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In 1960 H. Tamano proved that for pseudocompact com-
pletely regular spaces X and Y, (i) X XY is pseudocompact
if and only if pry is z-closed, and (ii) X X Y is pseudocompact
if one of X and Y is a k-space.

In 1979 C. E. Aull asked if every product of functionally
regular SW spaces is an SW space, and he proved that for
a family of functionally regular SW spaces, (iii) their pro-
duct is an SW space if and only if it is pseudocompact.

The main results of this paper will answer Aull’s ques-
tion affirmatively and prove that (i), (ii), and (iii) hold for
strongly functionally Hausdorff spaces.

A topological space X is said to be functionally Hausdorff
if C(X) (or C*X)), the set of (bounded) continuous real valued
functions defined on X, is point separating; given a functionally
Hausdorff space X, wX will denote the completely regular space
which has the same points and continuous real valued functions as
those of X. A functionally Hausdorff space X will be called an
SW space if every point separating subalgebra of C*(X) which
contains the constants is uniformly dense in C*(X) (or, equivalently,
if wX is compact). A Hausdorff space X will be called functionally
regular (strongly functionally Hausdorff) if for each point pe X
and neighborhood V of p (such that V = Cl(Int(V))) there is a
zero set Z of X with peZcCV.

In addition to the above, a proof will be given that every feebly
compact product of SW spaces is an SW space (which will partially
answer another question of Aull), and an example will be given of
a non SW product space each of whose finite subproducts is an SW
strongly functionally Hausdorff space. This example will show that
there exists a sequence {X,} of strongly functionally Hausdorff
spaces whose product X =[] {X,} and whose finite subproducts X, =
I {X,: ne F}, F finite, have the following curious properties: each
wX; = [[{wX,:neF} and is compact, but wX fails to be pseudo-
compact and thus does not equal T[] {wX.,}.

We will obtain several of these results by proving the follow-
ing for a product space X = [] {X,}, where each X, is a pseudocom-
pact strongly functionally Hausdorff space: If X is pseudocompact,
or if each factor space X, is functionally regular, then wX =

ITH{wX,}.
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2. Some recent results. By a P-closed space, where P is
some property of topologies, one just means a P-space X such that
X is a closed subspace of every P-space in which it can be embedded.

Now we can state a characterization theorem.

THEOREM 1. Let X be a functionally Hausdorff space. The
Jollowing are equivalent.

(i) X is functionally Hausdorff-closed.

(ii) wX is compact.

(iii) X is an SW space.

In 1947 E. Hewitt proved that every completely regular SW
space is compact [13], and in 1957 B. Banaschewski used Hewitt’s
result to establish the equivalence of (ii), (iii), and a filter condition
[4]. The equivalence of (i) with (ii) was obtained by me [16] several
years later.

In 1966 we began trying to determine if the property SW is
productive but succeeded only in showing that the product of SW
spaces is an SW space if all but one of the factors are compact.
Two results obtained later are the following.

THEOREM 2. [18] Let X and Y be SW spaces. The following
are equivalent.

(i) X %X Y is an SW space.

(ii) pry: X x Y — X 4s z-closed, i.e., for every zero set Z of
X XY, pry(Z) is a closed subset of X.

(jii) w(X xY)=wX x wY.

THEOREM 3. [19] Let X = [ {X,: a € A}, where each X, is an
SW space. Then the following are equivalent.

(i) X is an SW space.

(ii) For any finite set BCA, pry: X — [ {X;: b € B} is z-closed.

(iii) wX = [[{wX,: ac A}.

One interesting consequence of Theorem 2 is that if X and Y
are SW spaces, one of which is a k-space, then X X Y is an SW
space [18]. Thus, every finite product of first countable SW space
is an SW space. So far as I know, the following question has not
been answered.

Question 4. [19] Is every product of first countable SW spaces
an SW space?

