Pacific Journal of

Mathematics

TOPOLOGICAL METHODS FOR C*-ALGEBRAS. II.
GEOMETRY RESOLUTIONS AND THE KUNNETH FORMULA

CLAUDE SCHOCHET




PACIFIC JOURNAL OF MATHEMATICS
Vol. 98, No. 2, 1982

TOPOLOGICAL METHODS FOR C*-ALGEBRAS II:
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Let A and B be C*-algebras with A in the smallest sub-
category of the category of separable nuclear C*-algebras
which contains the separable Type I algebras and is closed
under the operations of taking ideals, quotients, extensions,
inductive limits, stable isomorphism, and crossed products
by Z and by R. Then there is a natural Z/2-graded Kiinneth
exact sequence

00— Ky(A) @ Ky(B) — K«(AQ B)
— Tor(Ky(A), K«(B))—> 0 .
Our proof uses the technique of geometric realization. The
key fact is that given a wunital C*-algebra B, there is a
commutative C*-algebra F and an inclusion F'— B® 2 such
that the induced map K.(F)— K(B) is surjective and K (F")
is free abelian.

1. Introduction. Let A and B be C*-algebras. There is a Z/2-
graded pairing (defined in §2)

a: K,,(A) ® Kq(B) — Kp—!—q(A ® B) D, q€ Z/2

where K, denotes K-theory for Banach algebras [9, 17] and ® =
Rmia- Let N be the smallest subcategory of the category of separable
nuclear C*-algebras which contains the separable Type I algebras
and is closed under the operations of taking ideals, quotients, exten-
sions, inductive limits, stable isomorphism, and crossed products by
Z and by R. We shall establish the following theorem.

KUNNETH THEOREM. Let A and B be C*-algebras with A c M.
Then there is a natural short exact sequence
0 — K,(4) ® Ku(B) — K,(A® B) -2 Tor(K,(A), K,(B)—0 .
The sequence is Z|2-graded with deg o = 0, deg 8 = 1, where K, R K,
and Tor(K,, K,) are given degree p + q (p, q € Z[2).

If A=C(X)and B=C(Y) with X and Y finite CW-complexes then
the hypotheses are satisfied and we recover the classical Kiinneth
Theorem for topological K-theory due to Atiyah [1}]:
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0—> K*(X)Q K*(Y) — K*(X x Y)

(L.1)
L Tor(K*(X), K*(Y)) —— 0

Atiyah generalized (1.1) to the compact space setting [2] and further
work was also done by him and by others (ef. [3]) regarding the
splitting of (1.1).

An important step in Atiyah’s proof of (1.1) was the technique
of geometric realization of a projective resolution (i.e., a free presen-
tation) of K*(Y). This idea has led to various developments within
K-theory and bordism. Atiyah’s theorem says that given a compact
space Y, there is a compact space Y, and a continuous function
fi:Y—Y, such that K*(Y,) is free and f*: K*(Y,) » K*(Y) is sur-
jective. A homotopy argument then yields a cofibration

vy, Loy,
such that the associated long exact sequence degenerates to a free
presentation

(1.2) 0— K*(Y,) — K*(Y) — K*(Y) — 0

of the Z/2-graded group K*(Y). The space Y, used in Atiyah’s
proof is a product of Grassmann manifolds and their suspensions.

Our proof of the Kiinneth Theorem parallels Atiyah’s argument.
The key step, and a result of independent interest (as we shall
explain) is the following geometric realization theorem. Let 2#
denote the C*-algebra of compact operators (on a possibly inseparable
Hilbert space) and let M, denote the complex » by = matrix ring.
Note that K, (A) = K. (AR M,) = K,(AR 5%).

THEOREM (Geometric Realization). Let B be a unital C*-algebra.
Then there exists a commutative C*-algebra F = C(Y) with Y a
disjoint union of points and lines and an inclusion of C*-algebras

pF— BQ 2%
such that K. (F') is free abelian and
ty: K (F) — (BQ %) = K.(B)
18 surjective. If K. (B) is free abelian them pt, is an isomorphism.

