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Let (X,),.; be a family of Polish spaces, X = I1,.; Xa,

and B the product of the Borel fields of the spaces X,. For
KcIlet Xz = Tlaex X, and let nx: X — X, be the canonical
projection. Moreover, let 1 be a s-ideal in B satisfying
the following Fubini type condition:
Nen if and only if 7' ({ze X, larnb({fye Xow (R, y)e Nhénh)en
for every nonempty JcI. Then, given an automorphism @
from B/n onto itself, there exists a bijection f: X — X such
that f and f~! are measurable and

[f~4B)] = @(B], [f(B)] = @ (B
for all BeS.

1. Introduction. Let (X,),.; be an arbitrary family of Polish
spaces and, for every ael, p, a Borel measure on X,. Let X =
II.e: X. be equipped with the Baire o-field B(X) which is equal to
the product of the Borel fields of the spaces X,. Moreover, let u
be the product measure on B(X) and n the c-ideal of g-nullsets. D.
Maharam [5] showed that every automorphism of B(X)/n onto itself
is induced by an invertible B(X)-measurable point mapping of X.
In [6] D. Maharam proved the same result in the case that nis the
o-ideal of first category sets in B(X). It is the purpose of this note
to give a common generalization of these two results: We shall
show that for c-ideals n in B(X) which satisfy a certain Fubini
type condition the conclusions of Maharam’s theorems still hold.

Choksi [1], [2] generalized Maharam’s first result to arbitrary
Baire measures on X = J[ X,. Our methods of proof consist in a
slight modification of those used by Choksi [2] (cf. also Choksi [3]).
We shall formulate our lemmas in such a way that we can also
reprove Choksi’s theorem.

Our basie tool in the proofs of the results stated above consists
in the following generalization of a theorem due to Sikorski (cf. [8],
p. 139, 32.5): Each o-homomorphism from B(][ X,) to an arbitrary
quotient of a o-field on any set Y (w.r.t. a og-ideal) is induced by a
measurable map from Y to X = ] X,.

This last result is also used to deduce a characterization of in-
jective measurable spaces first given by Falkner [4] (cf. §3).

2. Notation. In what follows (X,)..; is always a family of
Polish spaces. For a subset J of I let X, stand for J],., X, and X
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for X;. For KcJ I let m;; denote the canonical projection from
X; onto X,. If J =1 we write 7, instead of 7,z. For an arbitrary
completely regular Hausdorff space Y let B(Y) denote the o¢-field
of Baire sets in Y. We will write B for B(X). B is equal to the
product o-field of the Borel fields B(X,). A map f: X — X is called
measurable if it is B-B-measurable.

3. Realizing 0-homomorphisms. The following theorem is a
generalization of a result due to Sikorski (ef. [8], p. 139, 32.5)
and provides the basic tool for deriving the results in the later
sections.

THEOREM 3.1. Let X =]] X,, B =B(X). Moreover let (Y, U) be
a measurable space, nt a o-ideal tn A, and O:B —A/nt a o-homomor-
phism. Then there exists an U-B-measurable map f: Y — X with
fY(B)e®d(B) for all Be®B, i.e. @ ts induced by f.

Proof. For every acl define 0,.B(X,) —AUmn by O (B)=
O(z;'(B)). Then @, is obviously a ¢-homomorphism. It follows from
Sikorski [8], p. 139, 32.5 that there exists an A-B(X,)-measurable
map f,: Y — X, with f7'(B) e @,(B) for all Be®8(X,). Define f: Y — X
by f¥) = (full¥))ser- Then f is U-B-measurable and for every BeB
with B= i, 7 (B.,), B, € B(X,,) one has f~(B)= i, fa}(B,,). Since
Jai(By) € 0.(B,) = 9(rz(B,,) we deduce

0 f:2(B.) e o(( wk(B.)) = 0(B) ,

hence
f(B)ed(B).