Recently, Aull discovered that there is a close relationship
between pseudocompact and SW product spaces, at least for a large
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family of spaces, namely, van Est’s functionally regular spaces [22].
(It might be mentioned here that included among functionally regular
spaces are, besides completely regular spaces, all spaces and products
of spaces in which points are zero sets; e.g., see [1].)

THEOREM 5. [2] A product of functionally regular SW spaces
is an SW space if and only if it is pseudocompact.

In view of Theorem 5, it is natural to ask the following.

Question 6. [2] (i) Is every pseudocompact product of SW
spaces an SW space, and (ii) is every product of functionally regular
SW spacss an SW space?

3. Some new results. Partial answers to Questions 4 and 6
will be given, and we will obtain the results listed in the intro-
duction.

A topological space is called feebly compact [15] (or lightly
compact [3]) if every locally finite system of open sets is finite. It
is well known that feeble compactness implies pseudocompactness,
and in completely regular spaces the two concepts are equivalent.

LEMMA 7. Let X and Y be topological spaces, and suppose
that X XY 4s feebly compact. Then pry: X XY — X 1s z-closed.

In [21] Tamano proved this (and more) for completely regular
spaces. The short proof in [8] of the “only if” part of Tamano’s
theorem can be wused here without modification to establish
Lemma 7.

THEOREM 8. Let X = [[{X,:ac A}, where each X, is an SW
space, and suppose that X 1is feebly compact. Then X is also an
SW space.

Proof. For any subset B of A4, pr;: X — ] {X,:be B) is z-closed
by Lemma 7, and so by Theorem 3, X is an SW space.

Since it is known that every product of first countable feebly
compact spaces is feebly compact [15], Theorem 8 improves the
result obtained in [19] that every product of first countable feebly
compact SW spaces is an SW space.

It might also be mentioned that since feeble compactness of a
product is determined by feeble compactness of countable subpro-
ducts, one can prove that X satisfies the hypothesis of Theorem 8
by just proving that each countable subproduct of X satisfies it.
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LEMMA 9. Let X be a pseudocompact Hausdorff space, and
suppose that Pc C(X) is such that for each point x€ X and neigh-
borhood V of ¢ in X there exists fe P with f(x)¢ f(X\V). Let pX
denote the completely regular space whose points are those of X and
whose topology 1s the weak topology determined by P. Then pX =
wX.

Proof. Since Pc C(X), every open set of »X is open in wX.
To show that each open subset of wX is open in pX, it suffices to
prove that every zero set of X is a closed subset of pX.

Let Z be a zero set of X. Consider an arbitrary point = in
X\Z. We will prove that there is a neighborhood W, of xz in pX
with W, N Z = ¢.

There exists a neighborhood V of « in X with VNZ =4. By
hypothesis one can find a function fe P with f(x) ¢ f(X\V). Because
X is pseudocompact and feC(X) (since Pc C(X)), it follows from
an argument in [2] (see also [14]) that f(Z) is a closed subset of
f(X). Thus there is a continuous mapping % of f(X) into the unit
interval which vanishes at f(x) and equals 1 on f(Z). The mapping
1= hof is in C(pX), and so W, = +7%([0, 1)) is an open neighborhood
of x in pX with W, N Z = ¢.

It will be convenient to use the easily verified fact that a
Hausdorff space X is strongly functionally Hausdorff provided that
for each point € X and neighborhood V of « there exists f e C(X)
with f(x)¢ f(X\V). We also note that strongly functionally
Hausdorff is a topological and productive property which is slightly
weaker than functionally regular, though equivalent with it in
regular spaces. Its usefulness is illustrated below.

LEMMA 10. Let X =[] {X,:a€ A}, where each X, is strongly
Sunctionally Housdorff, and suppose that X is pseudocompact. Then
wX = I {wX,: a € A}.

Proof. The ring P generated by {fopr,;acA and feC(X,)}
satisfies the hypothesis of Lemma 9, so it follows that the space
pX = [I {wX,: a € A} is the same as wX.

Combining Lemma 10 and Theorem 3, one obtains the following
extension of Aull’s theorem [2].