The theorem and a homotopy argument imply that there is a
short exact sequence

Y

(1.3) 0— BR % Q Cy(R) C F 0
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whose associated long exact sequence in K-theory becomes a free
resolution

0 —> K,(C) 25 K (F) - K (B) — 0

of K, (B).

Our geometric realization theorem does not quite imply Atiyah’s
geometric realization theorem. The distinction lies in the fact that
not every map f: C(X) —» C(X")® M, or f: C(X) — C(X") ® 7% arises
via a map of spaces X' — X. The spaces which do arise from our
results are much simpler than those required by Atiyah’s result. A
moment’s reflection should convince the reader that there is no hope
in trying to prove Atiyah’s theorem when the spaces Y, are restricted
to subsets of the plane.

In geometric realization applications there seems to be no situa-
tion where having a map only at the level ' — B® % is a handicap.
The Kinneth Theorem follows from the geometric realization theorem
in just the same way as Atiyah’s Kiinneth theorem (1.1) follows
from his geometrie realization theorem. Note, however, that if Y™ C
C then K*(Y) has a trivial ring structure and so p,: K*(Y) — K, (B)
has no chance of being a ring map when B is commutative. Maps
X — X’ induce ring maps K*(X') — K*(X); maps C(X") —» C(X) ® %
do not in general do so.

Despite the title, this paper is mathematically independent of
[16]. Philosophically they are linked. Kiinneth theorems are a
necessary prelude to product structures and to the introduction of
coefficients into homology and cohomology theories on C*-algebras.
As all theories studied to date are closely tied to (and frequently
determined by) K-theory, it seems reasonable to study K-theory first.
Moreover, the geometric realization technique has already been useful
elsewhere (see Remark 3.6).

The remainder of the paper is organized as follows. In §2 we
show that a: K,(4)® K,.(B) — K,(A® B) is an isomorphism when
AeN and K, (B) is torsionfree. Section 8 is devoted to the geometric
realization theorem. In §4 the results of the two previous sections
are combined to prove the Kiinneth Theorem.

It is a pleasure to acknowledge valuable conversations and cor-
respondence with L. G. Brown, J. Cuntz, and J. Rosenberg and to
thank the UCLA mathematical community for its warm hospitality
during my visit there.

2. The Kiinneth formula: special cases. In this section the
map « is defined and is shown to be an isomorphism in certain special
cases.
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Let A and B be C*-algebras. The map « is a Z/2-graded pairing
(2.1) a: K(A) ® K(B)— K,,(A® B) p,qeZ/2

defined as follows. Suppose that A and B are unital. The natural
mappings

M.(A) @ M(B) — M,.(A® B)
induce a pairing
(2.2) K(A) ® Ky(B) — K\(A ® B)

which is natural with respect to pairs of maps A — A', B— B
Karoubi [10, Theorem 5.1] shows that if one specifies a sign conven-
tion, then (2.2) extends uniquely to a pairing a of the form (2.1),
retaining naturality and respecting suspensions and boundary maps.

Next extend to nonunital C*-algebras. If A is nonunital but B
is unital then the diagram with exact rows

K,(4) @ K(B) — K,(4") Q K,(B) — K,(C) ® K(B) — 0

| J I

E,ilA® B) — K, (A* @ B) — K, ,,(C® B)

extends a. A similar argument when both A and B are nonunital
yields the pairing (2.1) in the general case.

DerFINITION 2.3. If a: K, (A)Q K,(B)— K, (AR B) is a Z/2-graded
isomorphism then « is said to be an isomorphism for the pair (4, B);
this we abbreviate to “a(A4, B) is an isomorphism”.

