF, whenever it has a fundamental
sequence (B,),.y of bounded sets (every B bounded in (X, 7) is absorbed
by some B,), and z is the finest locally convex topology on X that
agrees with - on the B,’s, ne N.

EXAMPLES.

1. All DF spaces [16, Déf. 1, p. 63] are gDF. In particular,
strong duals of metrizable les.

More generally:

2. Let X be a metrizable les. Then its strong dual (uniform
convergence on the bounded subsets of X), its c¢-dual X (uniform
convergence on the precompact subsets of X), and in case X is
Fréchet, also its Mackey dual X, (uniform convergence on the
weakly compact disks in X) are gDF [32, 34].

3. Accordingly, whenever X is an les whose strong dual X; is
Fréchet, then X, (uniform convergence on the compact subsets of X3)
and X,, (uniform convergence on the weakly = ¢(X’, X"')-compact
subsets of X]) are gDF, see Proposition 2.6 in §2.

4. R. C. Buck’s strict topology B on C,(S) [4], S locally compact
Hausdorff, and its various extensions to (i) C,(T), T completely
regular [11, 40], (ii) Banach modules over Banach algebras [42], and
(i1i) the double centralizer algebra of a C*-algebra [5], all these
“strict” spaces, in general, are far from being DF but, again, turn
out to be gDF. (Consequences of this observation for such function
spaces have been the point of discussion of the paper [33]; see also
the survey [34].)

Further examples in this context are F. D. Sentilles’ [41] strict
topology B8 on L* in his L>-L*-duality, and the ‘“universal strongly
countably additive” topology 7 on the space (%) (of simple func-
tions on a ring <Z of subsets of a set S) of W. H. Graves [13] in
his representation of strongly countably additive vector measures
(on .2#) as continuous linear operators (on (7 (#), 7)).

Applications in the context of strict topologies will eventually
be pointed out in this paper.

These examples show that gDF spaces considerably enlarge the
class of DF spaces, and include many more spaces of analysis. The
interesting fact to note now, and the important one for our dis-
cussion, is that, nevertheless, they still have all the nice DF prop-
erties.

Notes 1.2. (1) The gDF spaces as defined here have first been
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introduced by K. Noureddine [24, 25] as “espaces D,”; the semi-
Montel ones among them appear under the name “dF” in K. Brauner
[3], and under the name “DCF” in Hollstein [21], who also considered
non-locally convex analogues [20].

(2) Noureddine [24, 25] already showed that gDF spaces share
many properties with the DF spaces. For later use, the following
are noted here:

(a) [24, Cor. 1 and 2]: If A is a gDF subspace of an les X,
then every bounded subset of the closure of A in X 1is contained in
the closure of a bounded subset of A. In particular, a gDF space
is complete if amd only if it is quasi-complete (i.e. closed bounded
sets are complete).

An extension of these results to les with a fundamental sequence
of bounded sets and the property that strong nullsequences in their
dual are equicontinuous, has been given in [33, Cor. 2.4].

(b) [25, Thm. 3.1.7]: (cne) “countable neighbourhood condition’:
For every sequence (U,),.y 0f zero meighbourhoods in a gDF space,
there exists a sequence (&,),.y 0f positive real numbers such that
U=n{a,U,|neN} again is a zero netghbourhood.

(¢) [25, Thm. 1.1.7]: Relatively compact subsets of the strong
dual of a gDF space are equicontinuous.

In particular, gDF spaces are sequentially evaluable:

DEFINITION [44]: An les X is called sequentially evaluable if
every strong nullsequence in its dual is equicontinuous.

(3) Further DF properties have been carried over to gDF spaces
in [10] and [33].

(d) [10,33]: gDF spaces are quasinormable (see Definition 1.3
below).

It seems worth noticing at this point that, for the special case
of the gDF space X, for X Fréchet (Examples 2), property (d)
directly translates into the following result:

. LEMMA. For every weakly compact disk B in a Fréchet space
(Y, p), there exists another such, C say, with the property that Bc C
and that the norm q, generated by C on Y, = span(C) induces on B
the same topology as p. In particular, B is a weakly compact disk
in (the Banach space) (Y, qo).
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The compact analogue of this result is a well known and widely
used consequence of the Banach-Dieudonné Theorem. To my knowl-
edge, the above weakly compact version is not to be found explicitly
anywhere in the literature, whereas the existence of a bounded C
with the indicated properties [18, I, 4.1, Lemme 10, p. 105] is very
well being used.

(e) [33]. A gDF space, or, more generally, a sequentially evalu-
able les with o fundamental sequence of bounded sets, is muclear, if
and only if its strong dual is nuclear.

(4) Two of the most important and fruitful DF properties
remained open for gDF spaces. For DF spaces, Grothendieck had
shown:

(f) [16, I, Thm. 2, p. 64]: Equihypocontinuous sets of bilinear
mappings on the (cartesian) product of two DF spaces are equicomn-
tinuous.

(g) [18,1, 1.3, Prop. 5, p. 43]. “Probléme des Topologies”: For
two DF spaces X and Y, their projective tensor product X Q.Y and
its completion again are DF. On the space B(X, Y) of continuous
bilinear forms on X XY, the topology of bibounded convergence is
equal to the stromg topology of the dual of X @,,Y, i.e., every bounded
subset of X .Y is contained in the closed absolutely conmvex hull of
a set AR B, A bounded in X, B bounded in Y.

Noureddine [26, Thms. 2 and 3] proved (g) for semi-Montel gDF
spaces and left the general case as a problem [26, Probléme 2, p. 103].
Satz 2.1 of [20] yields (f) for gDF spaces. The nonlocally convex
results of [20] include the second statement of (g) for gDF spaces,
whereas it is not evident to me, whether this also extends to the
first one.