THEOREM 11. A product of strongly functionally Hausdorff SW
spaces ts an SW space if and only if it is pseudocompact.

The next theorem strengthens an analogous result obtained by
Tamano in [21] for completely regular spaces.



PSEUDOCOMPACT AND STONE-WEIERSTRASS PRODUCT SPACES 163

THEOREM 12. Let X and Y be pseudocompact spaces.

(i) If X and Y are strongly functionally Hausdorff spaces,
then X x Y is pseudocompact if and only if pry is z-closed.

(ii) If X is o Hausdorff k-space and Y 1is a strongly func-
tionally Hausdorff space, then X X Y is pseudocompact.

Proof. (i) According to [17, 4.8(i), due to the referee], if X
and Y are pseudocompact spaces and pr, is z-closed, then X X Y
is pseudocompact. Conversely, suppose X x Y is pseudocompact.
Then the completely regular spaces wX and wY have a pseudocom-
pact product, and so by Tamano’s theorem, the mapping p7r,: wXX
wY — wX is z-closed. Since wX x wY and X x Y have the same
zero sets by Lemma 10, it follows that pry: X x Y — X is z-closed.

(ii) The proof needed here is similar to the corresponding one
in [21]. Let Z be a zero set of X x Y, and consider any compact
subset K of X. The space K X Y is a pseudocompact product of
strongly functionally Hausdorff spaces, so by Lemma 10, K X Y
and K x wY have the same zero sets. Thus ZN (K x Y) is a zero
set of the feebly compact space K x wY, and hence by Lemma 7,
the set KNopry(Z) =prx(ZN(Kx Y)) is a closed subset of K.
Therefore, pr,(Z) is a closed subset of X, and pr;: X x Y - X is
z-closed. By [17, 4.8(1)], X X Y must be pseudocompact.

In {20] it was shown that the property SW is not productive
an example was constructed of a countably compact SW space X
such that X X X is not even pseudocompact. We will now show
that there exists a strongly functionally Hausdorff product space X
such that each finite subproduct of X is an SW space, but X itself
is not an SW space. In either of these two constructions, the
space X can also be used as an example to show that not every
strongly functionally Hausdorff space is functionally regular.

ExAMpPLE 13. Let N denote the set of natural numbers, with
the discrete topology, and let G, = NU T,, where NN T, = ¢, be a
subspace of BN, ne€ N, such that N{T,:ne N} =4, but for each
finite set BC N, the product space I] {G,: » e B} is pseudocompact.
By a construction of W. W. Comfort [7], such spaces exist.

Let B, be the space whose points are those of @GN and whose
topology is the collection of all sets of the form S U (W N (BN\T,)),
where S and W are open subsets of @N. Let I = {1, 2} have the
discrete topology, P, = B, x I have the product topology, and Y,=
G, X {1} U B, x {2} have the topology it inherits from P,. Let R,
be the equivalence relation on Y, defined by the rule (v, 7)R.(w, 5)
if ) v=w and 7 =7, or (ii) v = we T,. Denote the quotient space
Y,/R, by X,.. We will continue to use the symbols (v, i) for the
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points of X,; thus, (v,1) = (v, 2) for ve T,.

The spaces X,, n€ N, have the following properties.

(i) Each X, is a strongly functionally Hausdorff SW space.

(ii) Each G, x {1} is feebly compact, and each B, X {2} is a
Hausdorff-closed space.

(iii) For each finite subset B of N, X; =[[{X.:neB} is a
feebly compact and (hence) an SW space.

(iv) The space X = [] {X,:n e N} is not pseudocompact.

(v) Each X, fails to be functionally regular.

Proof. (i) The proofs that each X, is functionally Hausdorff
and SW are very similar to corresponding proofs given in [20].

To see that X, is strongly functionally Hausdorff, first note
that each point of G, X I has a neighborhood base consisting of
clopen sets. Next, consider a point (v, 2)e X,, where v¢(G,, and a
basic open neighborhood of (v, 2), say

V =Wn({(BN\T, x {2}).