To be completely transparent regarding the gradings, we insist
that both of the maps

(Ki(4) ® K(B)) B (K.(4) ® Ky(B)) — K(A® B)

and

(K (4) ® K.(B)) @ (K.(4) ® K(B) — K(A® B)

be isomorphisms.
The class of pairs (4, B) for which a(4, B) is an isomorphism is
closed under inductive limits (over directed sets).

' PROPOSITION 2.4. Suppose that {A;} is a directed system of
nuclear C*-algebras and suppose that «(A,, B) is an isomorphism
for all v. Then a(lim A,, B) is an tsomorphism.

—>
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Proof. The nuclearity assumption implies that

(lim 4,) ® B = lim (4, ® B)

and hence a for the pair (lim A4,, B) factors as the composite of
—
isomorphisms

K. lim (A7) @ Ky(B) ---» K, ((lim 4;) @ B)

- -

(lim K, A;) @ K.(B) K, (lim (4; ® B))

- -

lim (K(47) ® Ky(B)) — lim K, (4; ® B)
— —
which completes the argument. ]

Similarly, the class of pairs (A, B) for which « is an isomorphism
is closed under crossed products by R:

PROPOSITION 2.5. Suppose that a(A, B) is an isomorphism and
suppose that R acts on A as a group of automorphisms. Then
a(A %X, R, B) is an isomorphism.

Proof. This is an immediate consequence of the Thom isomorphism
theorem of A. Connes [4]. He proves that there is a natural iso-
morphism K,(A X, R) = K,(A) (with a degree shift) from which the
proposition follows. ]

In the following few propositions we assume that K, (B) is
torsionfree. This implies that Tor(X,.(A4), K,.(B)) = 0 for any A4, so
that the Kiinneth formula is just the statement that « is an isomor-
phism.

PROPOSITION 2.6. Suppose that K,.(B) is torsionfree, J is an
ideal of A with J, A, and AlJ nuclear and that o is an isomorphism
for two of the pairs (J, B), (A, B), (A/J, B). Then «a is an isomor-
phism for the third pair as well.

Proof. Tensor the long exact sequence

K,(J) — K (A) — KAL) =2 K, ,(J) —>

with K,(B). The resulting sequence remains exact (since torsionfree
groups are flat). An easy argument involving the Five Lemma and
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the naturality of a completes the proof. 1

PROPOSITION 2.7. Suppose that K. (B) is torsionfree, A is nuclear,
and that a(A, B) is an isomorphism. Let Z act on A as a group
of automorphisms. Then a(A X, Z, B) is an isomorphism.

Proof. Pimsner and Voiculescu [12] show that there is an exact
sequence of the form
Dy
AN /
(2.8) EN .
K.(A %X, Z)

which is natural in the appropriate senses, where D, = id, — (p(—1)),.
Since K. (B) is torsionfree, there is an exact triangle

K,(4) @ K.(B) 2L K,(4)® K,(B)
(2.9) N\ g
IRIN, @1

K. (A X, Z) Q) K.(B)

The C*-algebra (A Q B) XZ = (A X, Z)Q B when plugged into
(2.8) yields an exact triangle

Dags

K. (A® B) — K. (A® B)
(2.10) AN g

K. (A %, Z) ¥ B)

and « induces a morphism of exact triangles (from 2.9 to 2.10).
The hypotheses imply that « is an isomorphism on two of the three
vertices; the Five Lemma implies that « is an isomorphism on the
third as well. Thus

a: K. (A X, Z2)Q K.(B) — K, (A X, Z) ¥ B)

is an isomorphism. N

To this point we have no examples of C*-algebras (A4, B) for
which « is an isomorphism. The following proposition remedies that
deficiency.

