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1. Introduction. Let H be a real or complex Hilbert space
and A an operator with domain D in H. We consider the differen-
tial operators

du
1.1 — — A
(1.1 dt “
d*u
1.2 == — Au,
(1.2) o U

and we investigate the Cauchy problem for differential equations
and inequalities in which (1.1) and (1.2) are the principal parts. In
general, we shall suppose that A is a nonlinear, unbounded operator,
neither symmetric nor antisymmetric, and dependent on ¢. In §§2
and 3 we consider the case where A is a linear operator.

Operators of the type in (1.1) were considered by Agmon and
Nirenberg [1] who used a convexity argument to establish not only
uniqueness theorems for the Cauchy problem but also maximal rates
of decay as t — oo.

In §2 we treat linear operators A which can be represented in
the form A = M + N where M is symmetric and N is antisymmetric.
These hypotheses are used mainly for computational convenience.
Instead of symmetry, the actual principal hypothesis on M is the
inequality

4 Re (M@E)u(t), u(t)) — 2 Re (M(&)u(t), w'(f))
(1.3) at
= =7 || M@Ou®) || [ u@) | — 7. llu@) |,

where 7v,, v, are positive constants. Thus the results of Section 2,
when applied to differential operators A, are not restricted to those
operators for which the principal part is self-adjoint. Furthermore,
the condition of antisymmetry on N is easily relaxed. The argu-
ments in §2 are applicable almost without change if N satisfies
either the inequality

Re (N(@)u(t), u(t)) = v(&)||u@) |
or
Re (N()u(t), u(t)) = —¥(&)|ju®) |
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for some positive function v = ¥(f). For computational convenience
the theorems in Section 2 will be established for the case M sym-
metric and N antisymmetric. The differential inequality we inves-
tigate is of the type

(1.4) |2 e) - Awuo)| = 1@ 0@ + | wts)ds|

where
o) = ||u@) [[* + | ME)u@) |[{w@) ] ,

and v is a preseribed function of ¢. We note that (1.4) is more
than a customary semi-linear inequality since M, the symmetric
part of A, occurs on the right side. In the cases which occur most
frequently, that is when A is a partial differential operator, the
part M corresponds to the principal part of the differential operator
while N frequently corresponds to the terms of lower order. Thus
the inequality (1.4) allows the differential operator (1.1) to be
estimated in terms of the norm of its principal part. In the paper
[1], Agmon and Nirenberg decompose A into the sum of three
operators, of which one is symmetric and the other two are anti-
symmetric. While this decomposition is more general than the one
we employ of a decomposition into one symmetric and one antisym-
metric operator, the broader class of inequalities (1.4) which we
treat, together with the conditions we impose on M and N, enables
us to inciude the uniqueness results in [1] as a special case. The
method we employ is one of weighted L,-estimates, a technique
that was developed for differential operators in [15] and extended
by Murray [10], Murray and Protter [12], and Ogawa [13, 14].

In a series of papers Levine [5-9] employed the convexity
method to study the Cauchy problem for broad classes of first order
and second order differential inequalities. He considered principal
parts of the form P(du/dt) — Aw and P(d*u/dt?) + Q(du/dt) — Au
where P and @ are also linear operators which depend on ¢. The
results he obtains overlap with ours, and it is not likely that the
weighted L,-method which we employ can be applied to these more
general operators without making some unusual assumptions about
the interaction of the operators P and @ with A — assumptions not
required in the convexity method.

A detailed analysis of the asymptotic behavior of solutions of
equations and inequalities has been made by similar methods for
partial differential operators. Murray [11] considered ultrahyper-
bolic operators, Ogawa [14] discussed hyperbolic operators, Knops
and Payne [3, 4], and Knops, Levine and Payne [2] investigated
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both the abstract problem and its applications to elasticity.
In §3 we consider second order inequalities of the type

d?u 2 t
| Ty — au <o) + | po)ds|
where
) = [[u) [ + (W) [+ [(MEul), u@)!

and A= M+ N. We establish the uniqueness of solutions of the
Cauchy problem under appropriate conditions on M and N.

For both first and second order operators we show that solutions
which exist for all ¢ > 0 cannot decay too rapidly as ¢ —c without
being identically zero.

In §§4 and 5 first and second order inequalities with nonlinear
operators are considered. In the first order case, we show that the
usual convexity argument can be modified to treat inequalities of
the form

L~ Au s wlulf + v Re (4u, 0]

where an appropriate one-sided bound is placed on Re (Au, u). The
persistence of the zero solution of the Cauchy problem is shown
and maximal rates of decay are obtained. If A satisfies a differen-
tiability condition of the form (1.8) (with M replaced by A), then
we may perturb A by another nonlinear operator B, with appro-
priate one-sided bounds on Re (Bu, u) and Re (Au, Bu), and obtain
analogous results for the inequality

du

o AT Builzévluunz + 7l Aulfull .

In the second order case we obtain similar results for inequalities
of the form

\ % —Au— Bunzé Tollwl® + vl w | + 7| Re (Au, w)| .

2. First order linear operators. Let H be a complex Hilbert
‘space with the usual inner product and norm. We shall consider
functions

w: [0, T)— H

with T = + c allowed. The strong derivative of wu,

w(t) = lim _;L_[u(t +h) — u®)],
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where the limit is taken in the Hilbert space norm, is assumed to
exist for all ¢ in (0, T).

We shall suppose throughout this section that wu satisfies the
following two conditions:

(i) ueC(0, T); H)ynCH(O, T); H)

(ii) ||w'@®)|| = K on (0, T), K a constant.

Let A = A(t) be a linear operator on H for each ¢ ¢ (0, T') which,
in general, will be unbounded. We shall suppose that A can be
decomposed

A(t) = M(t) + N@t)

where M is symmetric and N anti-symmetric with respect to the
inner product of H. We assume that D,, the domain of M(¢) and
N(t), is a linear manifold in H.

We shall be concerned with the Cauchy problem for the differ-
ential operator

2.1) Lu=u — Au =4 — Mu — Nu

for u(t)e D, with mild restrictions on the operator A. The first
hypothesis concerns the relationship between M and N. We assume

(1) Re (M(t)yw, Nt)w) = —%||[M@Ow||-[w] — v.|w]’

for all ¢t€(0,T) and weD,; v, and v, are positive constants. We
note that if A is either symmetric or antisymmetric, then (I) is
automatically satisfied. Furthermore we assume that w(f)eD,, te
0, T'), that Mu, NueC((0, T); H), and that || M(t)u(t)|, || NEu®)||=
K on (0, T).

The second hypothesis concerns only the action of the symmetric
part of A on functions # which satisfy the differential inequality to
be treated. We suppose

- %(M(t)u(tx u(t)) — 2 Re (M(tyu(t), w'(t))
= o || MOyt || |t || — . e |

where v, and v, are positive constants. Of course, (II) implies that
(Mw, w) is differentiable, and we shall suppose for convenience that
(d/dt)(Mu, u) is continuous on (0, 7).