It is easy to show that V = K\(N x {1}), where K is the clopen set
X.NCl,zW) x {1,2}. Let g, fi, ke N, be the {0, 1} valued functions
in C(X,) determined by the rules g(x) = 0 if and only if ze K, and
fily) =1 if and only if y = (k,1). Then f =g + 3, 27%f, is in C(X,)
and satisfies f(v, 2) = 0¢ f(X,\V).

(ii) It is known (and not difficult to prove) that (1) every open
filter base on a space such as B, x {2} has an adherent point (e.g.,
see [6] or [5]), and (2) a Hausdorff space is Hausdorff-closed if and
only if every open filter base on the space has an adherent point
(5], [e6l, [23,17K]). In [7] Comfort proves that each of the com-
pletely regular spaces G, is pseudocompact. Thus G, x {1} is feebly
compact.

(iii) To prove that X, is an SW space, it suffices (by Theorem
8 or 11) to prove that X, is feebly compact. Since any finite union
of feebly compact spaces is feebly compact, it is enough to note
that X, is a union of 2'' gpaces, each topologically having the
form A x F, where A is a product of Hausdorff-closed spaces, and
F is a finite (hence feebly compact) subproduct of the space in [7].
For, the property Hausdorff-closed is productive [23, 17L], and given
a Hausdorff-closed space A and feebly compact space F, one can
show that for a countable open filter base % on A X F and adher-
ent point f of pr.(%), if ac A is any adherent point of the open
filter base

pr,{UNpr7(V): V is open, feV, Uew),
then (a, f) is an adherent point of %7, i.e., A X F is feebly compact.
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(iv) The proof needed here is a modification of one in [7]. For
each ne N let U, be the clopen set

{xre X:2(1) = (n, 1), 1€ N and 7 < n},

and let ¥ = {U,:ne N}. Then, as in [7], because N {T,: ne N}=¢,
one can prove the family % is locally finite. For each ne N let f,
be the characteristic function of U,, and define f = >, nf,. By the
local finiteness of %7, fe C(X)\C*(X).

(v) This is an immediate consequence of Lemma 22 and Remark
23.

REMARK 14. If A is an uncountable set and {X,:ac A} is a
family of topological spaces such that X = J] {X,: a ¢ A} fails to be
pseudocompact, then for some countably infinite subset B of A4,
II {X,: b € B} must fail to be pseudocompact. Thus, by Theorem 11,
if a product X = [[{X,:aec A} of strongly functionally Hausdorft
SW gspaces fails to be an SW space, and if A is uncountable, then
for some countably infinite subset B of A, ] {X,:be B} must also
fail to be an SW space. Example 13 shows that the previous state-
ment has no finite-countable analogue.

Before obtaining our main product theorem, we consider briefly
a family of spaces which contains several useful examples.

It will be convenient below to call a space X: completely regular
at a point x if for each neighborhood V of z in X there exists a
function fe C(X) which vanishes at z and equals 1 on X\V; and
e-completely regular if there is a dense subset D of X such that X
is ‘completely regular at each point of D.

While many examples of SW spaces are strongly functionally
Hausdorff, several well known spaces which are SW spaces fail to
be strongly functionally Hausdorff. For instance, Tychonoff’s
regular-closed but not completely regular space T is an SW space
[18], but one can show that if » is the point at which T fails to
be completely regular, then the definition of strongly functionally
Hausdorff is not satisfied by » and neighborhoods of p; however, T
is certainly e-completely regular-its isolated points are dense. Like-
wise, the same is true of: S. H. Hechler’s noncompact example [11]
of a first countable regular-closed space which can be shown to be
an SW space; and an example due to H. Herrlich [12] of a regular
SW space which is not regular-closed. Theorem 15 shows that for
such spaces Question 6(i) has an affirmative answer.