Proposition (f) will now be proved for a much wider class than
the gDF spaces [32, II. 4, Satz 4.11, and IV. 2, Satz 2.1], and pro-
position (g) for gDF spaces [32, II. 4, Satz 4.8 and Satz 4.9] will
then follow easily.

As a final result, it is now settled, that all important DF
properties, except the one of being countably evaluable, remain valid
for gDF spaces. It is for this reason that I chose (in [32, 34]) to
change the original terminology of Noureddine and to let their close
relationship with their ancestors show through this different name.

Recall the following notions:

DErFINITION 1.3.
1. An les X is called quasinormable [16, III. 1, Def. 4, p. 106],
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whenever, for every equicontinuous subset H of the dual of X, there
exists a zero neighbourhood U in X such that, on H, the strong
topology and the topology of uniform convergence on U coincide.

Equivalently, X is quasinormable, whenever, for every zero
neighbourhood U, there exists another such, V say, with the property
that, for every ¢ > 0, there exists a bounded subset B, of X such
that VceU + B..

Also recall, that a Schwartz space exactly is a quasinormable
les whose bounded sets are precompact.

2. Given an les (X, ) with an increasing sequence A = (A,),cn
of disks, 7 is said to be localizable on the A,’s, whenever 7 is the
finest lc topology on X which agrees with = on the A,’s.

In case the union of the A,’s spans X, and A, + A, CA4,., a
base of zero neighbourhoods for the finest le topology on X, agreeing
with 7 on the A,’s is formed by the absolutely convex hulls of sets
of the form U{U,N A,|neN}, (U,..xr & sequence of r-zero neigh-
bourhoods [12, Prop. 1].

3. Given three les X, Y and Z, a set H of bilinear maps from
X XY into Z is called equihypocontinuous, whenever, for every B
bounded in X, the set H(B, -) is an equicontinuous subset of L(Y, Z),
and the set H(-, C) is an equicontinuous subset of L(X, Z) for every
C bounded in Y.

THEOREM 1.4.

(1) A set of bilinear maps from the product X XY of two gDF
spaces X and Y into an les Z is equicontinuous, if and only if it
18 equihypocontinuous. More generally, the following statement holds:

(2) Let X be a quasinormable les and (Y, p) an les. Whenever
either

(i) Y contains an absorbing disk B (span(B) =Y) such that o
18 localizable on B, or

(ii) Y contains an increasing sequence (B,),.y of disks such
that p s localizable on the B,’s, and X fulfills condition (cnc) of
proposition (b) of Notes 1.2 above, or

(iii) (Y, p) has a fundamental sequence (B,),.n of bounded sets
and fulfills (enc), and X is DF, then a set of bilimear maps from
X XY anto an les Z, which is equihypocontinuous with respect to
the bounded subsets of X and the set B (resp. the B,’s) im Y, is
equicontinuous.

Notes. (1) Proposition (iii) is to be found in [16, I. 1, Thm. 2,
p. 64, and Rem. 2, p. 66].

(2) Proposition (i) seems to be the first result in the non-
metrizable context that dispenses completely with the assumption of



[WEAKLY] COMPACT OPERATORS AND DF SPACES 425

a fundamental sequence of bounded sets for one of the factors. It
includes the following particular cases:

COROLLARY 1.5. Let X be a quasinormable les. Then every
equihypocontinuous set of bilinear maps from X XY into an les Z
18 equicontinuous, whenever.

(@) Y is any of the “strict” spaces listed among the examples
at the beginning of this sectiom, or

(b) for a Banach space Z, Y is any of the spaces Z,, Z,,., Z,, Z.,..

A particular direct consequence of the above results is the
following surprising improvement of Theorem 4.12 of [41] (see this
paper for terminology and details).

THEOREM 1.6. Multiplication is B-jointly continuous on L=(.7)
whenever B is Hausdorf.

This result, in turn, yields immediate proofs of Prop. 8.7 and
Thm. 8.8 of [41] on the “Radon-Nikodym-map” P;, for

de Ll Py L>(.7)—— LN7), fr+——f-9,

where, for ge L(.%7), f-9(9): = 9(f-g). Since ¥ € L'(.%) is S-con-
tinuous, there exists a B-zero neighbourhood V in L*(.%”) on which
9 is bounded by one in absolute value. g-continuity of multiplication
now asserts the existence of a B-zero neighbourhood U in L*(.%)
such that U-Uc V. In terms of P; this yields P;(U)c U°’. In par-
ticular, P; is 8-|| ||,-continuous. In case the dual of (L), || |
is equal to L™(.%7) (consult [41]), it even is weakly compact from
(L=(.57), B) into (LX), || l.).

(3) A particularly striking application of Theorem 1.4 to sets
of [weakly] compact operators is to be found in §2, see Proposition
2.1 and its proof.

(4) Note that, besides all gDF spaces, the class of spaces that
fulfill the assumptions of propositions (2) (i) and (ii) of Theorem 1.4
on X, contains all subspaces of Schwartz gDF spaces. This is worth
mentioning, for, in general, the gDF property is not inherited by
linear subspaces. Note as well that the class of Y’s as specified in
(2) (iii) is closed under the formation of linear subspaces.

Proof of Theorem 1.4. We shall prove the following more tech-
nical result which, much like Theorem 1.4 itself, provides remarkable
consequences for sets of [weakly] compact operators from gDF spaces
into Fréchet spaces; see Theorem 2.2 and the Note following the
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proof of this theorem in §2.