The following weighted L, inequality for the operator L acting
on functions with compact support is basie.

LeMMA 1. Suppose 0 < T, <1 and t, > 0 is such that t, + T,<
1. Assume that u(t) has compact support on [0, T'}. Then for all
sufficiently large 8 > 0, the size depending only on v, 1 =1, ---, 4,
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the following inequality holds:
,ezr%-ﬁ—?ezr‘ﬂ w|Pdt + C,,STO che 1| Mu |t
(2.2) ’ . ’
=G e Lt
0
where T =t + &, and C,, C, are absolute constants.

Proof. For convenience we set ¢(t) = —(t + )% and define
v = e *u. Then

Lu = e[v' + ¢'v — Mw — Nv],

and defining o = a(t) a continuous function from [0, T') to R' to be
chosen later, we have

e || Lul* = ||v" + ¢'v — aMv — (1 — a)Mv — Nv|*.
Therefore, integrating with respect to ¢t from 0 to T,, we find
ﬁe—w | Lul® = 2 Re S(v' — aMv — No, ¢'v — (1 — a)Mv)
— ’ ’ 1 — 2 __ 2 4
2.3) 2 Re Sqﬁ (v', v) + ZSa( a)l| My || Saq& (Mw, v)
— 2Re 5(1 — &)@, Mv) + 2Re S(l — a)(Nv, Mv)

=L+ +1,.

We estimate each of the integrals I:
L= oy = {s ol = = s 00 -
We now restrict the choice of a(f) so that 0 < @ < 1/2. Hence
L = 2{at - )| Mo = {af o]
We use the Cauchy inequality in I, to obtain
1= —2{(Mo, agv) 2 ~[pli Mo |7 — | Lag* |0

for any 6 > 0. For I, we employ hypothesis (II) to get

I, = —2Re S(l — @)W, Mv) = —2 Reg(l — Qe — ¢'u, Mu)

— —2Re 8(1 — a)e(u!, Mu) + 28(1 — @)e¢'(u, Mu)
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2 (0 — @] ——Latu, w) — v || Mu]|-|ul] ~ v u ]
+ 2§(1 — a)e*g’(u, Mu)
_ H””&dt—[(l — e (Mu, w)] — a'e=(Mu, u)

— 21 — @) (Mu, u) — 71 — a)e|||| Mul|- | u ]|
— (1 — e ulf} + 2] — e, Mu)

= \[—a v, v) = 1 = | Mo |- [0} = 7L = @ 0|1
Using the Cauchy inequality again, we find

Lz |[-d||Mof = dil|of]

where
d, = %ua'!el + (1 — a)ves)
4= H( | + 0 - am+ 20 - @)
2\ ¢ &,

and ¢, & are arbitrary positive quantities. We employ (I) to
estimate I;:

Lz {~d| Mol = dol
where

dy = 71 — @), dy = n(L — a){—— + 27,1 — a)

3

and ¢, is an arbitrary positive quantity. Combining the estimates
for I, ---, I,, we obtain

[t zulr 2 fiop] -5 - Latg" — 4, - d

+ | My |laa — 6 — d, — d,] .

We choose 0 =d, =d; = af/4. Then the coefficient of |Mw|?® is
(1/4)a). Also, we select ¢, = (1/d)a/|d’|, &, = A/Da/v1 — a), & =
1/4)a/v,(1 — ). Finally, we set

o = kst

and taking into account the values ¢"" =—gB(8 + 1)r~#2, ¢ =R %
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we get, for sufficiently small k, and sufficiently large g, the coeffi-
cient of ||v|* in the form

ke Srr P

where %, is a numerical constant, and clearly 8 depends only on
the 7,.

We now consider functions w which satisfy a differential
inequality of the form

2.4) |(Zaxe) = o] o) + {o@ds |, te©, 1)
where L is given by (2.1) and

(2.5) o) = [[w®) | + [| M)u@®) |- lu@) || -

THEOREM 1. Suppose condition (I.) holds, and u satisfies (II)
and is a solution of (2.4). If w(0) =0, then uw =0 on [0, T).

Proof. We shall show that =0 on [0, T;,) for sufficiently
small T,. Then a step-by-step procedure establishes the result on
[0, T). Let ¢ >0 be given and define the C= function {(f) = 1 for
0st<T,—¢ =0fort=T, and such that 0 < { <1 for Ty—e<
t < T,

The funetion {u satisfies property (II), since

.(%_(M(Cu), Cu) — 2 Re (M(Cw), (Cu)
~ %?(Mu, u) — 20 Re (Mu, w') — 200" (Mu, w)

CZ[—?%—(M’M, u) — 2 Re (Mu, u’)]

z =0l Mullul] + v ]lwl]
= =% || M) || [|Su || — 7. |{Culf.
Properties (i), (ii), and the other hypotheses of Lemma 1 are easily

verified for {u. Hence we may apply Lemma 1 to the function lu
to obtain

g\ julpde + G e Mulat
(2'6) ' To—¢ 0 T
< CIS || Lu |fdt + C, ST"_ o || L(Cw) |['dt .

From (2.4) we find
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S:"_Eezf‘ﬁ | LulPdt < v S:O_sezf"ﬁ<cu(t) + S:w(s)ds>dt
< 7S:°—Ee“—ﬂ w(t)dt + 7§:°_£e“_’9 S:co(s)dsdt

To—e To—e(To—¢
= 75 " e P (t)dt + 'YS ’ S " w(s)er"dids .
0 0

8

Since 7 < 1, we have 23z7%* > 1 and so

To—e(Ty—e _ To—e To—e -
'yg S o(s)e"*dtds < «/S S 28c-1-1(s)e ™" dids
0 8 0 8

To—e

< WS w(s)ereto T ds
0

Hence

Tg
0

To~e 2~ 8 2 . ¢ a8
S 7 || Lu|Pdt < 278 P w(t)dt
[4]

IA

[ el e + i) |- ue 10

A

2y
e 2r w1 + ke | Mttt |

s LOUS

A

B, e Mtyue) |t

+ (e oy + Lot futty e
0 k,

Thus for B sufficiently large, k, a sufficiently small constant, and
C, = 2C, we find

To—e - — T -
B2§ o2 || () |dt < CIS & || LiCuw) |'dt .
0 Ty—e
Since e ’z#% = ¢27097% on [0, T, — €] and

“

¢ < @™ on [T, — ¢, Til,
we have
g\ luwirar = G Ly dt .

0
Letting 8 — + we find w =0 on [0, T, — ¢). Since ¢ is arbitrary

we have w = 0 on [0, T)).
We may repeat the process on an interval of length less than
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1 beginning at 7T, and thus proceed in a step-by-step manner to
conclude that v =0 on [0, T).

The method used to obtain Lemma 1 may be adapted to yield
results on the asymptotic behavior of solutions of (2.1) ags t — + .
For this purpose we assume that v,, ¢ =1, 2, 3,4 in (I) and (II) now
depend on ¢.