LEMMA 14. Let X be a pseudocompact space which is e-complete-
ly regular. Then X is feebly compact.
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Proof. If Zx ={U,:neN} is a 1-1 listing of a locally finite
family of nonempty open sets, find continuous mappings f,: X—[0, 1]
so that f, vanishes on the complement of U, and equals 1 at some
point in U,, n€ N, and note that f = 3, nf, e C(X)/C*(X). (By the
local finiteness of %7, for each point z e X there is an open neigh-
borhood V of x on which f equals a mapping in C(X), namely,
fi + -+ + kf:, for some ke N.)

THEOREM 15. A product of e-completely regular SW spaces is
an SW space if and only if it is pseudocompact.

Proof. The property e-completely regular is productive, and
thus the result follows from Lemma 14 and Theorem 8.

Since every product of first countable feebly compact spaces is
feebly compact [15] (see also [10]), Question 4 can be answered for
e-completely regular spaces.

THEOREM 16. FEuvery product of first countable e-completely re-
gular SW spaces is an SW space.

One can easily obtain some extensions of results in [21] and
[17] to e-completely regular spaces.

THEOREM 17. Let X and Y be pseudocompact spaces.

(1) If X and Y are e-completely regular spaces, then X X Y
ts pseudocompact if and only if pry is z-closed.

(ii) If X is a k-space and Y 1is an e-completely regular space,
then X X Y 1s pseudocompact.

THEOREM 18. Ewery product of first countable e-completely re-
gular pseudocompact spaces is pseudocompact.

REMARK 19. In Example 21 a simple example will be given of
a functionally regular SW space which fails to be e-completely
regular.

Let us return now to functionally regular spaces. Some lemmas
will be obtained, and then several positive results will be given
concerning products of functionally regular SW or pseudocompact
spaces. We will conclude by generalizing Theorem 5 and answering
Question 4 affirmatively for strongly functionally Hausdorff spaces.

NOTATION. Given a functionally Hausdorff space X, the closure
in X of a set V will continue to be denoted by V, and the closure
in wX of V will be denoted by Cl,,V; the interior in wX of V
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will be denoted by Int,,V.

LEMMA 20. Let X be a pseudocompact functionally Hausdorff
space, and suppose that V is an open subset of the space wX.
Then V is pseudocompact.

Proof. Suppose, on the contrary, that there exists a mapping
F£eC(V) with sup f(V) = o. Since V is dense in V, there then
exists a sequence {x,} in V such that {f(x,)} is an increasing un-
bounded sequence of real numbers. Since the topology on the com-
pletely regular space w(V) is finer than (or equal with) the subspace
topology induced on the set w(V) by wX, the set V is an open
subset of the space w(V). Thus, for each ne N, there is an open
subset V, of w(V) such that 2, € V,cVand f(V,)C(f(@._r), f(@nsd))-
Let 77 = {V,: ne N}.

Clearly, because f e C(V), " must be locally finite in V. Since
V is a closed subset of X, 7" is also locally finite in X.

By the complete regularity of w(V), choose, for each n& N, a
mapping f, € C(w(V)) such that f, vanishes on V\V, and equals 1
at some point of V,. Since each V, is open in X and f£,(V\V) =0,
one may extend f, to a function g, e C(X) by defining

f(x) if xe 7

GO =10 it wex\V

By the local finiteness of 7”7 in the space X, >, ng, € C(X)\C*(X),
in contradiction of the assumption that X is pseudocompact.

Although every open subspace of a pseudocompact completely
regular space is known to have pseudocompact closure, Example 21
shows that a similar result does not hold, in general, even for
functionally regular SW spaces.

ExAMPLE 21. The type of construction given here is due to
H. Herrlich.

Let H be a compact ordered space having greatest element m
and pairwise disjoint, dense subsets F,, K, and E, such that m e E,
and H = E,U E,U E,. Denote by I = I(H) the space whose points
are those of H and whose topology has as a subbase _# U {E, E},
where _# = the order topology on H. Then one can easily show
that wl = H, so I is an SW space.