PRrOPOSITION 1.7. Let (X, ) be a quasinormable les with property
(ene), (Y, o) an les with an increasing sequence S8 = (B,),.n of disks
whose union spans Y. Then a set H of bilinear maps from X XY
into an les Z is equicontinuous from (X, 7) X (Y, 0) into Z, whenever
it 18 B X B-equihypocontinuous. (Here, 1 denotes the finest lc
topology on Y agreeing with o on the B,’s, and <z, denotes the class
of all bounded subsets of (X, z).)

Proof. It suffices to give a proof for the case Z = K, see [16,
I. 1, Lemme 3, p. 64]. Also, considering 2"B, instead of B,, n€ N,
one can assume that B, + B, C B,,;, n € N, for 7 is not being changed
by this manipulation.

1. For every me N, there exists a zero neighbourhood U, in
(X, 7) such that |H(U,, B,)| <1 (equihypocontinuity of H).

2. For every meN, there exists a zero neighbourhood U, in
(X, ) with the property that, for every o > 0, there exists a bounded
subset M of (X, t) such that U,caU, + M? (quasinormability of
X).

3. There exists a sequence (a,),.y of positive reals such that
U= n{a,U,|ne N} is a zero neighbourhood in X ((enc) for X).

4. For every me N, there exists a zero neighbourhood V, in
(Y, o) such that |H(MDZ“-1, V.| <1 (equihypocontinuity of H again).

It follows that H(U, Up.~v(B. N ax'V,)c H(U, + a,M,
Unen (BN ay'V,)) for all ne N. Hence, by 1. and 4., we have: !

5. |H(U, U{B,Na,'V,|meN})| = 2.

The set V=ITU{B,Na,V,|meN} is an p-zero neighbourhood
in Y (see Definition 1.3 above), and, by 5., we conclude that
|H(U, V)| £ 2, which completes the proof.

Projective tensor products of gDF spaces are next.

PropOSITION 1.8. Let X and Y be gDF spaces with respective
Sfundamental sequences (A,),.x and (B,),.~ 0f bounded sets, all disks,
and A, + A,CcA,,, and B, + B,C B,,,. Then the projective tensor
product topology = on XX®Y s localizable on the sets C, =
I'A,&® B,), neN.

A variety of consequences follows:

THEOREM 1.9. (“Probléme des Topologies” for gDF spaces); Let
X and Y be gDF spaces with respective fundamental sequences
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(A)wen and (B.),cy of bounded sets. Then X@®.Y and X@.Y are
gDF spaces as well, with fundamental sequences (T'A, X B,).cy
(closure in the respective space) of bounded sets. In particular, the
topology of bibounded convergence (umiform convergence on A X B, A
bounded in X, B bounded in Y) on the space B(X, Y) of continuous
bilinear forms om X XY is equal to the strong topology on B(X, Y)

as the dual of X@®.Y and of X@.Y.

Proof. Combine Proposition 1.8 and proposition (a) on gDF spaces
in Notes 1.2 above with the fact [30, Thm. 4] that, whenever an lc
topology is localizable on an inecreasing sequence C, of bounded disks
whose union spans the whole space, its bounded sets are exactly
those absorbed by the closures of the C,.’s.

COROLLARY 1.10. For gDF spaces X and Y with respective
Sfundamental sequences (A,).en and (B,),.ny of bounded sets, a set H

of linear mappings X @.Y (resp. from X @IY) into an les Z 1is
equicontinuous, if and only 1f H|I'A,Q B, (resp. H|'A, R B,) s
equicontinuous (at 0) for all ne N.

COROLLARY 1.11. For X and Y gDF spaces, every precompact
subset of By(X, Y) is equicontinuous.

(For semi-Montel gDF spaces, this is Lemme 2 in §4 of [26]).

Proof of Corollary 1.11. Combine Theorem 1.9 with property (c)
of gDF spaces in Notes 1.2 above.

COROLLARY 1.12. Let X and Y be gDF spaces.
(1) Whenever both X and Y are Schwartz les, then X Q.Y is

Schwartz gDF, and X ®RY 1s semi-Montel Schwartz gDF.
(ii) Whenever X 1s Schwartz and Y is semi-reflexive, then

X @,Y 1s semi-reflexive gDF.

(For semi-Montel DF spaces, compare [18, I, 1.3, Cor. 2, p. 45];
at this time it was not yet known that DF spaces are quasinormable.)

THEOREM 1.13. Whenever X and Y are Schwartz gDF spaces

with the approximation property (a.p.), then the space X @nY has
the approximation property as well.

REMARK. For barrelled Montel DF spaces, this follows from
[2, 4, Satz 1, p. 212]. Recall that these spaces are exactly the strong
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duals of Fréchet Montel spaces, whereas the class of Schwartz gDF
spaces contains the c-duals of any metrizable les. This extension is
essential for the proof of Theorem 1.14 below.

Proof of Theorem 1.13. The proof is a combination of Theorem
1.9 and a result of [19]. Heinrich’s elegant direct proof of the a.p.
for X®.Y for X and Y Fréchet spaces with a.p. [19, Thm. 3]
actually shows that the following result is true. Let X and Y be
les with the property that every precompact subset P of X @,,Y 8
contained in the closed absolutely conmvex hull of a set P,Q P, for
precompact subsets P, of X and P, of Y. Then, if both X and Y
have a.p., X@,,Y has a.p. In case of Theorem 1.13, Theorem 1.9
reveals that the assumptions of this result are fulfilled.