The following inequality is a modification of Lemma 1.

LEMMA 2. Suppose that u(l) = 0. Then there are positive con-
stants ky, ks, k, such that for sufficiently large 8 >0 and all T > 1,
the jfollowing imequality holds:

[ et | eyt [t + | Tt~ = ltrney + m(e)
(2.7 —27,(t) — 7))’ || u () |Pdt— (1 — 4k, T-#)e (M(T)uw(T), w(T))
8T e | w(T) | < e | Lu) |Fdt
1

Proof. We proceed as in the proof of Lemma 1, but choose ¢
and o differently. The integrals I,, ---, I, are defined as before,
and we suppose that a = «(t) is such that 0 < a < 1/2. Then if
(2.3) is integrated between 1 and 7T, we have

L= uD) = | 6" o at

I =2 Sja(l — @) | Mw(@) |'dt = Sfaquu%dt

&~
v

> Sa || Mo |dt — Sfa-lazw v |Pdt

o~
%

~[1 — «DIMT)T), o(T)) — | 1| Mo | + dy o |1t
Lz | (- Mol — ] v |1t
where

dl = %([a']& + (1 - a)’)’382) ’

1/, 1 B
dz—-z—( ]+l @) + 27 @)

dy = 7(l — a)e,, dy = (1 — a)% + 29,1 — a)

3

and ¢, ¢, €, are arbitrary positive numbers. Thus we find
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Sje‘“’ | L Pt = Sj[]v T—¢" — 67" — dy — duJdt

(2.8) n SITHMU e — 6 — d, — d;ldt + ¢'(T) || v(T) |

— [1 — a(T)JM(T)u(T), »(T)) .
We make the selections
6= —tf, a = 4kt~

with k, a constant, 0 < k, <1/8, so that 0 < a <1/2 for t =z 1. We
choose 6 =d, = d, = a/4, ¢, = 1/4)(a/|d’]), & = A/4)(a/7(1 — a)), &;=
(1/4)(a/v,(1 — a)). Then (2.8) becomes

STW | Lu |t = kZSTt—ﬁe%ﬂ | Mu |dt

+ Sfeﬂtﬁ ||u1}2[(,82 — 16k,8° — B)t** — %(1 — ay(vi + 27t

— (1= @)@y, + ) — 8k Jat — BT ()]
—-[1- a(T)]ezTﬁ(M(T)u(T), w(T)) .
We now select &, so small and g so large that
8 — B — 16k,8* — 8k,8% "> > kg for all t =1

and some positive constant k,; then inequality (2.7) is immediate.

We shall show that solutions of differential inequalities similar
to (2.4) cannot decay too rapidly as t-— -+ o without being identi-
cally zero. We consider the inequality

(2.9) (L)@ [IF = 7o) @) [|* + (&) [ MBu@) || | u@) | -

We assume that » is a solution of (2.9) for all t > 0 which for all
B > 0 satisfies

lim ¢ [|u(®) | =0 .

(2.10) -
}33 e (M(t)u(t), ut)) =0.

Furthermore, we shall suppose that

Yi(t), 74(t), Vi(t) are O(t™") as t —oo
(2.11)  (t), 7(t), 7u(t) are O(t*) as t — for some n =0
¥, 1 =0,1, ---, 5, are bounded on compact subsets of (0, ).

The asymptotic behavior of u is desecribed in the following result.
Since no conditions on u(0*) are required, we relax conditions (i)
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and (ii) by requiring only that w e C*((0, «); H).

THEOREM 2. Suppose that w is a solution of (2.9) for all t> 0,
that u € C*((0, «); H), and that (I) and (II) hold. Let v,, 1=0,1, ---, 5,
satisfy (2.11). If, in addition, w satisfies (2.10), then uw = 0.

Proof. We will show that v = 0 on [¢{, ) for each ¢, > 0. It
suffices to establish this fact for ¢, = 2, since the general case
involves only a change of scale which leaves the form of our hy-
potheses unchanged.

Let {(t) be a €~ function such that { =0 for 0=¢t<1, {=1
fort=2,and 0 <1 for 1 <t<2 Define v(t) = L(t)u(t). Then
from Lemma 2 we have for any T > 2,

kzgzt‘ﬂe”ﬁlllkﬂv]P + kZSTt“ﬂe”ﬁ]]ﬂdhL[P

T
+ Sl[ksﬁztp—z — kA 4+ v — 2, — '74162“i ”’U(t) ||2dt
— (1 — 4k, TP (M(TYw(T), w(T)) — BT* ¢’ || u(T||?
= (e izoge+ (e zae.
Since v,,¢ =1, ---, 4, are locally bounded, the integrals on the left

from 1 to 2 may be dropped if 8 is sufficiently large, thus strength-
ening the inequality. Now using (2.9) we obtain

R e | M |
+ gj[k352t5~2 — k(Y + 7)) — 27, — 74]62”2 IKZ Ik
— (1 — 4k, T~ (M(T)u(T), w(T)) — BT* e || w(T) I
= (e izol + (e nllul + vl Mullull

(2.12)

With @ any positive constant we substitute the inequality

| M || < 208 | M+t

into (2.12) getting
Ewme{mﬁ—%WJWJ
thﬁ 2 2482 _ B(ns2 2y _ . ____-1__ B—1 ___
+ Sz € ” U ” [kaﬁ t ELo(v: + v3) 27, Vs 20 Vst '70]
< [ eI Loll+ (1L~ 4R T2 T YUT), w(T) + BT (T
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The hypotheses (2.11) imply that there is a constant ¢ > 0 such
that

|7v@) | Zet* fort=22,:=1,3,5
[v@t) | Zet” fort=2,1=0,2,4.

Hence first choosing 6 sufficiently small and then choosing g suf-
ficiently large, we find

ezf“‘s: || M |62 [ ky — —;-0(:}
+ ' S: [l ])? [tﬁ‘2<k352 — 2k, — %9-) — 4et” ]

< 't Sz | Lo || + (1 — 4k, T-5)e*(M(T)u(T), u(T))
+ BT# e |l u(T) | .

Discarding the first integral on the left, we find that for g suf-
ficiently large,
T 2
2| ulr = | Lol
+ e (1 — 4k, T %) (M(TYw(T), w(T)) + BT* e || w(T)|*] .

(2.13)

Because of (2.10), we have BT*'¢*’||u(T)|*—0 as T — o since
BT* e < ¢™**' for all sufficiently large T. Also, since 0<4k,T—*<
1, we find from (2.10) that

Iim (1 — 4k, T~#)e" (M(T)u(T), w(T)) < 0 .

T—o0

Thus letting 7 —co in (2.18), and increasing B, if necessary, we
conclude that w = 0 on [2, «).