ProprosiTION 2.11. Suppose that K. (B) is torsionfree. Then for
every locally compact space Y, a(C(Y), B) is an isomorphism.
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Proof. 1f Y = R" then a is an isomorphism by Bott periodicity.
Similarly the proposition holds for Y a sphere (by 2.6) or, by addi-
tivity, a finite wedge of spheres. Induction on the number of cells
of Y shows that a is an isomorphism whenever Y is a finite complex.
If Y is compact (Hausdorff) then it may be written as an inverse
limit of finite complexes Y; (cf. Eilenberg-Steenrod [8, Theorem X.
10.1]). Then C(Y) = lim C(Y;), and Proposition 2.4 implies that « is
an isomorphism. In the general case, application of Proposition 2.6
to the sequence

0—C(Y)—C(Y")—C—0

completes the argument, where Y* is the one-point compactification
of Y. l

Recall that a C*-algebra A is solvable if A = U, A, for some
ascending sequence of closed ideals A4, with

A lA, . = C(Y,) ® 7 (27)

for some locally compact spaces Y, and some (finite or infinite-
dimensional) Hilbert spaces 5#,.

ProrosiTION 2.12. If K,.(B) is torsionfree and A is solvable then
a(A, B) is an isomorphism.

Proof. This follows from (2.4) and (2.6), but we prefer to give
a spectral sequence proof. Define functors L, and M, by

Lq(—) = (K*(") ® K*(B))q
M(-) = K(—-)Q B) .

Each of these functors satisfy the exactness axiom and « induces a
natural transformation «: L, — M, which 1s an isomorphism when
restricted to C*-algebras of the form (commutative) ® 2, by Pro-
position 2.11. A spectral sequence comparison theorem [16, Theorem
4.2] implies that a: L*(A) — M,(A) is an isomorphism for any solvable
C*-algebra A. O

THEOREM 2.13. If K, (B) is torsionfree and A is separable Type
I then a(A, B) is an isomorphism.

Proof. Since A is a separable Type I C*-algebra, A has a
countable composition series (J,) with each J,./J, of continuous
trace [13, §2]. By repeated use of (2.4) and (2.6) we may assume
that A is of the form A = (continuous trace) ® 9. Such a con-
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tinuous trace C*-algebra is homogeneous of degree ¥R, and hence
the associated continuous family of elementary C*-algebras over A
is locally trivial [13, §4]. Let {U,} be a countable open cover for
A such that Aly, is trivial for each i. The sequence of closed ideals
{L,} of A corresponding to the sequence of open sets

U1;U1UU2;U1UU2UU3;...

is an increasing sequence with L,, /L, = C(Y,) ® &~ Hence A is
solvable. ]

The following theorem summarizes the principal results of this
section. It has been established (independently) by J. Cuntz using
similar methods.

THEOREM 2.14. Let A and B be C*-algebras with K,.(B) torsion-
free and AeN. Then there is a natural isomorphism

a: K. (4) @ K(B) — K.(A®R B) . ]

REMARK 2.15. It is plausible that this theorem (and hence the
full Kinneth Theorem) holds for A separable nuclear. We know of
no case where the Kiinneth Theorem fails for D*-algebras. There
is a slight chance that 9 is itself the category of separable nuclear
C*-algebras or that one might get up to that category by allowing
crossed products by a few more groups.

3. Geometric realization. Let B be a unital C*-algebra. Then
for each ¢ it is easy to find free abelian groups G,, G such that

0— G, — G — K,(B)— 0

is a free resolution of K (B). With slightly more effort we can find
C*-algebras B’, B” with

K,(B") =G,

K(B") = G/

and hence exact sequences

0 — K,(B) 2 K(B") > K,(B) —0, q¢eZ2,

This is essentially useless for the study of K,.(B), however, since the
maps v and 7 constructed above do not arise from maps at the level
of C*-algebras; such resolutions are not “geometric”.

The principal result of this section is the construction of ge-
ometric resolutions of the type
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0 — K,(C) — K,(F) —> K,(B) — 0

with various useful properties. The existence of such resolutions
will enable us (in §4) to prove the full Kiinneth theorem. (Those
with less than complete faith in the necessity of §3 may prefer to
read §4 first to see how the proof is completed.)