If one takes H = [0, 1], then I is a second countable, functionally
regular SW space, but (as noted in [17]) if ac E, and V = E,, then
V is an open subset of I and V is not pseudocompact, since f(z) =
1/(x — a) defines a function in C(V)\C*(V).
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LEMMA 22. Let X be a wpseudocompact functionally regular
space, and suppose that V is an open subset of wX. Then V =
Cl,V.

Proof. Since each open subset of wX is open in X, VcCl,, V.
To see that Cl,,V C V, consider any point x€ X\V. By the func-
tional regularity of X, there exists feC(X) with f(x)¢ f(V). By
Lemma 20, V is pseudocompact. Thus, f(V) is compact, and so
using f, one can find a mapping %€ C(X) which vanishes at x and
equals 1 on V. Therefore, x¢Cl, V.

REMARK 23. In Lemma 22, functionally regular cannot be
weakened to strongly functionally Hausdorff. In the strongly func-
tionally Hausdorff SW space X, in Example 13 let V = N x {1}.
Then V is open in wX,, but (BN\G,) x {2} < (Cl,x V)\V.

As in [18], a functionally Hausdorff space X will be called
weakly absolutely closed provided that every open filter base on wX
has an adherent point in X. It is easily seen that every weakly
absolutely closed space is an SW space. In [18] the following
theorem was obtained.

THEOREM 24 [18]. Let X be a weakly absolutely closed space.
If Y is any SW space, then X X Y is an SW space.

We will see that the concept, weakly absolutely closed, is also
quite helpful in the consideration of products of functionally regular
SW spaces.

LEMMA 25. Let X be a topological space. The following are
equivalent.

(1) X is weakly absolutely closed.

(ii) X is an SW space, and for every open subset V of wX,
V =Cl,,V.

Proof. (i) implies (ii). We will prove that Cl,,V < V. Consider
any point peCl,;V. Let % be an open neighborhood base for p
in wX, and let 7 be the restriction of % to V. Then 7" is an
open filter base on wX and hence must have an adherent point ¢ in
X. Since ¢ is also an adherent point of 7° in wX, ¢ must be p.
Thus pe V.

(ii) implies (i). Let %7~ be an open filter base on wX. Since
wX is compact, 27  has an adherent point in wX, but by the
second statement in (ii), any adherent point of %  in wX is also
an adherent point of % in X.
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ExAMPLE 26. In Example 21, let H denote the one-point com-
pactification of Alexandroff’s long line, and let m be the added point.
Then for any zero set Z with me Z, and for any neighborhood V
of m in I with VCE, one has ¢ = ZN I\(E,UE)cZnI\V);
for, any function in C(H) = C(I) is eventually constant. Note,
however, that I satisfies Lemma 25 (ii).

COROLLARY 27. FEwvery functionally regular SW space is weakly
absolutely closed, but mot every weakly absolutely closed space is
strongly functionally Hausdorff.

LEMMA 28. Let X be a functionally Hausdorff space. The
following are equivalent.

(i) For each open subset V of wX, V =Cl,;V.

(ii) For each open subset B of X, B C Int,, (Cl,x B).

Proof. (i) implies (ii). Let W=Cl,, B and V = wX\W. By
(i), V=0Cl,,V. Now consider any point x € B. Since B and V are
disjoint open subsets of X, one has z¢ V =Cl,,V. Thus, # has a
neighborhood in wX which misses V, i.e., zelnt (wX\V)=
Int,x(Cl,B).

(i1) implies (i). Suppose that V is an open subset of wX. We
will prove that Vo Cl,, V.

Since X\V is an open subset of X, it follows from (ii) that

X\V cInt,;(ClLx(X\V)) = Int,(X\Int,,(V)) = X\Cl,z(Int,(V)) .

Hence V> Cl,z(Int,,V)), and since V is open in wX, we also have
Cl,;(Int, (V) >Cl,, V. Therefore, VO Cl,.V.