REMARKS. (i) Hypothesis (2.11) is quite restrictive, but the
differential inequality (2.9) is so general that an assumption of a
rate of decay slower than (2.11) yields counterexamples. It also
should be observed that no hypothesis is required on the asymptotic
behavior of N, the antisymmetric part of A.

(ii) The conditions of symmetry and antisymmetry on M and
N, respectively, are actually stronger than is needed and are mainly
for computational convenience in the proofs of Lemmas 1 and 2. In
both Theorems 1 and 2 we could drop the requirement that M be
symmetric, provided that in (II) we replace the term (d/dt)(M(t)u(t),
u(t)) by (d/dt) Re (M(t)u(t), u(t)). For Theorem 2 the second part of
(2.10) would also be replaced by the condition

1th1£ e*" Re (M(t)u(t), u(t)) < 0 .
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The antisymmetry of N was used in the proofs of Lemmas 1 and 2
only to eliminate the integral

(2.14) —2S¢' Re (N, v)dt

by use of the antisymmetry condition
Re (N(t)w, w) =0,

for all te€(0, T') and we D,. (See equation (2.3).) We could weaken
this antisymmetry requirement and still obtain acceptable bounds
on (2.14) by replacing it with an estimate of the form

Re (N@yw, w) < 7ol w|’
in the case of Theorem 1, and by
Re (N(tyw, w) = —7(t) || w ||*

in the case of Theorem 2. In Theorem 2 we would also require
Yo(t) = 0(t™*) as t — + . Under these weaker requirements on M
and N the proofs of Theorems 1 and 2 and their lemmas would
follow as before with only minor and obvious changes.

3. Second order linear operators. As in §2, H denotes a
complex Hilbert space and A = A(t) a linear operator on H which,
in general, is unbounded. We suppose the operator A is decom-
posable into

A(%) = M(¢) + N(1)

where M is symmetric, N is antisymmetric, and D,, the domain of
M(t) and N(t), is a linear manifold in H.

The function u: [0, T) — H is assumed to satisfy the following
regularity conditions, the derivatives of u being taken in the strong
sense:

(iii) weCX[0, T); H)n C*(0, T); H)

(iv) Jju"®)]| £ K, on (0, T'); K, a constant

(v) wt)eD, te(0, T).

In addition, the operators M and N in acting on u are assumed
to satisfy the regularity conditions:

(vi) Mw and NuecC((0, T); H)

(vii) [|[M@u@)]|, | N®u®) || £ K, on (0, T), K, a constant.

Let v,, 0;, v;, 7 =1, 2, 3, be nonnegative continuous functions on
(0, T). We define for all ¢€(0, T') the functions

Fy(t) = 7@ [w@®)[* + o) W' O + v.OIMOu®), wt)|, i=1,2,3.
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In addition to the continuous differentiability on (0, T') of the functions
Re (N(@)u(t), w'(t)) and (M(t)u(t), u(t)), we assume the following three
basic restrictions on the operators M and N, which are required to
hold for functions w satisfying (iii)-(vii):

(A) (d/dt) Re (N(t)w(?), w'(t)) — Re (N()u(t), u”'(t)) = — Fi(¥)

(B) (/) MP)u(?), u®)) — 2 Re (MB)u(?), w'(t)) = —Fyt)

(C) Re (M)u(t), Nt)u®)) =z —Fy(?).
Conditions (A) and (B) are useful for integration by parts, while
condition (C) is a restriction on the relation between M and N. For
example, if M and N commute, then the left side of (C) vanishes
and the condition is satisfied automatically.

For the second order differential operator

d*u

Lu =
= e

— Au = u" — Mu — Nu

the following weighted L,-inequality is basic for the subsequent
theorems.

LEMMA 3. Let &, T, be positive numbers with t,+ T, <1, T,<
T. Suppose u satisfies (iii)-(vii) and that (A), (B), and (C) hold.
Assume

u(0) = u'(0) = w(To) = w'(T,) = 0.
Define © =t + t,. Then for B sufficiently large the following in-
equality holds:

ST°e2’“ﬁ[B‘*f‘3‘*“‘ — 27, — 28777y, — 2]l w(?) [dt

0

+ STOeZT“ﬁ[Bzf—ﬂ—z — 20, — 28t~%"'g, — 20,]||w/(t) |dt
@.1) o
é&aﬂmmmmmt

To
0

+4 v, + BT, + v,] | (M(8u(t), u(t))|dt .

Proof. We set o(t) = —t7f = —(t + t,)”%, and define v = e~*u.
Then

e—2ga HLU/HQ — H/UH _+_ 2¢’vl + (¢r)z?; + @”7) . M'U _ anz .
It follows that

S e || Luu |t

> 2Re ST" 0" + (@'Y — My, 20 + ¢"v — Nu)dt .
0
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With all integrations from 0 to T,, we have
Se—w | Lu|dt = 4 Re S P'(v", ') + 2Re Sgﬁ"(v", v)
52 +4 ReS@'ﬂv, V) + 28(99')2;0" [v]* — 2Re S(v", No)
—4 ReSgD'(Mv, V) — 2§¢"<Mv, v) + 2 Re S(Mv, No)
=L+L+ - +1.
Using integration by parts in I, I, and I,, we find
I =2 Ssv’(v’, V') = —2890”I| v |?
L =2Re [p[(, v = (v, )] = —2Re {9, v) — 20" |||
o G R g T
1, = 2 {(@@, v = —6{@re vl
Thus we obtain
L+L+I,+1= —4§¢"Hv’ I* + S@“’”’ ol
—4{@ye" il
Since @” < 0, we see that
— 4" |V | = ~49"e ¥ |[u' — p'u |
2 o[ Ljw |t — Loy ulr].
Hence
Lt L+ L+ Lz —|ewow|
+§ e [@“’“ - -g—(cp’)@"]ll wl®.
To estimate I, we employ (A) and get
I,= —2Re Se‘?‘f”(u” — 20" + (@'Yu — ¢"u, Nu)

= —2 Re Se‘zﬂp(u”, Nu) + 4Re ge‘Z‘@’(u’, Nu)

71
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> —25 o _dit—[Re (', Nu)] — 2§e-2«=Fl(t)+ 4Re Se“"*"@’(u’, Nu)
- ~2§e“z¢Fl(t) .
We apply (B) to I, and take into account that ¢’ > 0 to obtain
I, = —4Re Se‘zﬁ"(p’(Mu, w — P'u)
2 —2fe 0] L (u, w) + F(©) | + e (@, w)
= 2§e‘2‘°<p”(Mu, u) — 2 ge““’g)'Fz(t) .
Combining I, and I,, we have
L+1I= —zge-w@'m(t) .
Finally, we apply (C) to I; and find
L= ~2§e‘2*"F8(t) .
Thus,
[eizur 23
S e “ l: g" QD )2¢” + q)(iv) - 271 - 2¢'72 - 273]
(3.3)
+ ge-w W [f[—9" — 20, — 290, — 20,]
B zge_z‘”l(Mu, w|[v + Py, + v .
Substitution of @ = —7z~# into (3.8) and the selection of g sufficiently
large yields (3.1).