The construction is done in two steps. The first step is Lemma
8.1 which shows that there are enough projectives of the required
sort. The second step is a homotopy argument which uses a mapping
cone construction.

LEMMA 3.1. Let B be a unital C*-algebra. Then there is a com-
mutative C*-algebra F = C(Y) and an inclusion p: F— B® 57 (57)
such that the induced map

ts: Ky (F) — K.(B)

is surjective. The space Y is a disjoint union of points and copies
of R. If K.(B) is free abelian then t, is an isomorphism. If K. (B)
is countably gemerated (e.g., if B is separable) them 57 is separable

and Y has countably many path components, so Y embeds in the
plane.

Proof. Select a minimal family of generators for K,(B). Each
generator of K (B) is of the form

[p] —r@&[]  rs)eZ

where [1] represents the class of the identity of B and p, € BR £(57)
with £# a finite-dimensional Hilbert space and p, a self-adjoint
projection. Each generator of K,(B) may be represented by some
unitary u,€ B (5%, with 5%, also of finite dimension. Let
57 be the Hilbert space direct sum of the (possibly uncountably
many) Hilbert spaces {52} and {$#]}. Define elements in B ®) .57 (57)
by P, =p.@0 with respect to BR L (57)2[BR.F ()] D
[B® £ (2£9] and @, = (u, — 1) @ 0 with respect to BR ZL(7) 2
[B® L (D] D [BR & ()]
Then p,p,, = §,, = W, = 0 for s # ', t = t’. Further,

7] =[p] in K(B® %)= K(B)
and
[@, + 1] = [u,] in K(B® )" = K(B).

Let F be the C*-subalgebra of B® .2 (57) generated by {,} U {@,}.
Then F is commutative. Its maximal space is easily determined.
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Each projection p, contributes a discrete point. Each element 1,
contributes a copy of R. This is true since @, + 1 is unitary (forcing
the maximal ideal space of C*{w,}" to be a closed subset of the
unit circle) and u, == 0 in K,(B) (so that C*{w,}* = C(SY)).

Let p: F—B®.%(5) be the inclusion. Then pgt: F+ —
(BR 9°(57))* is unital, and so

(D] — (L) = [p.] — r(s)[1]

and
ti([w, + 1)) = [u,] .
Thus g, is surjective. If K (B) is free abelian then it is clear that

tty is an isomorphism. Finally, if K, (B) is countably generated then

57 is a separable Hilbert space and Y has countably many path
components. N

REMARK 8.2. An obvious modification of the above argument
allows the image of p, to be any subgroup of K.(B).

REMARK 8.3. Let B be unital. Cuntz has shown that each
element of K (B ) is represented by a projection. As K,.(B) =
K. (B® .) in a natural manner, it would be possible to recast the
above argument to avoid differences of projections. If B is not
unital then the situation is unclear.

We proceed to the construction of the geometric resolution.
Suppose given a unital C*-algebra B. Lemma 3.1 implies that there
is a commutative C*-algebra F = C,(Y) and a C*-inclusion g: F' —
B .2 such that the induced map

is surjective. Let C be the mapping cone of p; that is,
C={g,2g:10,11— B F;zeF, g(0) = 0, g(1) = p(w)} .

This is a C*-algebra in the evident manner. Let v: C — F be defined
by v(g, ) = x. Then v is surjective and
Ker(v) = {(g, #) e Clz = 0}
={g:10, 1] — B® #"[g(0) = g(1) = 0}
=BX . 7% K Cy(R) .

So there is a short exact sequence

(3.4) 0— BR.% ® C(R) C—2>F 0.



TOPOLOGICAL METHODS FOR C*-ALGEBRAS II 453

In the associated K-theory long exact sequence the boundary homo-
morphism o corresponds to f, in the sense that the diagrams

K (F) —— K, (BQ % @ C{R))

(3.5) 2\ S/ ésuspension)

K/(B)

commute for all ¢. Thus ¢ is surjective and the long exact sequence
associated to (3.4) degenerates to two short exact sequences of the
form

(3.6) 00— K(C) 2> K(F) —— K, (B® 9% ® C(R)) —> 0 .