Since the sets of the above form generate B as a o-field and since
@ is a o-homomorphism it follows that f~(B)e @(B) for all Be®.

Before we shall go on with our main subject let us use the
above theorem to derive a characterization of injective measurable
spaces. Essentially the same characterization has been given first
by Falkner [4]. It is also possible to deduce Theorem 3.1 from
Falkner’s results.

DEFINITION 3.2.

(a) A measurable space (Z, €) is called separated iff for all
z, 2 € Z with z # 2z’ there exists a set Ce€ with zeC and 2'¢C.

(b) Two measurable spaces (Y, ) and (Z, €) are called point-
isomorphic iff there exists a bijection g from Y onto Z such that
g and g™ are measurable. g¢ is called a point-isomorphism.
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(¢) A measurable space (Y, %) is called a retract of a measurable
space (Z,€) iff there exists a subset Z, of Z and an A-€N Z-
measurable map h: Z — Z, with hiz, = idz, such that (Y, %) is point-
isomorphic to (%, € N Z,), where €N Z, = {C N Z,|]CeC}.

(d) A measurable space (Z, €) is called injective iff for every
measurable space (Y, A), for every subset Y, C Y, for every A NY, —
€-measurable map f:Y,— Z there exists an A-C-measurable map
f1Y - Z with f, = f.

LeMMA 3.3. Let (Z, C) be a separated measurable space and let
€ be a subset of € gemerating € as a o-field. Then there exists a
set BC[0, 11° such that (Z, €) is point-isomorphic to (B, B([0, 1]°) N B).

Proof. Define ¢g: Z—10,1]° by g(z) = 12)ree. Then ¢ is
€ — B([0, 1]*)-measurable and one-to-one. Let B = g(Z). For E,c€
we have g(E,) = {(8z)pcs € g(Z)ISEO =1}, hence g(&,)e¥B([0, 1]*) N B,
which proves g to be a point-isomorphism of (Z,€) and
(B, B([0, 1]°) N B).

REMARK 3.4. Let I be an index set and @ # Be3B([0, 1}).
Then (B, B([0, 1]) N B) is a retract of ({0, 1}, B([0, 1])).

Proof. Let x,€ B be given. Define 4:[0, 1)) — B by

hx) = x,xeB
X, € B .

Then % is measurable and h; = id;.

It remains an open question whether every retract of ([0, 1},
B([0, 1]9)) is point-isomorphic to a Baire subset of some generalized
cube [0, 1]*. (For K = I this is not true in general.)

COROLLARY 3.5. (cf. Falkner [4], Theorem 3.2.) For a separated
measurable space (Z, €) the following conditions are equivalent:

(i) (Z,8) is injective.

(ii) There exists an index set I such that (Z,C€) is a retract
of ([0, 11, B([0, 1])).

(iii) For every measurable space (Y, A) and every o-ideal n of
A each o-homomorphism @: € — A/m is induced by an A-C-measurable
map [ Y — Z.
If (Z, &) is countably generated, in addition, then the conditions
(i) to (iii) are also equivalent to

(iv) (&, €) is point-isomorphic to (B, B0, 1]1") N B) for some
BeB(o, 11M).
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Proof. (i)==(ii): According to Lemma 3.3 we may assume Z C
{0, 1} and € =B(0,1]) N Z for some I. Let f = id,. Since (Z, €)
is injective there exists a B([0, 1}') — €-measurable map f:[0, 1) — Z
with 7|, = id,. Hence (Z, &) satisfies condition (ii).

(ii) = (iii): Without loss of generality we may assume that ZcC
[0, 1}, € = %B([0, 1]) N Z, and that there is a B([0, 1}") — C-measurable
map h:{0,1) — Z with h,, =id,. Let (Y, %) be any measurable
space, nCUA a o-ideal, @:E€ - Y/ a o-homomorphism. Define
@,: B([0,1]) —» U/n by @(BNZ). Then &, is a o-homomorphism and
according to Theorem 3.1 there exists an %A — B([0, 1]7)-measurable
map f;: ¥ — [0, 1] which induces @®. Let f=hof,. Then fis %A — €-
measurable and obviously induces &.