The next result gives the primary reason for our interest in
the conditions in Lemma 28.

LeMMA 29. Let X = [[{X,:ac A}, where each X, is a func-
tronally Hausdorff space such that for every open set B, of X,, one
has B, CInt,; (Cl,r B,). Then wX = [ {wX,:aec A}.

Proof. For an open subset B, of a factor X,, Int,, (Cl,; B,
will be denoted *B,. Let T denote []{wX,:aec A}.

In order to establish Lemma 29, it will be enough to prove that
C(X)c C(T), for T = wX if and only if C(X) = C(T). Consider any
funetion f e C(X).

Let 2 = {x,} € X, and let P, and P be open subsets of the real
line such that P,c P and f(x)e P,. There exist a finite set F =
{a,, --+,a,J A and a basic open subset B of X, B = N {pr.(B,):
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a€F}, such that xeB and f(B)c P,. We will prove that f is
continuous at x with respect to the space T by proving that x also
has a basic open neighborhood B’ in T such that f(B’') < P, namely,
the set B’ = N {pr;*(*B,): a € F'}.

Seleet open sets P, i =2, ---, n, such that P,cP,,, i =1, ---,
n—1, and P,cP. Then one can prove that for each 4, 7 =
1’ S, M,

& FNH{pra("Boy): § = ) N (N {praj(By):i < j = a)CP; .

For, suppose that 7 is a positive integer <n and (%), is true
for each positive integer k < 4. Take and fix an arbitrary point
» = {p,) in I1 {X,: e # a;} such that for each positive integer j < 1,
»,;€*B,;, and for any i <j <mn, p,;€B,,. The function g deter-
mined by the rule g(t) = f(¢'), where

y jpu, if a =+ a,
“ 7 ¢, otherwise

is in C(X,). Furthermore, g(B,)C P, Since gec(C(X,,) = C(wX,),
one must have g(*Bui)cg(CleB%)cPi. Because the latter holds
for any such point p and corresponding function g, (%), is true.

By (%),, we have f(B")c P,cP. Also, zc¢B’, for x¢ B, and,
by hypothesis, Bc B’. So, B’ is a neighborhood of z in T, and
f(B" < P, which shows that f is continuous at z with respect to 7.
Thus fe C(T).

Our main theorem can now be given.

THEOREM 30. Ewery product of weakly absolutely closed spaces
is weakly absolutely closed.

Proof. Let X = [[ {X,: ae A}, where each X, is weakly abso-
lutely closed. It is enough to prove that condition (ii) of Lemma
25 is satisfied.

By Theorem 3 and Lemmas 25, 28, and 29, X is an SW space
and wX = [[{wX,:ac A}.

Consider any open subset V of wX. We wish to prove that
V>oCl,, V. Let « be an arbitrary point of X\V. There exists a
basic open neighborhood of z in X, say

B = N {pr7'(Bs): feF},

where F' is finite and each B;, fe F, is an open subset of X,, such
that VN B =¢. Because V is an open subset of wX, it follows
from the latter that VN Cl,,B=¢. Thus VN Int,(Cl,,B) = ¢.
Since wX = [[{wX,: a ¢ A}, we have
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Int,(Cl.xB) = N {pr7*(Int,; (Cl,z (Bp)): f e F},

which contains B (each X, satisfies Lemma 28 (ii)). Therefore, x ¢
Cl,zV, for there exists an open subset of wX which contains x
and misses V, namely, the set Int,,(Cl,,B).

COROLLARY 31l. Every product of functionally regular SW
spaces ts an SW space.

COROLLARY 32. Ewvery product of SW spaces in which points
are zero sets is an SW space.