This implies in particular that K,(C) is a free abelian group for each
g& Z/2 and thus (3.4) does yield a geometric resolution of K, (B).

REMARK 3.7. J. Rosenberg has shown that our results plus an
additional argument imply the existence of geometric injective re-
solutions

0— K, (B)— K, (I,) — K, (I,) —>0

with K, (I;) injective (i.e., divisible) abelian groups. We have
established Kiinneth formulas and Universal Coefficient Theorems for
the Kasparov groups [11] Ext(A, B) which classify extension of the
form

0— B % () A 0

up to stable equivalence using geometric realization techniques pro-
vided that A e® [14], [15].

4. The Kiinneth formula: the general case.

THEOREM 4.1 (KUNNETH THEOREM). Let A and B be C*-algebras
with AeN. Then there is a short exact sequence

0 — K,(4) ® K.(B) — K,(A® B) —* Tor(K,(A4), K,(B)) — 0

with o of degree 0 and B of degree 1. The sequence is natural for
maps of pairs (A, B)— (A’, B').

The following proof does not use the fact that Ae, but only
that a(4, B) is an isomorphism whenever K (B) is torsionfree. Thus
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any generalization of Theorem 2.4 to a class of C*-algebras which is
larger than M yields the full Kiinneth Theorem on that larger class
of C*-algebras.

Proof. Suppose initially that B is unital. Form a geometric
resolution of the form

0— B® % Q C(R) C—2>F 0

and tensor it with the (nuclear) C*-algebra A. The resulting short
exact sequence

48 0—AQBR.% QCR) — ARCEEAQF—0

has associated K-theory long exact sequence

S KAQC) B K(AQ F)— K A® B) —» Koo AQ C) 2K, 1(AQ F)

Unsplice this sequence to obtain the short exact sequence

(4.4) 0 — Coker((1 ®),), — K(4 ® B) — Ker((1 ® »),)y — 0 .

The sequence 4.4 is the Kiinneth formula; it remains to demonstrate
that fact.

Consider the commutative diagram

0— Tor(K«(4), Kx(B)) — Kx(A) @ Kx+(C) B, K(A) @ Ke(F) — Ks(A) ® Ki(B) — 0
(4.5) J’am,c') la(A,F)

EAQC) X K(AQF)

The row is exact since (3.6) is a free resolution of K,.(B). The
vertical Kiinneth maps a(4, C) and a(4, F) are isomorphisms by
(2.14) since AeMN and K, (C) and K, (F) are free abelian groups.
Thus

Coker((1 ® v),) = Coker(l1 ® »,) = K,(4) ® K.(B)
and
Ker((1 ® v),) = Ker(1 ® v,) = Tor(K.(4), K.(B)) .
One checks that & in (4.4) corresponds to a(4, B) under these iden-

tifications. This proves the Kiinneth Theorem under the assumption
that B is unital. The final step of the proof is contained in the
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following lemma.

LEMMA 4.6. Suppose that the Kiinneth Theorem holds for the
pairs (A, BY), (A, C) with A nuclear. Then it holds for (A, B).

Proof. Contemplate the following commutative diagram with
exact rows and columns

0 — K, (4) ® K,(B*) —> K,(A® B*) ~2 Tor(K,(4), K, (B*)) — 0

1®T* (1®T)*
0— K, (A) ® K (C) _“, K, (AQC)—0
1® 04 Ox
4.7) K.(A)® K, (B)—— K,(A® B)
1®0* (1® 0)*
0 — K,(4) @ K,(BY) — K,(A®B*) - Tor(K,(4), K,(B*)) — 0
1®T* (1®T)*

0— K,(4) @ K,(C) — K, (AQ C) — 0
where the vertical maps are induced by the natural maps

g T

0 B— B* > C 0

and

0— AR B340 B 12540 Cc—0.