(iii) = (i): Let (Y, %) be any measurable space, Y,CY, and
[ Y,—Z an AN Y,—C-measurable map. Let n={4AcW ANY,=T}.
Then n is a g-ideal in A. Define @(C) to be the residual class in A/n
of any AeU with ANY,= f%C). Then @: € — A/n is a o-homomor-
phism. According to (iii) there exists an ¥ — C-measurable map
1Y — Z which induces #. From the definition of @ it follows im-
mediately that ﬁyo = f.

Now let (Z, ) be countably generated.

(i) = (iv): Without loss of generality we may assume that
Zcf0,11, € =3(0,11M N Z, and that there is a %B([0, 1]") — €-
measurable map k: [0, 1]Y — Z with h, = id, (cf. Lemma 3.3 and the
proof of (i) = (ii)). B([0, 1]") has a countable subset & such that for
all x, 2’ [0, 1]" there exists an Ec@ with e E and 2'¢ E. For
2 €[0, 11" Z there, therefore, exists an E e @ with x € E and h(x) ¢ K.
Since h, = id, we deduce xe E\h™(E)C[0, 1]"\Z, hence [0, 11N\Z =
Uzee E\R'(E) belongs to B([0, 11%).

(iv) = (ii) follows immediately from Remark 3.4.

4. Realizing automorphisms. In this section n is always a o-
ideal in B(X), X =[[ X,. For Be®B(X) the symbol [B] stands for
the residual class of B in B(X)/n. We say that a subset B of X
depends only on Jc< I if B = ;% (rx,(B)). It is a well-known fact
that every Be®B(X) depends only on a countable subset of I.

DEFINITION 4.1.
(a) mnis said to satisfy condition (F') iff a set NeB(X) belongs
to n if and only if for every nonempty Jc [l

r'({ze X;|mru(ly e Xpy (2, y)eNY) gnp)en.

(b) n is said to satisfy condition (D) iff for all countable non-
empty J, J,C I with J,NJ, = @ there exists an Nen such that N
depends only on J; U J, and, for all ze X, w;l,,,,(2) N 7Tsu(N) is
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uncountable and of second category in 77}y, ,,(2).

REMARK 4.2.

(1) For every acI let ¢, be a finite measure on B(X,). Let
¢ be the product measure on B(X) obtained from the g,’s and let
n be the c-ideal of g-nullsets. Then it follows from Fubini’s theorem
that n satisfies condition (F).

(2) Let nt be the o-ideal of all sets of first category in B(X).
Then n satisfies condition (F). This is a consequence of Theorem 1
in [6].

(8) If there exists a o-ideal n in B satisfying condition (D)
then each of the X,’s has to be uncountable.

(4) Let ¢ be a o-finite measure on B(X) and n the o-ideal of
p-nullsets. If each X, is uncountable then n satisfies condition (D).
This follows from Lemma B (and proof) in [2].

Let us now state our main theorem.

THEOREM 4.3. Let n be a o-ideal in B(X) = B(I] X,) satisfying
conditon (F) or (D). Let @ be an automorphism of B(X)n onto
itself. Then there exists a bijection f: X — X such that f and f*
are measurable and [ f~(B)] = @([B)]), [f(B)] = @~Y([B]) for all BeB(X).

The ingredients of the proof will be provided by a series of
lemmas. Let us first make the following definition:

Given a measurable map g: X — X a subset J of I is called
g-invariant iff, for all z, ye X, the identity =,(x) = 7,(y) implies
7 (9(x)) = 7, (g(y))-

LEMMA 4.4. Let g, h: X — X be measurable mappings. Then,
for every countable J,c I, there exists a countable set JC I which
contains J, and is h- and g-invariant.