Note. In conjunction with Theorem 3.4 in §3, Theorem 1.13
yields the well known fact that K(X, Y) has a.p. whenever X and
Y are Banach spaces with X* and Y having a.p.: It is folklore
(polarity techniques) that a Fréchet space has a.p. if and only if its
c-dual has a.p. Hence, given X, Y Banach with X* and Y a.p., X}*
and Y* have a.p. and thus, by Theorem 1.13, the space X**@®,Y*
as well. But, according to Theorem 3.4, this is the c¢-dual of the
Banach space K(X, Y). Hence, K(X, Y) has a.p.

But, using Theorem 3.3 instead, much more can be said. The
following extension of the classical Banach space result to the gDF-
F-gituation holds:

THEOREM 1.14. Let X be a gDF space and Y a Fréchet space
such that Y and the strong dual X, of X have the approximation
property. Then the Fréchet space K(X, Y) of compact linear operators
from X into Y, endowed with the topology of uniform convergence
on the bounded subsets of X, has the approximation property.

It remains to prove Proposition 1.8: We have to show that =
is equal to the finest lc topology on X®Y, agreeing with 7 on the
sets C, = I'A,® B,. Denoting this latter topology by 7, and referring
to the general properties of the projective tensor product topology, it
is enough to show that the tensor mapping @: X XY — X RY, (z, y)—
2 ® ¥, is continuous from X x Y into (X ®Y, ). Theorem 1.4 reduces
this to hypocontinuity, i.e. that ®(A,, -) and @(-, B,) are equicontinuous
sets of linear operators from Y resp. X into (X QY, %) for all ne N.
By symmetry, and according to the fact that X and Y are gDF, it
suffices to prove that the restrictions ®(4,, -)| B, are equicontinuous
at 0 for all m, n e N. This is what we show now.
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Let m, ne N and W an %-zero neighbourhood.

(1) There exist sequences (U,)i.y and (V).cn of zero neigh-
bourhoods in X and Y, respectively, such that WoI' U{(l"4,&® B,)N
(', ®V,) | ke N} (see proposition 2 of Def. 1.3).

(2) For keN, choose af >0 such that A,caiU,. Let j=
maxi{n, m}, and let (x, ¥)e (4, X (B, N (ah)™V;). Then we have:

(3) 2Q@ue(A4;@BH)N(;U)R@(a)™ V) =(A4;QBH)N(U; ®V)).

In conjunction with (1), this yields #(4,, B, N{(a?)~*V;)c W, which
completes the proof.

2. [Weak] Compactness of linear operators. The starting
point for our discussions are Grothendieck’s classical results [16, Cor.
1 of Thm. 11, p. 114], and [17, IV, 4.3, Cor. 1 of Thm. 2, p. 241]:

Every continuous linear operator from a quasinormable les X
into a Banach space Y, which transforms bounded sets into [weakly]
relatively compact sets, is [weakly] compact.

The following quite recent result of van Dulst is a variation/
extension of the theme [10, Thm. p. 111]:

The conclusion of Grothendieck’s result holds, whenever Y is a
Fréchet space, and X a quasinormable les with (enc) (see proposition
2 of Definition 1.3 in §1).

Note that every gDF space fulfills the assumptions on X.

As a first step towards our characterization of (weakly) compact
operators along this line, an extension to sets of (weakly) compact
operators of these two results is shown to be an immediate conse-
quence of Theorem 1.4:

PROPOSITION 2.1. Let H be an equicontinuous set of linear
operators from an les X into an les Y such that H(B) is [weakly]
relatively compact in Y for all B bounded in X. If either

(a) Y is Fréchet and X gDF (or, more generally, a quasinormable
les with (ence)), or

(b) Y 4s Banach and X quasinormable, then there exists a zero
neighbourhood U in X such that H(U) is [weakly] relatively compact
n Y.

Proof. Considering the set H of bilinear forms on X xY’
associated to the he H (h(x, y'): = {(hx, y'y), the assumptions on H
mean that H is equihypocontinuous on X x Y’ (resp. on X x Y..).
Hence, in both cases, Theorem 1.4 reveals that H is equicontinuous
for these topologies. This proves the assertion.
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A further variation of the theme, this time with an additional
aspect concerning the topologies of the range space, is F. D. Sentilles’
characterization of [weakly] compact operators on the space (Cy(S), B)
of bounded continuous functions on a locally compact Hausdorff space
S, endowed with the strict topology B8 of R. C. Buck [4]:

[39, Thms. 2 and 4]. Given two locally compact Hausdorff spaces
S and T, a linear operator from (CyS), B) into (C(T), B) is [weakly]
compact, if and only if it is continuous as an operator from (Cy(S), B)
wmnto (C,(T), sup-norm), and transforms [-bounded (= sup-norm
bounded!) subsets of C,(S) into B-lweakly] relatively compact subsets
of C(T).

As this characterization is not being covered by the above
abstract results, it motivated the search for an appropriate extension.
Such is provided by the following result, which contains all the
results considered so far as special cases.

THEOREM 2.2. Let X be a quasinormable les and (Y, p) an les
with a further locally convex topology o,, finer than p. Whenever
H is an equicontinuous set of linear operators from X into (Y, o.)
and, in addition, either.

(a) o, is normable, or

(b) p, ts metrizable and X has (cnc) (see Notes 1.2, 2.(b)), then
the following statements hold:

1. If H(B) is p-precompact in Y for all B bounded in X, then
there exists a zero meighbourhood U in X such that H(U) is pre-
compact in (Y, p).

2. If H(B) is p-weakly relatively compact in Y for all B bounded
m X, and if (Y, p) is sequentially complete, then there exists a
zero meighbourhood U tn X such that H(U) is p-weakly relatively
compact in Y.