Lemma 3 provides results on the uniqueness of the Cauchy
problem for second order equations and inequalities in which Lu is
the principal part. The next theorem does not impose bounds on
the symmetric form (Mu, u).

THEOREM 3. Suppose w satisfies (iii)-(vii) and that M and N
satisfy comditions (A), (B), (C). Suppose also that vv,, o, are bounded

and that vy, =0, 1 =1,2,3. Let u satisfy the differential inequality

@o Izl s clow + [owds |, tew 1),
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where C, is a positive constant and
o) = [[u@) | + [ @] .

If u(0) = u'(0) =0, then u =0 on [0, T).

Proof. For g sufficiently large, inequality (3.1) takes the form

1" et fule + oo

=" e? ) Lujat
provided u also satisfies u(T,) = u'(T,) = 0. We introduce the funec-
tion {(¢) as in the proof of Theorem 1 and follow exactly the same
procedure used there to conclude that w = 0.
The next result allows us to weaken the hypotheses considerably
by requiring only that the functions »,, 2 =1, 2,3, are bounded.
However, we must then impose a one-sided bound on (Mwu, u). Speci-

fically, we employ one of the conditions
(D) On (0, T), u satisfies

(M(yu(t), u(®) = 7@ u@® | + o O uw' @) .
(D,) On (0, T), u satisfies
(M@Bu(®), w®) =2 —7B)|u@® [ — o) W@ |,
where v,, o, are nonnegative continous functions on (0, T').
THEOREM 4. Suppose u satisfies (iii)—(vii) and that M and N
satisfy conditions (A), (B), (C), with v, 6, v;, 1 = 1, 2, 8, bounded on

(0, T). Also suppose that either (D,) or (D,) holds with v,, o, bounded
functions. Assume that w satisfies the differential inequality

(3.5) |(Lu®) | = O 0) + | pisras | e 0, 1),
where C, is a positive constant and

@) = [[u@® [ + [« O + [(MEu®), ui)] .
If u(0) = u'(0) =0, then w = 0 on [0, T).

Proof. We write

|(Mu, w)| = |7l wlf + oo — (Mu, w) — v, [ju]’ — o,f|w ]
= 1 vllwll + ol [P — (Mu, w)] + vellwll® + ouflw'[" .
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If (D,) holds, then

|(Mu, w)| < 2v,[[u[}* + 20,[[u'|* — (Mu, ) .
In a similar way, if (D,) holds, we have

|(Mu, w)| = 2v,[|ul}* + 20, ] w'|* + (Mu, w) .

If either (D,) or (D, holds and with @ = —z~#, the above
inequalities yield

S "o’ | (Mu, u)|dt

(3.6)

A

Ty 0
[} o e |+ 2f " el + oo
We have the identity
Xe”“@’(Mu, u) = Se‘“’@’ Re(—Lu + v — Nu, u)
= —Se"wfp' Re (Lu, w) + Se'mp' Re(u",u)y=J, + J,.
For J, we use the elementary estimate
| (L, )| < || L[ + (@) [l
to get
< —2¢ 2 1 e 2
il = fe I Zule + 3 @ lule |-
For J, we integrate by parts twice and obtain
—9 1 ”"r P A1t "3 2 —2 ’ r2
g = [e[ 2o — 399" + 20y | ul = [t ).
Thus we find
oo @au, )| < [em i Luly
—2 1 "ne 1 e ’ 1 7\3 2
(3.7 + Se ¢[Z(¢) + ]Esv — 39'p +2(<P)Hllull
+ \ee e

We now substitute (8.7) into the right side of (3.6) and compute
the derivatives of @ to find for sufficiently large g,
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glerer 0, ) 5 [ | Lu
(3.8) + (e g0 + 2ger ]
+ Se”_ﬁ[,ef”ﬁ'l + 28 +a ]| | -
We multiply (3.8) by 5> and add the result to (8.1) getting

T
[ e g — 67 = 2(r, + 1) — 2807,

-2 e w4 [ g — 200+ o)
(3.9) — 2Bt g, — B¥(1 + 20.)T ]| |
+ S:oe”_ﬂ [P — 2y, + v;) — 2Bv,v ]| (Mu, u)]

= | e + g Lul.

Since the fixed functions v, o0;, v, are bounded, we may choose B
so large in (8.9) that the following simplified version is valid:

l 4 To 2B . —38—4 2 l 2ST° o7~ 8 —p—2 r2

Lo e fulr + 2" e
+ ‘%‘Bmg:oezrﬂf—p—l](Mu, u)i < 2,81/25:0 ezf~ﬂ[|Lu“2 .
To complete the proof, we introduce the function {(¢) and follow
the same procedure as in the proof of Theorem 1. We omit the
details.

We now obtain a result for the asymptotic behavior of solutions
of second order differential inequalities which is analogous to that
obtained in Section 2 for first order inequalities. We require the
following regularity conditions:

(viii) %€ C¥(0, «); H)

(ix) wu(t)e D, for all t€(0, )

(x) Mu and NueC((0, «); H).

We further require conditions (A) and (C) with T = -+ <, but Condi-
tion (B) is replaced by the following conditions, which hold for
functions w satisfying (viii)-(x):

(B, (Mu, w) is continuously differentiable for ¢t <€ (0, «)

(B,) (d/dt)(M(t)u(t), u(t)) — 2Re (M(t)u(t), w'(t)) = 7. u@®)[* +

a,(8) | u'(®) [* + va(0) [ (M(E)u(t), w(®)) .

LEMMA 4. Suppose that u satisfies (viii)-(x), that (A) and (C)
hold with T = +c, and that M satisfies (B,) and (B,). If u(l) =
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u'(1) = 0, then for B sufficiently large and for all T > 1, the follow-
ing inequality holds:

[ 18 — 2m(t) — 2867,) — 2v. @) | utt) it

+ Sj[—;ﬁztﬁ“" — 20,(t) — 28t°a,(t) — Zoa(t)]e”ﬁ [|w'(2) [I*dt

< @98 T | u(T) P + 26°T7° |u'(T) ||* + 2 Re (w'(T),
N(TY(T)) — 28T (M(T)u(T), w(T))]

+2{ D®) + BEwt) + 2Ok | (M), u) | dt

(3.10)

+ Sfeﬂﬁ || L) | dt .