Proof. Let <&, be a countable base for the topology of X, .
For Be <z, let J(B) be the smallest subset J of I such that z;}(B),
g7 (w7 (B)), and h~(z;X(B)) depend only on J. Then J(B) is countable.
Define J, = U{J(B)|Be <&} and let <Z, be a countable base for the
topology of X,. Then one constructs J, from <& as J, has been
constructed from <%,. Continuing this process we get an increasing
sequence (J,) of subsets of I and, for each nc N, a countable base
&, for the topology of X, . Let J = U.,.xJ,. Then J is at most
countable and J,c.J. We shall show that J is g- and k-invariant.
To this end let #, ¥y € X be such that x,(x) = 7,(y). Assume 7,g(x)*
7,9(y). Then there is a ke N with =, g(x) + 7w, g(y). Hence there
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exists a ., with 7, 9(x)e B and =, g(y)¢ B which implies zeg™
n7A(B) and y ¢ g7 77 (B). Since, by definition, g~*(n;(B)) depends only
on J,,, there is a jeJ,,, with 7(x) = 7;(y). But this is a contra-
diction since jeJ,,,cJ. Thus we deduce =,9(x) = 7w,9(y). In the
same way one shows 7,h(x) = 7 h(y).

LEMMA 4.5. Let n be a o-ideal in B satisfying condition (F).
Let ¢ X— X be a measurable map with ¢{N)en for all Nen.
Moreover, let J be a g-invariant subset of I. Define q,;: X — X by
q,(x) = (m,q(x), T, ,(x)). Then q, is measurable with q;'(N)€n for all
Nen.

Proof. From the definition it follows immediately that g, is
measurable. Now, let Nen be given. Since n satisfies condition
(F) we have

P: =z7({ze X, lnny(lye Xps (2, y) e N gnpen.
We will show
B: =n;'({z' e X, |7 ;({y" € Xpy |7, ) e @i (N)D) gn}p) en .
To this end let x € B be given. Then we have
S,: =y € Xp,|(my(@), y) e g (N)D) €n .
Since

S, = nr({y' € Xy, la,((my(®), ¥')) € N})
= wru({y’ € Xp, | (mq(®), ¥') € N})

this implies ¢(x) € P; hence R < ¢ (P). Because of Pcn and, there-
fore, ¢ '(P)en, this implies R en, which, according to condition (F),
leads to ¢7*(N)en.

LEMMA 4.6. (ef. Choksi [3], p. 115.) LetY and Z be uncountable
Polish spaces, ¢:Y —Y a bijection such that q and ¢* are B(Y)—B(Y)-
measurable, and BeB(Y X Z) such that for each yecY the set
B, ={z¢Z|(y, 2) e B} is uncountable and of second category in Z.
Then there exists a bijection r:B— B such that » and r™ are
B(Y X Z)NB—B(Y X Z)N B-measurable and such that, for each
yeY, r(y, -) maps {y} X B, onto {q(y)} X By,.

Proof. According to Mauldin [7], Theorem 2.7 there exists a
set FeB(Z) and a point-isomorphism ¢ from (Y x E,B(Y X Z)N
Y x E) onto (B, B(Y x Z)N B) such that, for each yeY, gy, *)
maps E onto {y} x B,. Define »: B— B by »(y, z) = g(q(¥/’), #’), where
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(Y, 2) =9 y,2). Then r is a bijection and » as well as »* are
B(Y x Z)N B —B(Y x Z)N B-measurable. For each ye Y, g7y, -)
is a map from B, onto {y} X E, and (y, 2)— (q(y), 2) defines a map
from {y} X E onto {q(y)} x E. Since ¢ maps {g9(¥)} X E onto
{a(y)} x B,,, we, therefore, deduce that »(y, -) is a map from B, onto

{Q(y)} X Bq(y)-

LEMMA 4.7. Let nbe a o-ideal in B satisfying condition (F) or
(D). Let g, h: X — X be measurable maps such that g~ (N)en and
R Y (N)en for all Nen and such that hg7'(B) A Ben as well as
g7 (B)A Ben for all Be®B. Let JCI be h- and g-invariant
With w,ohog =T, = w,0g9coh. Moreover, let a,cI be given. Then
there exist measurable maps g, h: X— X and a subset KcI with the
following properties:

(i) JU{a}jcK

(ii) K s §- and h-invariant.