3. If X is a gDF space with fundamental sequence (B,),.n Of
bounded sets, and if (V,),.n 18 @ (decreasing) zero neighbourhood base
Jor p,on Y (all V, disks), then the zero neighbourhood U in X in prop-

ositions 1. and 2. above can be chosen to be U= N {'an+(1EI1% V.) |neN}.

Notes. (a) The additional information on the special zero
neighbourhood U in X as given in part 3 is particularly useful, for
it provides a recipe for constructing U in terms of the give items
(Bweny (V)uey and H. In the measure theoretic context [14], this
recipe has been used to some advantage for the study of Banach
space valued strongly countably additive vector measures; see Note
(b) following Theorem 2.3.
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(b) In the context of general linear operators, the formulation
of Theorem 2.2 for sets of operators (as opposed to a single one) also
will prove particularly useful: in §4 it will be used to characterize
compact sets of compact operators on Banach spaces.

Some special cases of Theorem 2.2 for a single linear operator
are specified next:

THEOREM 2.3 [33]. If X is a quasinormable les with property
(ene), and (Y, p) s a sequentially complete les with a metrizable lc
topology o, finer than p, then every p,-continuous linear operator
from X imto Y, which transforms bounded sets into precompact (resp.
weakly relatively compact) subsets of (Y, p), 18 a precompact (resp.
weakly compact) operator from X into (Y, p).

In particular, every continuous linear operator from a Schwartz
(resp. semi-reflexive) gDF space into a Fréchet space 1is compact
(resp. weakly compact).

Notes and first applications. (a) This special case of Theorem
2.2 contains the above results of Grothendieck, van Dulst and Sentilles.
Note that the very last statement of Theorem 2.3 can be viewed as
an extension of the (trivial) fact, that every continuous linear operator
on a reflexive Banach space is weakly compact, to the case of semi-
reflexive gDF spaces, with the specified restriction on the range
spaces.

(b) The applicability of Theorem 2.3 to the strict topologies
mentioned in §1 has been pointed out already in [33]. A further
concrete situation for which Theorems 2.2 and 2.3 provide new tools,
is Graves’ [13] “linearization of vector measures”: For a o-algebra
Y of subsets of a set S and a Banach space X, the space of bounded
vector measures from Y into X is in one-to-one correspondence with
the continuous linear operators from the space () of X-simple
functions, endowed with the sup-norm topology, into X: ¢+ integra-
tion with respect to p. W. H. Graves in [13] specified an lc topology
7 on 7(%), coarser than the sup-norm topology, which singles out
the strongly countably additive vector measures as exactly those
whose associated operators are z-continuous. (S7(2), ) is gDF [13,
Thm. 2.2, p. 12], and its completion (9;(\2’/), 7) is semi-reflexive [13,
Thm. 10.5, p. 53]. In this way, strongly countably additive vector
measures into a Fréchet space X come out to be just continuous
linear operators from the semi-reflexive gDF space (.773), 7) into X.
Theorem 2.3 thus reveals that the associated operators not only
transform the sup-norm unit ball into a weakly relatively compact
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set (weak relative compactness of ranges of sca vector measures),
but also a certain r-zero neighbourhood. In [14], proposition 8. of
Theorem 2.2 is used to specify such a zero neighbourhood in terms
of the measure g [14, Thms. 10 and 11]. (Further applications of
¢DF techniques in the context of vector measures are to be found
in [15].)

Proof of Theorem 2.2. The proof consists of two steps: First
it is shown:

(1) There exists a zero neighbourhood U in X and a sequence
(C)nen of p-precompact (rest. p-weakly relatively compact) disks in
Y such that HU)c N {C, +V,|ne N}, where (V,),.~is a (decreasing)
o:-zero neighbourhood base in Y.

Proof.

(i) There exist zero neighbourhoods U, in X such that H(U,) C
V., ne N (p-equicontinuity of H).

(ii) There exist zero neighbourhoods U, in X with the property
that, for all a > 0, there exists B? bounded in X such that U,
aU, + BF (quasinormability of X).

(ii) U= n{a,U,|neN} is a zero neighbourhood in X for a
suitable sequence (a,),.y of positive reals ((che) for X). Thus,
for ne N: H(U) ce,H(U,) <(U,) + H(a,Bi1)  H(a,B;-1) +V,, which
proves (1).

Note. Again, based on the more technical result given in Pro-
position 1.7 instead of Theorem 1.4 itself, proposition (1) could have
been derived by a technique analogous to the one used in the proof
of Proposition 2.1. The above independent proof, however, keeps
things more transparent.

Assertion (1) completes the proof in the precompact case. The
“weak case” is completed by means of the following result:

LemMA 2.4. Let (Y, p) be a sequentially complete lcs, o0, a
melrizable le topology on Y, finer than p, and (V,)..x & 0270
neighbourhood base, all V, disks. If A is a subset of Y with the
property that, for every me N, there exists a p-weakly relatively
compact disk C, in'Y such that AcC, +V,, then A is p-weakly
relatively compact.

For o = p, = Banach space topology, this is to be found in [17,
V, 4.1, Lemme on p. 296]. Reasoning as in the proof of this result
in {17] the Alaoglu-Bourbaki Theorem reveals that it is enough to
show that the weak*-closure of A in the p-bidual of Y is contained
in Y, for A is p-bounded. By assumption, we have (bars denoting
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weak*-closure in the p-bidual of Y): Acn{C, + V.|lneN)cn
{C,+ V.lneN}. Hence, for z¢ 4, there exist b,e Yand v, € V,, n €N,
such that z = b, + v, for all e N. For V a p-zero neighbourhood,
there exists n,€ N such that V,cV for all » > n,. It follows that
z2—0b,=v,eV,cV for all > n, This shows that (b,),.y is a p-
Cauchy sequence in Y. (Y, p) being sequentially complete, (b,),cn is
p-convergent to an element y €Y. It is now easy to conclude that
2 = y€ Y, which completes the proof.