Proof. We proceed as in the proof of Lemma 3 except that we
integrate from 1 to T and choose @ = —t/. The integrand is the
same as in (8.2) but we observe that @'* < 0 for all positive inte-
gers k. When evaluating the integrals I,, ---, I, in (8.2), the evalua-
tions at the upper limit must be taken into account since u does
not necessarily vanish for ¢ = T. Thus we find

L =27/ (D 2| @ o'

L = 2Re 9"(T)W/(T), o(T)) — #"(T) ()
+ [ ool —2f oo

L =2 @I oD — 6 (@Yg" o]

We use the same estimates on the integrals I, + --- + I, as in
Lemma 3. However, to simplify the non-integrated terms, we use
the inequalities

29" || 0" = 29’7 ||u" — Pu |
Z dp'e[|[w' | + (@) | ]

and
29" Re (v', v) = 2¢"e™* Re (w', u) — 29'@" e~ || u ||?
= e[| W + 2" |ull® — 299" [ u ] .
Hence
5Lz - {everiwi + fe] - Sprer + o Jjue
(3.11)

+ e || w(T) |P[6(2"(T)) — 2¢"(T)P"(T)]
+ e D || (T) |49 (T) + ¢"(T)] .
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The estimate for the integral I, in Lemma 3 becomes
8.12) I, = —2e " Re (w'(T), N(TYw(T)) — 2 Se‘z?Fl(t) .
As for I,, we apply (B, and take into account that @’ < 0 to obtain
3.13) I+ I, = —2¢'(T)e " (M(THYw(T), w(T)) + 253“24"@’ KON
The term I, is unchanged so that
(3.14) L= —2§e“29’F3(t) :

The inequality (3.10) results from combining (8.11)-(3.14) for the
integrals I, ---, I, and taking g sufficiently large.

To establish restrictions on maximal rates of decay for solutions
of second order equations and inequalities, we introduce the follow-
ing conditions:

By Lime*[lu@®)|® + [|['@)|] =0, for all 3 >0

t—o0
(B,) Iim e* Re (N(t)u(t), w'(t)) < 0, for all g >0
t—c0
(B,) lim e’ (M(t)u(t), u(t)) = 0, for all g > 0.
t—o
We establish two results, the first of which requires no bound on
(Mu, w).

THEOREM 5. Suppose that w satisfies (viii)—(x), that (A) and (C)
hold with T = +co, and that M satisfies (B, and (B,). Assume
that v, =0, 1 =1, 2,3, and that o;, T, satisfy

(3.15) o,(t) = 0O(t™) as t —— 0
o,(t), a5(t), 7.(£), 7.(t), 7,(t) = O(™) as t —>co for some n =0 .
Let w be a solution for all t > 0 of the differential inequality
(L)@ |* = COUu@) " + [[u') ]
where C, is a nonnegative continuous function with
Ct) = O@t™) as t — 0 ,
If u satisfies (E,), (E,), and (B,), then u = 0.
Proof. Under the additional assumption «#(1) = u’(1) =0, ine-
quality (3.10) results. We introduce the function (f) as in the

proof of Theorem 2 and proceed along similar lines. The details
are omitted.
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THEOREM 6. Suppose that u satisfies (viii)-(x), that (A) and
(C) hold with T = + o, that M satisfies (B,) and (B,), and that (D,)
or (D.) holds with T = + . Assume that

0, Y, are O™") as t ——co

that o, v, v; are Ot") as t — oo for some n =0 and 1 =1,3,5 =
1,2, 8,4, and that o, is bounded. Let u be a solution for all ¢ >0
of the differential inequality

| (L)@ I = COI @) |IP + [[w' @ " + [(ME)ut), u(®))]
where C, is a nonnegative continuous function with
C,(t) = O(t™) as £t ——co .
If u satisfies (E)), (E,), and (B,), then u = 0.

Proof. We first suppose u(l) =u/(1) =0 and establish an
extension of (3.10) under the hypothesis that either (D,) or (D,)
holds. The technique is similar to that used in the proof of
Theorem 4. We set @(t) = —t# and define +(t) = ¢*. Then if either
(D)) or (D,) holds, we have (as in (3.6))

ST 2| (M, w)|dt < H 2 (M, u)dt}
T
2 esrylmlule + o,lw Pt
Also,
ge‘Q""@f’f(Mu, u) = —-ge‘g?q/f Re (Lu, w) + S ey Re (', u)y=Jy + J, .
In J, we use the estimate

L, )] = Ly
In J, we integrate by parts and find
Jo= =\erylwie + Sw[;,r — 20/ — @ +2<¢’>2«;r] e
e~ y(T)(w'(T), u(T))—-— 3 (1) | w(T) |12+¢'(T)V(T)IIH(T)H{]
We estimate the quantity

(YT, w(T)| < [/ (T) | + %(«y(T))ﬂlu(T)Hz
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and insert this inequality into the right side of the above expression
for J,. Hence we obtain

T T
So 52| (Mu, w)|dt < S ¢**|| Lu ||
1

(3.16) + | esgtr + 2wl u

T
+ e + 20t |
+ e[| w(T)|* + 28T || w(T)|] -
We multiply (3.16) by 3** and add the result to (8.10) getting

T
[, e lser — 207, + ) — 28y, — 667~ — 2] ulf
T
+ Sl eztﬁl:_;__ﬁztﬁ—z _ 2(0.1 + 0.3) - 26t5—10.2 — Bs/ztp-z _ 263’2t"‘204:l]]u’ Hz
T
@17y +[ e — 20+ v) — 26671 (M, w)|

gSfeﬂﬁn + BY]|| Lulf + ¢ [98°T + 2872T°] || w(T)|*

+e 126 T? + 4| w/(T)
+¢[2 Re (N(T)(T), w(T) — 28T *M(T)u(T), w(T)]

For @ sufficiently large (3.17) implies the inequality
L evgersupe + | g e
2 h 4 )
1(7 .6 _ T 0t nay
+ _2_8 et B:s/ztﬁ 2 (Mu, u)| < 2S et BMHLH'HZ
1 1

+ P10 T [[w(T) |I* + 38°T* || w/(T) |
+ 2Re (N(THYw(T), w(T)) — 28T (M(T)u(T), w(T))] .

The remainder of the proof follows as in the proof of Theorem 2,
and we omit the details.

REMARKS. As in §2, we may relax the requirements of sym-
metry and anti-symmetry on M and N, respectively, and the results
of this section remain valid. We may drop the requirement that
M be symmetric if in all our conditions the symmetric form (Mu, )
is replaced by the expression Re (Mu, u). This change would be
made, for example, in conditions (A)-(C), (D)), (D,), (E;), and in the
definition of F(t). The condition of anti-symmetry on N may be
replaced by the weaker condition
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Re (N(t)u(t), u(®)) = v:) [|w@®) |,

where v, is required to be bounded for Theorems 3 and 4, and
vs(t) = O(t*) as t — + oo for Theorems 5 and 6. Under these weaker
requirements on M and N the proofs of the results of this section
require only minor and obvious changes.

4. First order nonlinear operators. Let A = A(t) be an
operator, in general nonlinear and unbounded, on a complex Hilbert
space H. Let D, be the domain of A(t) in H. We consider differ-
ential inequalities involving the first order operator

(Lau)(t) = w'(¢) — AB)u(t) .

We assume that solutions u satisfy the following regularity condi-
tions on [0, T') (where T may be + c):

we (0, T); H)nC(0, T); H)

4.1)
w(t)eD,, te(0,T).