(iii) Zxofoh =g = Axohof

(iv) 7,0f =7, 09 and T,0h =T, 0h

(v) 7 B)Ag B en and i~ (B) Ah{(B)en for all Be®B.

Proof. According to Lemma 4.4 there exists a countable g- and
h-invariant subset J, of I with a,eJ,. Define K =JUJ,. Then K
is obviously g- and &Z-invariant. Define

N={rxeX|mgrogoh(x) = mxx) Or Tgxohog(x) # Tg(x)} .

We will show Nen.

Since w,0g90oh =7, = w,0hog and since K is g- and h-invariant the
set N depends only on J,. Let <& be a countable base for the
topology of X,. Then we have

N ={zeX|3Be H:xn;og-h(x)e B and r,(x) ¢ B}
Uf{re X|aBe FZ:n; chog(x)e B and =, (x) ¢ B}
= lym (R7g7 w7 (B\m7(B)) U (¢7h x5 (B )\w7,(B")) -

Since, according to our assumptions, A7'¢g7'z;(B)\z;{(B)en and
97 h T (B\w;(B) en we deduce Nemn.

Case 1. Let n satisfy condition (F).
Let h, and g, be defined in the same way as ¢, has been defined in
Lemma 4.5. Define

NO = HNU{h;“mh—img;ng—fm e h;”lh*hg;ﬂg*ﬂ(l\])’

Yy, "y Yy 7\"1; "';)‘m; 101, Tty pm; Ky, ""EWLGN} .
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From Lemma 4.5 we deduce N,en, and it follows that 27N, c N,,
k7 (No) © Ny, g7 (No) © N,y and g=*(No) C N.
Define h: X — X by

~ h(x), x¢ N,
h =
®) {hxm, e,
and §: X - X by
3(@) = {g(x), x €N,
= 1g,(), veN,.

Then § and % are obviously measurable.

(1) We will show that K is §- and h-invariant.
To this end let #, y € X be such that z.(x) = 7 (y). If xe N, then
there exist v, <+, Vp, Ny o4, Ny 01y ** 5 Omy K1y *++, £ € N U {0} with

g/clogplohhohl‘;lo...og”mog‘f’mohzmoh;m(x)eN'

Since K is g- and h-invariant it is also g¢,- and h,-invariant. This
fact implies

Txogogfiohfohbio..  ogimogimofhimo fim(x)
=Tgogftogiiohtoo « . ogimo gimo himo fyim(y) ,
Since N depends only on K this implies
ghogitohtoRyio - ogtmogimohinohin(y) e N ;

hence 5 € N,.
Since K is g,-invariant we deduce

T (§(2)) = w(9,(®)) = Tx(9,(¥)) = 7LG(Y)) -

If 2¢ N, it follows by the same arguments that y ¢ N,. Hence, the
g-invariance of K implies

Te(§(x)) = w(9(®)) = T(9(¥)) = 7(G(¥)) -

In the same way one can show that K is k-invariant. _
(2) Next we will show that 7yofch = Tz = wgohog.
If xe N, then we have h(x) = h,{(x). Since

grohy (@) = (m;0 g0y (%), Tpsohs(x) = (Ty0 9o h(%), Tps(®) =

we get h,(x) € g7*(N,) C N,; hence §oh(x) = g, hy (&) = x; in particular
oo h(o) = mela). }

If © ¢ N, then we have h(x) = h(zx). From h™(N,) C N, it follows
that h(x) ¢ N,; hence §oh(x) = goh(x). Since NC N, we get 2¢ N
and, therefore, wiogoh(x) = mwx(x); hence wgofo h(%) = ().
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In the same way one can show that wzoko§ = mx.