The proof of Proposition 3 of Theorem 2.2 now follows from
two observations:

(i) U= n{nB, + H>(V,)|ne N} is a zero neighbourhood in
X (X is gDF and H is p,-equicontinuous), and

(ii) HU)c Nn{HnB,) +V,|ne N}, which is proposition (1) of
the proof just given.

A particular application of the above results to general [weakly]
compact operators is the following extension of a well known Banach
space result:

ProPOSITION 2.5. Let X be a gDF space and Y a Fréchet space.
The spaces K(X, Y) and W(X, Y) of compact and of weakly compact
linear operators jfrom X into Y, respectively, are closed linear
subspaces of the space L, (X, Y) of continuous linear operators from
X into Y, endowed with the topology of uniform convergence on the
bounded subsets of X. In particular, K(X, Y) and W,(X, Y) are
Fréchet spaces.

Proof. Whenever ue (X, Y) is the b-limit of a sequence (%,),x
in L(X, Y), then, given a bounded subset B of X, for every zero
neighbourhood V in Y, there exists «# € N such that w(B) ¢ u,(B) + V.
This shows that « transforms bounded sets into [weakly] relatively
compact ones, provided that all u,’s are [weakly] compact (for the
weak case, again use Lemma 2.4). Theorem 2.3 now yields the
desired conclusion.

Before turning to further applications of Theorems 2.2 and 2.3,
we conclude this section with a discussion of two more classes of
gDF spaces.

Whenever X is an les whose strong dual is Fréchet, then X!
(resp. X,.) is semi-Montel gDF (resp. semi-reflexive gDF). Hence, by
Theorem 2.3, every continuous linear operator from X (resp. X..)
into a Fréchet space is compact (resp. weakly compact). Exactly the
same is true for the particular linear subspace X, (resp. X,.). But
more can be said: X, and X,, are even gDF.

PROPOSITION 2.6. Let X be an les whose strong dual is Fréchet,
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and denote by XJ[X,.| the space X, endowed with the topology of
uniform convergence on the [weakly = o (X', X')] compact disks of
X;. Then the spaces X,, X,. and (X, (X, X)) are gDF, and every
continuous linear operator from X,[X,.. into a Fréchet space 1is
[weakly] compact.

Proof. The gDF property of X with the Mackey topology is
immediate from the assumption. For a proof of the gDF property
for the other two spaces, it has to be shown that a linear operator
from any of them into a Banach space is continuous as soon as its
restrictions to the bounded sets are. Let (B,),.y be a fundamental
sequence of bounded sets in (X, z), all B, disks, B, + B,cB,,,, Y a
Banach space, and v a linear operator from X into Y.

Case “wc”. If the restrictions of u to the B,’s are wec-continuous,
then % is continuous from (X, z(X, X')) into Y, for o(X, X') Cwec
(X, X'), and the latter topology is gDF. Plain duality implies that
%" is continuous from (X", (X", X)) into (Y", z(Y", Y')). But the
range of " is contained in Y: for z" ¢ X", there exists we€ N and
a net (x,);.,<B, which is (X", X')-convergent to /. By assumption
on %, the net (ux,);., is norm convergent to some ye Y. Clearly,
W'y =yeY.

In this way, 4" comes out to be a closed graph linear map from
the gDTF space (X", z(X”, X)) into Y, which transforms bounded sets
(o(X", X')-closures of the B,’s in X") into weakly relatively compact
sets. Proposition 3.4 of [31] implies that " is weakly continuous,
and hence continuous, from (X", z(X"”, X")) into Y.

Case “c”. If the restrictions of u to the bounded sets are ec-
continuous, then they are we-continuous as well, and thus the range
of u' is contained in Y. Again, plain duality implies that «” is
continuous from X, into Y,, and hence closed graph from the gDF
space X! into Y. Moreover, u” transforms bounded sets (¢c-closures
of the B,’s in X”') into relatively compact subsets of Y: the restrie-
tions of # to the B,’s are even c¢-uniformly continuous into Y, and
the B,’s are ¢-precompact. This time, Proposition 3.4 of [31] directly
reveals that «” is continuous from X" into Y.

[Weak] Compactness of continuous linear operators on X,[X,.]:
Whenever u is a continuous linear operator from X,[X,.] into a
Fréchet space Y, then it has a unique continuous linear extension u
to the completion X'[X],]. But X, is semi-Montel gDF, and X}, is
semi-reflexive gDF. The desired conclusions follow from Theorem 2.3.

3. Extensions of Schauder’s and Gantmaher’s theorems, and
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tensor product representations of K(X,Y) and its dual. The basic
idea of Theorem 2.3 of the foregoing section is to conclude [weak]
compactness of a linear operator % from the (formally) weaker
assumption of % being continuous and transforming bounded sets
into [weakly] relatively compact sets. In this section, a different
direction of thought will be pursued: roughly, it will be shown that
such operators are [weakly] compact not only for the original topology
of the domain space but also for an even coarser le topology (Thm.
3.1 below). A particular consequence will be a new representation
for the space K(X, Y) of compact linear operators and of its strong
dual K'(X, Y), for X and Y Banach, or, more generally, for X gDF
and Y Fréchet (Thms. 3.3 and 8.4 below).