For our first result the only requirement we impose on the operator
A is one of semi-boundedness. We assume either

(P))  Re (A@)u(t), ut)) = @) |[u@®)|*, te(0, T) or

(P) Re (A®)u(t), w(t) = —v() | w®], t&(0, T),
where v is nonnegative and continuous on (0, T'). For certain first
order inequalities we show that under hypothesis (P,) solutions of
the Cauchy problem which vanish initially must vanish for all time,
while under hypothesis (P,) solutions cannot decay too rapidly, a
result which implies that a solution which does not vanish initially
can never vanish at any finite time.

THEOREM 7. Let w satisfy conditions (4.1), and suppose that
u satisfies the differential inequality

(4.2) || Lu®)|* = KD Re (A@®)u(®), u®)| + K@) | u@®)|’], te(O, T) .

Assume that K,, K, and v are monnegative and continuous on
0, T) and are in L0, T); define

alt) = S [ 4y(s) + % (8) + 2K2(s)]ds, £>0.

(@) If condition (P,) holds, then
lu@® | =< [|u(0)]’e*”, tel0, T).
(b) If condition (P,) holds, then
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lu@®[® = [[u(0) e, tel0, T).
Proof. We have, for te(0, T),

ey = 2 Re (), w/0)

(4.3) = 2 Re (u(t), Lu(t)) + 2 Re (u(t), A(t)u(t))

= o) | Lu@) [P + o) [|u(®) || + 2 Re (u(t), A®)u(?))
where §(t) is any positive quantity. From (4.2) and (P,) we find

[LulP < Ki|7[[ul® — Re (Au, u) — v[|ul*| + KK u]]
< (27K, + K.K) [[u|* — K, Re (Au, u) .

At points where K,(t) > 0 we select 6(t) = 2K,(¢)"* and obtain
@y L juel s [490) + TE®) + 2K JJuct)]f = @@l

At points where K,(t) =0 we see from (4.2) that (Lu)(¢) = 0, and
(4.4) follows from the first part of (4.3) and (P,). Hence (4.4) holds
for all te(0, T), and integration yields

lu@|* = [|u(0){Fe .

Thus (a) is established. Part (b) is proved similarly, but with the
inequalities reversed.

REMARK. Theorem 7 is an extension of known growth and
decay results, the feature here being the inclusion of the term
|Re (A)u(t), u(t))| in the right-hand side of the inequality (4.2).

If the nonlinear operator A satisfies a differentiability condition,
we may obtain similar results for more general first order inequali-
ties. We perturb A by another operator B = B(f), also possibly
nonlinear, with the domain D, of B(¢) the same as that of A(¢).
The operator L becomes

(4.5) (Lu)(t) = w'(t) — A@®)u(t) — Bu(t) .
We require conditions (4.1) and either (P,) or (P,), and we assume

(4.6) v(t) < v, = constant, v, = 0 for all te(0, T).

We assume the following differentiability condition on A:
(Q) The function Re(Aw, u) is continuously differentiable on
(0, T), and
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% Re (A(t)yu(t), u(t)) — 2 Re (Atyu(t), w'(t)

= =@ u@® | — 2.@) [|A@u@) || |u@) ]| .
We further assume for ¢ ¢ (0, T') the condition
(R) Re (A®)u(?), Bt)u(t)) = —.) [|u(®)[|® — vu(t) [| A u@)]| [lu@)]|
and either
(8 Re (B@)u(®), u®)) = v(@) [|u@) ||F + vi(2) [| A@)u(®) || [|u(®) ||
or
(8;) Re (Bt)u(t), %)) = —7:(&) | ul®) || — »u(t) | A@)u(®) || [ w(@) |-

THEOREM 8. Suppose that u and the operators A and B satisfy
4.1), (Q), and (R), and that (4.6) holds. Let Lu be given by (4.5),
and suppose that u satisfies the differential inequality

(4.7 [[Lu@)[]® < v(0) [|u@) [ + »@&) | AQu@) [ [|u@) ||, te(0, T).
Assume that for i =1, ---, 4 each v; and v; is continuous on (0, T')

and vi€ L0, T), v;€ L0, T). Define

i 4
86 = |1+ 2 (n(s) + »(s)) Jas, te©, 1),
for some suitably large positive constant C,, and let C = v, + 1.
(a) Suppose (P) and (S,) hold. Define

o) = cl|u@®)|* — Re (A()u(®), u(®)), te(0, T).

Then

Jw®)F = p(t) < & lim p(e), te (0, T) .
Hence if
(4.8) w(0) = 0, tTi-H;l Re (A(t)u(t), w(t)) = 0,

then w = 0 on [0, T).
(b) Suppose (P,) and (S,) hold. In this case define

o(t) = cllu@®)|]* + Re (A@®)u(?), u(®)) .
Then

o(t) = e Tim p(e) = e~ [|u(0) | .

It follows that if either u(0)# 0 or lim,.,+ Re (A®)u(t), u(t)) > 0,
then u(t) = 0 for all t in (0, T).

Proof. We first prove (a). Let ¢ =v,+ 1. We define a funec-
tion o on (0, T') by
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(4.9) o) = cl|u(®)|]* — Re (A()u(e), u(t)) .
Then from (P,) and (4.6) we have

o)  lu®)|l, te(©, T).
Moreover, p is continuously differentiable on (0, T') and

(4.10) o = 2¢Re (u, u') — d;‘i Re (Au, ) -

Using (4.5), (P), (4.7), (S,), and Cauchy’s inequality, we obtain

2¢ Re (u, u') = 2¢ Re [(u, Lu) + (u, Au) + (u, Bu)]
< (lul)® + || Lu|? + 2¢(c]|u]l®) + 2¢ Re (u, Bu)
< 8wl + (vllwll® + vl Au ] w]]) + 2¢(vsljul® + v/l Aul fu]])

< (30" + % + 2om, + -i-uz + 3098wl + (% + %)uAuuz.

Similarly, using (@), (4.5), (R), (4.7), and Cauchy’s inequality, we
find

__g;_ Re (Au, u) < —2Re (Au, w') + v, [[u|f + v || Au | |||

< —2Re[(Au, Lu) + (Au, Au) + (Au, Bu)]
+ (o 2ot ) llule + Sl Al

= (FlAulf + 8] Lu ) - 20| Aulf + 20n ]| + %, A )

+ (o + 2ot ) ulf + 3 Aule

= (nr2n+ 3+ o+t 20 ) Jup - 2 aul.

We substitute these estimates into (4.10) and find that there exists
a constant ¢, > 0 such that

0 sefl+ S0 en luly, te, 1.
We define the function
BE) = cOSII + 4; (v:ls) + vi(s)z)]ds, te(0, T).
Then
o) S FMpt), e, T),
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and integration yields, for any ¢ > 0,
o) < PP Fp(e), 0<e<t.
Letting ¢ tend to 0, we obtain
lu@®) [ < p(t) < ¢ lim p(e) -
e—0t
From (4.8) it follows that lim p(¢) =0 as ¢ — 0%, and hence u =0

on [0, T).
In order to prove (b), instead of (4.9) we make the definition

o) = cllu@)[* + Re (A@®)u(), u(t)) .

