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In Euclidean space R’ let I denote any cube with sides
parallel to the axes and write |I| for the measure of 1. A
real valued locally integrable function f(x) on B¢ has bounded
mean oscillation, f€ BMO, if

sup infS | f@) — elda/l 1] = || f llzxo < o0 .
I ceR I

Our result is the following.

ToeorEM 1. Let 2> 1. Let E,, -+, By C R’ be measur-
able sets such that

1.1) min | TN E;|/|T] < 27%
1<FSN
for any I. Then, there exist functions {f,(x)};~; such that
N
1.2) fg fix)=1,
(1.8) 0=fx)=1, 1SN,
1.4 fx)=0 ae. on E;,, 1=<j=N,
(1.5) fillewo S eild, NY2, 1<5j<N.
Converely, if there exist {f;(z)}/., that satisfy (1.2)-(1.4) and
(1.6) I fillswo S eold, NY i, 15N,

then (1.1) holds.
In particular, if N = 2, then the following holds.

COROLLARY 1. Let »>1. Let A, B R* be measurable sets
such that

*) min (|I N Al/|I, [INB|/|I]) <27
for any I. Then, there exists a function f(x) such that
a.7m f@®)=1 ae. on A,

(1.8) f®)=0 ae. on B,
“f”BMO =< ¢(d, 2)/\ .

Conversely, if there exists f(x) that satisfy (1.7)-(1.8) and

I f llewo = eu(d, 2)/N ,
183
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then (*) holds.

Corollary 1 is implicit in Garnett-Jones [10] and is the essential
part of their proof. [See also Jones [13].] Thus, Theorem 1 is an
extension of [10]. In §3, we give the proof of Theorem 1.

Recently, Jones [14] showed that their paper [10] is closely related
to the corona problem. Using [10], he gave an estimate for corona
solutions. In §§4 and 5, we refine Jones’ result by using Theorem 1
instead of [10].

I would like to thank Professor P. W. Jonse for sending his papers
[13]-[16]. I would like to thank Professor M. Kaneko who suggested
me the condtition (*) and Professor K. Yabuta who gave me a valuable
information. I would like to thank referee for his helpful sugges-
tions and for finding some errors.

A comment on notation: The letter C will denote the various
constants which depend only on d and N. The latters &, 7, 5, k, m, n
and p will denote integers.

2. Preliminaries. First, we prepare some notations and lemmas.

For a cube I, I* denotes the cube having the same center as I
and /(I*) = 87(I), where #(I) denotes the side length of I.

We say that a(x) e C(R?) is adapted to a cube I if

suppacC I*
and
la() — a(y)| = & — yi/2(I) .
Let g be a large integer, depending only on d and N, such that
(2.1) 14+ N3%g <20,

In the following, ¢ will be fixed.
A dyadic cube is a cube of the form

(27", (B + 1)27%) X -+ - X [k27", (kg + 1)27%)

where & and k; (1 £ j < d) are integers. Let D, denote the set of
all dyadic cubes with side length 2.

For each I, set
g,I) =log, (| I|/IINE;]), 1=j=N,

where log (| I]/0) means cc.

LemmA 2.1. If IcJ and 2¥|I| = |J|, then
gj(I) = gj(J) — kd .
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Proof.

gI) = log, ({I/| I 1 B,)) = log, (|7[2-*/| I 1 E,)
= log, (I7I/\I N E;]) — kd = log, (|T1/|J  By]) — kd
= g(J) — kd .

LEMMA A [See Fefferman-Stein [7]). If f e€BMO (R?), then
I(f)l - (f)1*| é 2(1 + 3d)”f”BMo )

where (£); = | fway/|1).

Proof. Note that

I

| 17@) = Ordawn 11 = § 17@) = eldwi 11 + e = ()]
2

<2 17w - clay/|T| for any ceR.
Thus, | [£@) = (Deldy/I1T) S 2] £ lsno- o,

D= Dl = | 17@ = Drdawn 1 + | 17@) = Deldu 1)

< 2] llowo + 3¢ | 170) = (Drldy/ I*]
= 2(1 + 3% f |lswo -

LEMMA B [See Coifman-Weiss [6]].

Il f llemo = sup {’Ld f (y)h(y)dy]: there exists a cube I such that

supph c L, |l < 1117, | rwydy =0} .

185

REMARK 2.1. The function h(x) satisfying the above conditions

is called “l-atom”.

Lemma B follows immediately from the argument of dual spaces.

We omit the proof.

LEMMA C [John-Nirenberg [12]]. If feBMO (R?), then
Hze I: | f(®) — ()| > M| < ey(d)274 ¥ Imxo
for any cube I and any N\ > 0.

For the proof of Lemma C, see [12].
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3. Proof of Theorem 1. The converse part of Theorem 1 is
an immediate consequence of Lemma C.