Starting point is the following extension to the gDF-F-situation,
together with a refinement to coarser le topologies, of Schauder’s
and Gantmaher’s Theorems:

THEOREM 38.1. Let (X, 7) and Y be les such that Y and the strong
dual X; of (X, z) are Fréchet, and let we L(X, ), Y).

(a) The following are equivalent:

(1) u transforms bounded sets into relatively compact sets.

(2) u' is compact from Y, into X;.

(38) u' is compact from Y, into X;.

(4) w 1s compact from X, into Y.

In particular, if, in addition, (X, ) is sequentially evaluable,
then all four propositions are equivalent to

(5) u s compact from (X, ) into Y.

(b) The following are equivalent:

(1) wu transforms bounded sets into weakly relatively compact
sets.

(2) u' s weakly compact from Y, into X;.

(38) ' is weakly compact from Y; into X;.

(4) u 1s weakly compact from X, into Y.
In particular, if, in addition, (X, r) is gDF, then all four proposi-
tions are equivalent to

(5) u ts weakly compact from (X, ) into Y.

Of particular interest is the special case where X and Y are
Banach spaces (in accordance with the usual Banach space notation,
the topological dual of a normed space Z will be denoted by Z*):

THEOREM 3.2. Let X be a normed space, Y a Banach space, and
let wue (X, Y).

(a) The following are equivalent:

(1) wu is compact.
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(2) u* 1s compact.

(3) w* is compact weak™weakly (o(Y*, Y) — o(X*, X**)) con-
tinuous.

(8) u* ts compact from Y} into X*, i.e., there exists K compact
in Y such that w*(K°) is relatively compact in X*.

(4) u is compact from X, into Y, i.e., there exists K compact
an X* such that w(K°) is relatively compact in Y.

(b) The following are equivalent:

(1) u %s weakly compact.

(2) u* 1s weakly compact.

(3) u* s weakly compact and weak™-weakly (c(Y*,Y) — o(X*,
X**)) continuous.

(38" w* is weakly compact from Y, into X*, i.e., there exists C
weakly compact in Y such that w*(C°) is weakly (o(X*, X**)) rela-
tively compact in X*.

(4) wu 1s weakly compact from X,. into Y, i.e. there exists C
weakly (o(X*, X**)) compact in X* such that uw(C°) is weakly relatively
compact in Y.

Notes. (a) The following particular result is included in prop-
osition (a) of Theorem 3.1:

Every continuous linear operator from a sequentially evaluable
les with a fundamental sequence of bounded sets into a Fréchet space,
which tranforms bounded sets into relatively compact sets, is compact.

It is not clear whether this variant of the theme of §2 is covered
by Theorem 2.3, for it is not known whether the (cne) property and
quasinormability hold for the spaces just specified. An example of
such a space which is not gDF has been exhibited by M. Valdivia
(oral communication by H. Jarchow). Note that, for a gDF space
(X, 7), all spaces (X, p), with p an lc topology between the c-topology
and the Mackey topology (X, X’), are sequentially evaluable. Also
note at this point that, for an les with a fundamental sequence of
precompact sets, the properties of being sequentially evaluable and
of being gDF are equivalent.

(b) Proposition (a) of Theorem 3.2 is implicit in Grothendieck’s
early work in functional analysis: compactness of u translates by
polarity into continuity of «* from Y} into X*. Compactness of u*
for these topologies then follows from Grothendieck’s result [16, Cor.
1 of Thm. 11, p. 114] (see the beginning of section 2 above) and the
fact that Y* is a Schwartz space, the latter being a consequence of
the Banach-Dieudonné Theorem. Equivalent formulations of prop-
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osition (a), in particular, the coincidence of compact operators with
the quasi-co-nuclear operators of Persson/Pietsch [28, p. 56], have
been given in [43, Thm. 1] and in [29].

Proof of Theorem 3.1. Case (a): The assumption of (1) (resp.
of (8)) translates by plain duality techniques into «' (resp. u”) being
continuous from Y. into X (resp. from X! into Y;'). In both cases,
Theorem 2.3 reveals the compactness of the respective mappings for
these topologies. This, in turn, implies (2) (resp. (4)). Finally,
whenever (X, z) is sequentially evaluable, then 7 is finer than the
c-topology, and (5) is implied by (4). Case (b): Proceeding as in
the proof of (a), the assumption of (1) (resp. (3)) translates into
%' (resp. ') being continuous from Y, into X; (resp. from X
“into Y3'). Again, the weak compactness of the respective mappings
for these topologies, and thus (2) (resp. (4)), is a consequence of
Theorem 2.3. Finally, whenever (X, z) is gDF, then, according to
just this theorem, (1) and (5) are equivalent.

Theorem 3.1 is a useful tool for the investigation both of
individual [weakly] compact operators (factorization, representation)
and of the whole space of [weakly] compact operators, see [35] for
a survey. Confining ourselves here just to the space K(X,Y) of
compact operators, one of the most fruitful consequences of Theorem
3.1 are the following new tensor product representations of K(X, Y)
and of its dual:

THEOREM 3.3 Let X be a gDF space and Y a Fréchet space.

(a) The Fréchet space K(X, Y) of compact linear operators from
X into Y with the topology of uniform convergence on the bounded
subsets of X 1is topologically isomorphic to the strong dual of the
projective tensor product space X' @,EY:.

(b) The dual space Ki(X, Y) of the space K(X, Y)is algebraically
isomorphic to the projective temsor product space X! ®.Y!. Top-
ologically, this latter space is exactly the c-dual of K(X, Y).

Of particular interest is the special case of Banach spaces:

THEOREM 3.4. Let X and Y be Banach spaces.