REMARK 33. In a strongly functionally Hausdorff first countable
space X each point is a zero set, for if {V,:ne N} is a neighbor-
hood base at x, and if f,: X— [0, 1] is chosen from C(X) with f,(z)=
0¢f.(X\V,), then f = 32""f,eC(X) and f~0) = {«x}. Likewise, in
a weakly absolutely closed first countable space X each point must
be a zero set, for if % is a neighborhood base in X for a point 2z,
then {Int,,(Cl,zV): Ve%} is a neighborhood base in wX for =.
Thus, Corollary 32 answers Question 4 for products of weakly
absolutely closed and strongly functionally Hausdorff spaces.

We will give an example below which shows that there exists
a first countable SW space containing a point that is not a zero set.
First a lemma is needed.

LEMMA 34. Ewvery weakly absolutely closed, e-completely regular
space X is Hausdorff-closed.

Proof. Let Z Dbe an open filter base on X. For each set
Uez, it follows from the e-complete regularity of X that the
open subset Int,,U of wX has the property that, with respect to
the space X, it is a dense open subset of U. Thus % = {Int, . U:
Ue%} is an open filter base on wX, and, in the space X, % and
%" have the same adherent points. Since X is weakly absolutely
closed, %" and, hence, % must have an adherent point in the
space X.

Although it is well known that every regular, Hausdorff-closed
space is compact, I do not know the answer to the following.

Question 85. Is every regular, weakly absolutely closed space
compact?

ExAMPLE 36. Let X be the noncompact, separable, first count-
able regular space (S, .”) in [11] which Hechler proved is a regular-
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closed space. Each point z e X\{a} has a neighborhood base consist-
ing of compact clopen sets. Let aX be the one-point compactifica-
tion of X\{a}, where aX has the same points as those of X. Then
every open subset of the compact space aX is open in X, so X is
functionally Hausdorff, as well as regular-closed, and hence is an
SW space ([4], [6]). Since its isolated points form a dense subset,
X is e-completely regular. Therefore, by Lemma 34, {a} cannot be
a zero set, for if it were then every point of X would be a zero
set, and X itself would be functionally regular and thus compact.
Some other product theorems which can be obtained are these.

THEOREM 37. Let X be a weakly absolutely closed space. If Y
18 any pseudocompact space, then so is X XY.

Proof. This theorem is a consequence of [17, 4.10] and can
also be obtained directly from a short argument (similar to the
proof of Lemma 29) which shows that (X xY) = C(wX xY).

THEOREM 38. Let X = [[{X,:ac A}, where each X, is a pseudo-
compact functionally regular space. Then wX = [] {wX,: ac A}.

COROLLARY 39. Let X = [[{X,:ac A}, where each X, is a
pseudocompact space in which points are zero sets. Then X s
pseudocompact.

Proof. A G,;-point in a pseudocompact completely regular space
has a countable neighborhood base [10], so each wX, is first count-
able, and J] {wX,:a€ A} is pseudocompact.

REMARK 40. Some of the results above might lead one to con-
clude that weakly absolutely closed spaces must be very close to
being compact. On the contrary, an example in [17, 8.5] is a first
countable space X such that wX = [0, 1], but which contains non-
empty open subsets {U,:neN} such that each U,> U,,, and
N{U,:ne N} = ¢.

On the other hand, as C. E. Aull and the referee have pointed
out, if an SW space Y is so close to being compact that it is
Hausdorff-closed, then Y must also be a strongly functionally
Hausdorftf space. To verify their result, recall that sY, the semire-
gularization of a Hausdorff-closed, functionally Hausdorff space Y,
is compact (e.g., see [6]), and hence for any open neighborhood V
in Y of a point y, the set W = (V) is open in sY = wY and has
the property that W = V; thus, there exists feC(wY) which
vanishes at y and equals 1 on Y\W, and so one has f(y)¢ f(Y\V).
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In [18, Example 10] an example was given of a countably
compact, Hausdorff-closed SW space Y which fails to be a k-space.
Since every function in C(Y) is eventually constant, the space Y
can also be used to show that although every Hausdorff-closed SW
space must be strongly functionally Hausdorff, such a space may
fail to be functionally regular-Y fails to be functionally regular at
the first uncountable ordinal.
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