(3) From the definition of § and % it follows immediately that
T,0f = T,0g and wyoh = 7w 0h.

(4) Let Be®B be given. Then we have g (B)A g Y(B)C N,;
hence §Y(B) A g~(B) en.

In the same way one can deduce that Z~Y(B) A h~%(B) en.

Case 2. Let n satisfy condition (D).

If JnJ,# @ then, according to condition (D), there exists a
set N’ en such that N’ depends only on J, and such that z7}, ., ()N
7;(N') is uncountable and of second category in =7, .,(u) for all
%€ X 0,

If JnJ,= @ define N' = @.
We will show that J,NJ is ¢g- and h-invariant. Let x, y€ X be

such that z,.,(®) = 7,,n,(y). Then, due to the g-invariance of J,
and J, we have

Tz 9(®) = 750 9((7;(®), Trs (V)
and
Tyo g((ﬂ:Jo(x)y Trs(Y)) = g0 g((ﬁJonJ(x), nJQ\J(x), 751\.70(?/»)
=Ty g((TfJomJ(y), EJO\J(x)y 7Z'I\Jo(y)))
= ;0 9((7,(Y), Tsps(2), Trsoun(¥)))
= ;0 9(Y) ;
hence 7;q,,09(%) = ;05,0 9(Y).
In the same way one can show that J N J, is h-invariant.
Define go: X;0s,— X5, BY 9(%) = 7;05,9(u, w), Where we Xy sy
is arbitrary. Since JNJ, is g-invariant g, is a well-defined map.
From w;090h = 7, = w,0hog it follows that g, is a bijection. It is

also easy to check that g, and g;* are B(X, ;) — B(X;,,)-measurable.
Define

N, = mgN Ulg»h=m - g 2a(NUN") |y, ) Yoy Mgy =+, Mm ENU{0}} .

From our assumptions concerning g and k we deduce N,en, NU
N'cN,, g(N,)C N,, and h~'(N,)C N,. Since N and N’ depend only
on J, and since J, is g- and h-invariant the set N, also depends only
onJ, If J,NJ =@ define §: X— X by

i) = {g(x), r¢ N,

z, €N,

and h: X — X by
h(x), x¢ N,
x, xeN,.

h(x) = {
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Then § and % obviously satisfy conditions (i) to (v) in Lemma 4.7.
If J,nJ +# @ then according to our assumptions (cf. Remark 4.2.8)
X,ons and X, are uncountable Polish spaces. In this case we have
7;(Ny) €B(X,,) and, for each we X, ,;, the set xj} ;n,(u) N 7;(No) is
uncountable and of the second category in 7}, .,(u). According to
Lemma 4.6 there exists a bijection r: 7, (N;) — 7, (N;) such that r
and 77 are measurable and such that, for each we X;, we have

Tyg7900 0 T(W) = Go0 Tz, rons(W) .
Since w;0hog = w; = m,0g0h this implies
WJO,JOHJ”"I(’W) = ho°7rJo,J0nJ<’w) ’

where &, is defined in an analogous way as g,.
Define §: X —» X by

d(z) = {g(w), x¢ N,
(771\4’0 og(x), 7o 77-',70(90)), xeN
and h: X — X by
~ h(x), x e N,
h(z) = {
) (T g0 M(®), 7700 (), €N, .

Then § and % are measurable.

(1) We will show that K is §- and k-invariant.

Let x, y € X be such that 7 (x) = m.(y). Since N, depends only
on J,c K either x and y are both in N, or 2 and y are both in
X\N,. In the first case we have 7 o (%) = Tx(ys,09(®), 7075 (%))
and, due to the g-invariance of K combined with z, () = 7, (¥),

71'1{(751\.70 °og(x), 7o ﬂJo(w)) = (T 15y ° 9(Y), ro,(Y)) = TxG(Y) -
In the second case the g-invariance of K implies
Txo (@) = Txog(®) = Txo9(Y) = TxoG(Y) -

In the same way one can show that K is h-invariant.

