Vol. 99, No. 1, 1982

Recent Issues
Vol. 332: 1  2
Vol. 331: 1  2
Vol. 330: 1  2
Vol. 329: 1  2
Vol. 328: 1  2
Vol. 327: 1  2
Vol. 326: 1  2
Vol. 325: 1  2
Online Archive
Volume:
Issue:
     
The Journal
About the journal
Ethics and policies
Peer-review process
 
Submission guidelines
Submission form
Editorial board
Officers
 
Subscriptions
 
ISSN 1945-5844 (electronic)
ISSN 0030-8730 (print)
 
Special Issues
Author index
To appear
 
Other MSP journals
The construction of certain BMO functions and the corona problem

Akihito Uchiyama

Vol. 99 (1982), No. 1, 183–204
Abstract

In Euclidean space Rd, let I denote any cube with sides parallel to the axes and write |I| for the measure of I. A real valued locally integrable function f(x) on Rd has bounded mean oscillation, f BMO, if

      ∫
supinf  |f(x)− c|dx∕|I| = ∥f∥   < ∞.
I c∈R I                   BMO

Our result is the following.

Theorem 1. Let λ > 1. Let E1,,EN Rd be measurable sets such that

 min |I ∩ Ej|∕|I| < 2−2dλ                (1.1)
1≤j≤N

for any I. Then, there exist functions {fj(x)}j=1N such that

 N
∑  fj(x) ≡ 1,                      (1.2)
j=1

0 ≦ fj(x) ≦ 1, 1 ≦ j ≦ N,                 (1.3)

fj(x) = 0 a.e. on Ej, 1 ≦ j ≦ N,             (1.4)

∥fj|BMO ≦ c1(d,N )∕λ,  1 ≦ j ≦ N.             (1.5)

Converely, if there exist {fj(x)}j=1N that satisfy (1.2)–(1.4) and

∥fj|BMO ≦ c2(d,N )∕λ,  1 ≦ j ≦ N,             (1.6)

then (1.1) holds.

Mathematical Subject Classification 2000
Primary: 42B10
Secondary: 46E99, 46J15
Milestones
Received: 20 April 1980
Published: 1 March 1982
Authors
Akihito Uchiyama