(a) K(X, Y) with the operator norm is isometrically isomorphic
to the dual space of the (locally comwvex) projective temsor product
space X}* @,, Y¥, endowed with the (Banach space) topology of uniform
convergence on the set I Byu X By..

(b) K*X,Y) is isometrically isomorphic to the space X** @n Y¥
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with norm unit ball I'Byw X) By

Proof of Theorem 3.3. (a): For a given ue€ K(X, Y), Theorem
3.1 assures the existence of K, compact in X; and K, compact in ¥
such that «"(K!)c K,. In this way, the associated bilinear form
B,: X" xY'— K, defined by B,(x", ¥") = {u'2"”, y'), turns out to be
continuous from X, X Y, into K. This shows that the correspondence
u+— B, is a topological isomorphism from K,(X, Y) onto B, (X!, Y.).
But Theorem 1.9 reveals that the latter space is just the strong dual
of X!'@®.Y..

(b): According to Corollary 1.12, the space X’ @.Y" is semi-
Montel, and thus also semi-reflexive. Together with Proposition (a),
this proves the first assertion of (b). The second one follows again
from Corollary 1.12, and the fact [31, Thm. 3.8] that any two semi-
Montel gDF topologies which are comparable already must be identical.

Finally, the additional information on the isometries in Theorem
3.4 is provided by Theorem 1.9.

Notes. (a) Theorem 8.4 is at the base of a unified approach to
a broad variety of structural properties of the space K(X, Y) and
its dual: compactness, weak compactness and weak convergence in
K(X, Y), reflexivity of K(X, Y), geometric properties of K*(X, Y)
ete. In joint papers with H. S. Collins [6, 7], this program is carried
out in detail. For a survey of the results, consult [8]. A chara-
cterization of compactness in K(X, Y') is the object of §4.

(b) The proof of part (a) of Theorem 3.3 above reveals that for
Banach spaces X and Y, and an operator u ¢ K(X, Y), the associated
bilinear form B, on X" xY’, defined by B,(z", y") = u'z”, y'), is
continuous from X.” X Y, into K. Thus, according to the compactness
of By X By, in X' XY}, there exist " € B, and ¥’ ¢ B,, such that
lu]] = {u"x", y">. We conclude that every compact linear operator
from a Banach space X into a Banach space Y attains its norm on
B,... This shows that in the corresponding result of Baker [1, Thm.
1(i)], the assumption of B,. being weak* = (X", X')-sequentially
compact is superfluous.

4. Compactness in K(X, Y). A particular example of the
range of applicability of the techniques developed so far is the
following characterization of (operator norm) compact sets of compact
operators:

THEOREM. Let X be a mnmormed space and Y a Banach space.
Then, for a subset H of K(X, Y), the following are equivalent:
(1) H is relatively compact (in the operator norm).
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(2) HB; and H*B,. are relatively compact in Y and X*,
respectively.

(3) HB, s relatively compact in Y, and H*(y*) is relatively
compact in X* for all y*e Y*.

(4) H*By. is relatively compact in X*, and H(x) is relatively
compact in Y for all xe€ X.

(5) There exists K compact in X* such that H(K") is relatively
compact in Y.

Notes. (a) The equivalence of (1) and (8) and (4) is a result of
Palmer’s [27, Thms. 2.1 and 2.2]. In the presence of the approxima-
tion property for either X* or Y, the equivalence of (1) and (2) has
been proved by Holub [22, Cor. to Thm. 1].

Finally, the equivalence of (1), (2) and (5) can also be deduced
from L. Schwartz’ e-product techniques [38; especially 1. 1, Prop. 2,
p. 22, and Prop. 10, p. 45], together with Theorem 1.4; see [35] for
details.

(b) Together with the Davis/Figiel/Johnson/Pelezynski factoriza-
tion theorem for weakly compact operators [9], the equivalence of
(1) and (5) can be used to factor an operator norm convergent sequence
of compact operators through one and the same reflexive Banach
space in such a way, that the convergence of the sequence even
takes place for the respective new (stronger) operator norm. Pro-
blems of this kind are being discussed in [36, 37].

Proof of the Theorem. First, recall the following isometric iso-
morphisms (Theorem 3.4):

") K(X, Y) = BX:*, YI) = (X @Y7 .

Since X;"*®,TY;k is semi-Montel gDF, its c-topology coincides with
its original topology, i.e., the equicontinuous and the strongly re-
latively compact subsets of its dual coincide. Hence, the equicon-
tinuous and the relatively compact subsets of B,,(X}* Y}) coincide.
Furthermore, according to Theorem 1.4, they are the same as the
equihypocontinuous subsets. Together with (x), this establishes the
equivalence of (1), (2) and (5).

The first condition of proposition (3) (resp. of (4)) means that H*
(resp. H) is equicontinuous from Y* into X* (resp. from X, into Y').
According to a consequence of the Arzela-Ascoli Theorem (c.f. [17,
0.7, Cor. 2 of Thm. 6, p. 17]), H* c L(Y}, X*) (resp. HC L(X,, Y))
is precompact with respect to the topology of uniform convergence
on the precompact subsets of Y* (resp. of X,), if and only if H*|P
(resp. H|P) is equicontinuous for all P precompact in Y} (resp. in
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X.), and H*(y*) (resp. H(x)) is precompact in X* (resp. in Y) for
all y*eY* (resp. for all xe€ X). Since Y* and X, are gDF spaces
whose bounded sets are precompact (Examples 2 in §1, and Prop-
osition 2.6), the equivalence of propositions (1), (83) and (4) is now
apparent. This completes the proof.
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