Making similar estimates as in the proof of (a), but with the
inequalities reversed, we arrive at the inequality

') = —B o)
which yields
) = e W), 0 < e <t .
Letting ¢ tend to 0 we find

ot) = e Tim p(e) Z e || u(O) | -

Hence, if either u(0) # 0 or lim, .+ Re (A(t)u(t), u(t)) > 0, then p(t)>
0 for ¢ > 0, which implies u(t) # 0.

5. Second order nonlinear operators. In this section we
apply the methods of §4 to nonlinear differential inequalities of the
second order. We will show under rather general conditions that
solutions with zero Cauchy data initially must vanish identically,
and solutions with nonzero initial Cauchy data cannot have vanish-
ing Cauchy data at a later time.

Again let A(t) and B(f) denote operators, both in general non-
linear and unbounded, on a complex Hilbert space H. Let D, be
the domain in H of A(f) and B(t), and let L be the second order
operator

(5.1 (L)) = w"(t) — A@)u() — BE)u(t) .
We assume the regularity conditions

uweCX([0, T); H)n CX(0, T); H)

(5.2)
wit)eD, te©,T).

We impose on the operator A the condition
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(T) Re (A@®)u®), w(®)) < v[|u@ | + allw' @)} te®, T),
where v, o are positive constants, with
(5.8) 0<o<l.

Let v, 0, v;, 1 =1, 2,8, be positive and continuous functions on
(0, T). We require further that the function Re (Au, u) be conti-
nuously differentiable on (0, T'), and that one of the two following
inequalities holds:

d

= —7,(t) H u(t) “2 — a,(t) H w'(t) Hz _ 1)1(t>| Re (A(t)u(t), o
or
% Re (A@®)u(®), u(t)) — 2 Re (At)u(t), w'(t))
(Us) dt

= @ Ju@ [P + o) [[w' @) | + v.(t) [ Re (A@)u), u@)] .
We also impose one of the conditions

Re (w'(t), Bl)u(t)) < 7:(8) [[u(@®) [P + 0.(t) [|w' @) |*

(V)

+ () | Re (AB)u(®), u(t))|
or
V) Re (w'(t), BOu®) = —v%:@) [[u@ [ — o:) || w'(®)

— v(t) | Re (A@)u(®), u®))] .

We note that (T) is a one-sided bound on Re (Au, u) which is satis-
fied if the more restrictive inequality

Re (Au, u) < k(||| + [Jull{a"{)

holds for some positive constant k.. The conditions (U, and (U,),
as in all such hypotheses, allow integration by parts. In fact, if 4
is symmetric and has a derivative A’, then these conditions are
one-sided restrictions on the graph of A’.

THEOREM 9. Suppose that u satisfies conditions (5.2) and the
differential inequality

ILu@®* = 7,@u@®) | + o.@®]w' @ | + vo(8) [ Re (A@Qu(?), u@)|,

54 te(0, T).

Let v, 0, v;, 1 =1, 2,3, be continuous positive functions in L,(0, T).
Define
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o(t) = cl[u®) [ + [ WO - Re (ADyu®), u), te(©, 1),
86 = af|1+ 3 (1) + 0.s) + »(e) ds, te (0, T),

where ¢ = v + 1, and ¢, is o suitadly large positive constant.
(a) IFf (T), (U, and (V. hold, then

[u@®F + A — )W @ = o) = & l:i,%‘o(s)’ te(0, T).

Hence if
(5.5) u(0) = »'(0) =0, ERG (A@)u(®), u(®) = 0,

then =0 on [0, T).
(b) If (T), (Uy), and (V,) hold, then

o(t) Z ¢ Iim p(e) Z e[| w(O) [ + (1 — o) [w'(O) ], £ (0, T).
It follows that if either u(0) = 0, %'(0) == 0, or lim, .+ Re (A®)u(t),

w(t)) <0, then u(t) and u'(t) cannot vanish simultaneously for any
t in (0, T).

Proof. We first prove (a). We let ¢ =~ + 1, and define a
function p on (0, T') by

(5.7) o®) = cllu@) [ + [[w'@) [ — Re (A®)u(?), u(®)) .
From (T) and (5.3) we obtain
(5.8 @) = |[u@ |+ QA — o) [jw'@) | .

Moreover, p is continuously differentiable on (0, T'), and
(5.9) o = 2¢Re (u, w') + 2Re ', w”) — % Re (Au, ) .

Cauchy’s inequality gives
(5.10) 2¢ Re (u, w") < ellul* + ej|u'|*.
Using (V)), (5.4), and Cauchy’s inequality we obtain
2Re (W', u") = 2Re[(w', Lu) + (w', Au) + (u', Bu)]
= ('l + | Lu ) + 2Re (', Au)
(5.11) + @v:llulf + 20, [|w'|* + 2v,|Re (Au, u)|)

S @%+ ) |ulf + @o, + o5 + D[/
+ (2v, + v;)|Re (Au, w)| + 2 Re (w', Au) .
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Combining (5.9) — (5.11) and (U,) gives

O =(+ 7+ 2%+ v)ulP+ A+ c+ o+ 20, + o) u|?

(5.12)
+ (v, + 2v, + v,)| Re (Au, u)| .
We also have the estimate

| Re (Au, )| = [ellu | + [[w'[* — Re (Au, w) — eflu|® — |||

(5.13) o
sp+ellulf + uf,

and also from (5.8),
(5.14) lwlP=p, [#[P=A—0a)"0.

Hence, upon combining (5.12)-(5.14) we find that there exists a
constant ¢, > 0 such that

o= 00[1 + ?;‘1 (Ve + 0, + vi)]p .

We define

B0 =] L+ 3 00(s) + 0s) + v(o) [ds -
Then
(5.13) o0 S BOPO), te(©, T),

and integration yields, for 0 <e < t,
o) < )
Letting ¢ tend to 0, we obtain

lu@®F + @ — ) [W'OF = ot) = & im p(e) .

From (5.5) it follows that lim o(¢) =0 as ¢ — 0%, and hence w =0
on [0, T).

The proof of (b) is similar to that of (a), but the inequalities
are reversed. Instead of (5.13) we arrive at the inequality

o) 2 =B ®e®), te, T),
which yields

p(t) = e Pple), 0 <e <t
and hence

o(t) Z ¢ Tim pe) -
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If either w(0) =0, %'(0) =0, or lim,. Re (A(t)u(t), u(t)) <0, then
lim,_,+ p(¢) > 0, and p(t) > 0 for ¢ > 0. But p(t) > 0 implies u(t) and
#'(t) cannot vanish simultaneously.
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