(2) We will show that Tgefoh = Tx = Troho§.

Since N, depends only on J, we have A(N,) C N, and §(N;) C N,.
Because g7 %(N,)C N, and AN, c N, we also have g(X\N,) c X\N,
and R(X\N,) c X\N,.

We, therefore, deduce that, for each x e N,

Ty o ho J(x) = Txo ﬁ(ﬂmog(cx;), 107, (2))
= ﬂ'-K(n'I\Jo ° h’(ﬂ:I\JO o g(x), 7o TL—Jo(x)), oo ﬂJo(x)) .

Since ;550507 05 (X) = Goo Tyyns(®) = Typns09(%) and since J is h-
invariant we have
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Tyo h(ﬂ'I\Jo o g(x), romy () = wyohog() .
Because of w,0hog =, and K\J,C J this implies
Tgo o glx) = TCK(EI\JO ohog(x), T, (x)) = (n'K\JO ohog(x), 75,70(97)) = Tg(®) .

For x ¢ N, it follows from N c N, that
Txohod(®) = Tgohog(w) = my().

In the same way one can show that Tgo§ok = 7x.
(3) We will show that 7,0§ = 7,09 and w,0h = 7, 0h.
For 2 ¢ X\N, these identities obviously hold.
For z e N, we deduce

T;0g(®) = T(Tpg,09(@), 70 TL-JO(x))
= (Tz,° 9(x), Tyggonr T 0 TCJ(,(x))
= (Ty\g,° 9(®), g,° T yns(%))
= 7,0 g(x) .

In the same way one can show that mw,oh = 7,0h.
(4) Property (v) in Lemma 4.7 follows from the fact that §
and ¢ as well as & and h differ only in a subset of N,en.

Proof of Theorem 4.3. Let & be the collection of the triples
(J, g, h), where g, h: X— X are measurable such that [g7'(B)] =
O(B]) and [ (B)] = @ B)]) for all Be®B, and J is a g- and h-
invariant subset of I with @,0hog =7, =7 ,0g0h.

We define the following preorder on &:

(Jyy 91y RYS(Tyy 0oy hy) T J.CJ,, Ty e9:=T5 00, and 77-'J1°h2 = 77".11°h1~

According to Theorem 3.1 there are measurable maps g, and &,
from X into itself such that g, induces @ and h, induces ®*. Thus
(D, 9, ho) belongs to & and & is not emply.

We claim that the preorder < is induetive. To show this let
(J3 G2, B)zes be a (nonempty) chain in & and let A €4 be fixed.
Define J = U;c.J; and g: X — X by

T (9:(%), aed,

0D = 1 @), aed .

Let h be defined in an analogous way.
Then g and h are obviously measurable.

Next we will show that ¢g induces @. To prove this it is enough
to prove [g7Y(7z(B))] = @([=;(B)]) for all a,el and all BeB(X,).
For a,e¢J and Be®B(X,) there exists a Ae 4 with a,€J;; hence

97 (n(B) = {w € X|m,,0 g(x) € B}
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= {w € X|m,, © g:(x) € B}
= g7z (B)) .
Since (J;, 9;, 1;) € & this implies [g7(7)(B)] = @([n.)(B)]). For a,e I\J

0
one has to replace » by X, in the above argument. In the same way
one can see that h induces @',
By standard arguments it can be shown that J is g- and &-

invariant and that
Tyogoh =7, =T 0hog .

Thus (J, g, k) is an upper bound of (J;, g;, k), in S.

By Zorn’s lemma there exists a maximal element (J', ¢/, A') in &.
Using Lemma 4.7 we conclude J' = I. Since ¢’ induces @ and &’
induces @' the equality ¢'oh’ = h'og’ = id, yields that f: = ¢’ is a
bijection with the desired properties.
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