The boundary map d: K, (C) — K,(B) is the zero map and the resulting
short exact sequences in K-theory are split, so the left column is
indeed exact. Furthermore, 1® 7z, is surjective, which implies
that (1 ® 1), is surjective and that 4,: K, (AR C)— K, (A X B) is
injective.

Unsplicing the middle column yields the short exact sequence

0 — Cok((1 ® 7)4) — K(A ® B) — Ker(1 ® 7),) — 0
but (1 ® 1), is surjective, so we have
K.(A® B) = Ker(1 Q 7)) -

Rewrite (4.7) in light of the above information and one obtains the
following commutative diagram with exact rows and columns:
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0 0 0
K, (4) ® K,(B) —2 K,(A® B)Tor(K,(A), K,(B))
(4.8) jl ® o L ®0)s
0— K,(4) @ K,(B") > K,(A ® B*) —> Tor(K,(4), K,(B*)) —>0
11 ® 1 ® s
0— K, (4) Q@ K,(C) — K,(A ® C) ———— 0
0 0

The Serpent Lemma applied to (4.8) yields an exact sequence

0— K,(A) ® K,(B) 2 K.(A ® B) — Tor(K,(4), K,(B)) — 0

which is, of course, the Kiinneth formula for the pair (4, B). This
completes the proof of Lemma 4.6 and the Kiinneth Theorem. O

REMARK 4.9. It would be very satisfying to drop the assumption
that A e (replacing it by the assumption that A is nuclear and
perhaps separable). The assumption is used in an essential way only
at (4.5). At that point one needs to know that if K,.(B) is free and
if f: A" — A" induces an isomorphism

Sot Ky (A") — K, (A")
then
(f®D),: Ky(A'® B)— K, (A" ® B)

is an isomorphism. A direct proof of this fact would yield the
Kiinneth Theorem in general. The difficulty is equivalent to the
following conjecture, about which we are very mildly optimistic:

Conjecture. Suppose that A and B are C*-algebras (separable,
nuclear if that is necessary) with K,(4) = 0 and K, (B) free. Then
K. (AR B) =0.

REMARK 4.10. We conjecture that the Kiinneth formula splits
(unnaturally), at least if A and B are separable so that Tor(K,(4),
K.(B)) is countable. Some generalization of Bodigheimer’s technique
[3] should suffice. The question is related to the introduction of
coefficients into K-theory-discussed below.
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REMARK 4.11. Suppose that Ne 9t is some fixed C*-algebra with
K(N)=@G, K,(N)=0. As in [16], define

K,(B;G) = KE(B®N) .

The Kiinneth Theorem implies that for any C*-algebra B there is a
natural short exact sequence

(412) 0— K,(B) ® G — K(B; G) — Tor(K, «(B), G) — 0

which shows that, at least up to group extension (see 4.11), the
groups K, (B; G) are independent of choice of N. (The sequence 4.12
was shown to be exact by J. Cuntz [5] when N is a Cuntz algebra).
Suppose further that NQ N® .7 = NQ % (so that G R G = G).
Then there is a Kiinneth formula for the theory K,.(—; G) of the
form

0— > K, (4; &) ® K, ,(B; G) — K(A R B; G)
— > Tor(K,(4; @), K,_,_,(B; G)) — 0

(4.13)

for », g € Z/2. The Cuntz algebras 7, (for n prime) yield coefficients
in the group Z/n and the UHF algebra associated to @ yields rational
coefficients, for example.

There is joint work in progress by the author and J. Cuntz on
the uniqueness of K. (—; Z/n).

Added in proof. Pimsher and Voiculescu have extended their
results of [12] to K. (A X F,) (“K-groups of reduced crossed products
by free groups,” preprint INCREST). Proposition 2.7 extends and
hence the Kunneth Theorem holds for the category obtained by also
forcing 9t to be closed under crossed products by free groups.
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