Let I be any cube. By (1.2), there exists j,e{l, ---, N} such
that

(fi)r = 1/N .
Thus,

TN Byl ] = [{we I | fi(@) — (fi):| 2 NI by (1.4)
< c(d)2-w@/weld B/ hy (1.6) and Lemma C

<2 by aA>1

if ¢,(d, N) is sufficiently small. This concludes the proof of the con-
verse part of Theorem 1.

The difficult part of our proof is the construction of f, ---, fx-
The idea of the following construction is essentially due to P. W.
Jones {13]. [See also L. Carleson [3].]

By (1.1),

Thus, if A\ is not so large, then

N
=TS, 125N,

satisfy the desired properties, where X, denote the characteristic
function of a measurable set E. So we may assume that X\ is large
enough.

First, we assume

(3.1) E, -« Eycl0,1) x --- x[0,1)=1,.

We will inductively construet the sequences of BMO functions
{1} 1 < 5 < N) such that

L2y S a@) =,

(1.3) 0= Ful@) =,

(1.4) @ < g(D)Jd on I if IeD,,
(1.5 Il S eidy )

If the above {,;,} have been built, then there exists a sequence
1§h1<h2<h3<

such that {7, }i.. 1 < j =< N) converge weakly* in L” since || 4, [lo =N
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by (1.3)’. Set
fj — w*'iim/’,hk/h »

Then, (1.2) and (1.8) follow from (1.2) and (1.8). Let h(x) be any
l-atom. Then,

[ rwrway| = |tim | £a,@n@aun
< lim sup || 4, [/~ by Lemma B
< e¢(d, N)/» by (1.5).
Thus, (1.5) follows from Lemma B. Since

lim g,(I)=0

I3%,|I|—0
for almost every « € E; by Lebesgue’s theorem,

lim /4 ,(x) =0 a.e. on E;
h—oo

by (1.4). Thus, (1.4) follows. Hence, f, ---, fv are the desired
functions.

It is fairly easy to remove the restriction (3.1). By the same
argument as above, for any positive integer p, we can construct
fiw» 1 = 7 < N, such that

N
X =1,
0 §fj,p(x) g. 1 »
fj!p(x)::o on Ein{(xly Yy xd):lxnlépylénéd}7
| fi.p llswo < e(d, N)/N .
There exists a sequence
l=sp<p, <.
such that {f;,}i-. 1 £ 5 = N) converge weakly* in L. Then,
j}:w:-limf,-,,,k, 1<j7<N,
are the desired functions.
Thus, all we have to show is the construction of {4,} that satisfy
(1.2)'-1.5). In Lemma 3.1, we will construct {,/,} and show that

they satisfy (1.2)'-(1.4). In Lemma 3.3, we will show that they
satisfy (1.5)".

Lemma 3.1, If E, ---, Ey satisfy (1.1) and (3.1), then there exist
{/in(@)} and A;, c D,, where 1 < j < N and 1 < h, having the prop-
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erties (1.2)-(1.4) and

(3.2) | a@) — Aay)| = 20 % — gy,
(3.3) A; v ={Ie Dy S;‘GJ-P/,.;L—1(93) > g,(D)/d},
(3.4) Aa(®) Z () — 3,

(3.5) Aia®) Z () on (IELAJ- hI*)° .

Proof. By (1.1), for any I
max g;(I) = 2dx .
1<j<N

Set
s(I) =min{j:1 < j = N, g;(I*) = 2d\} .

We may assume s(I;)) = 1. Set

Ad®) =N,

Then, {4} satisfy (1.2)-(1.4)" and (3.2). Assume that 4;, 1<j=
N,1=<h<k-—1) and 4, A1<j<N, 0<h=<k—1) have been
defined so that they satisfy (1.2)'-(1.4)" and (8.2)-(8.5).
Define A4;, by (8.3). By modifying /4, ,, we will build /.
Let b,(x) be adapted to I, 0 < b,(x) <1 and

(3.6) b@)=1 on I.
Let A;, = {L}n=1,....or Set
a,(x) = min (gb, (%), 4.,-.(%))
a7,() = min (gb;, (@), (o) — 3, 01,(2))

— min (qb,m(x), max ( () — rZ:qb,n(x), 0))

for m=2,---,N.

Since the supports of {b, } overlap at most 3% times, 37%¢'a, are
adapted to I,. Set

Far®) = 4@ = 3 ay(@) = (@) = 030) -
Since
fol®) = mAX (un®) = | 3 abi(a), 0),

we get
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max (5, 4(x) — 3%, 0) < 4(®) £ A£ua(®) ,

~

Sia(®) = 44(x) on (1 U I*r.

€45,k

Thus, {4}, satisfy (1.8), (3.4) and (3.5).
If Te A;, and x €I, then

/@) < max (4, .(x) — ¢,0) by (3.6)
< max (9 (J)/d — q,0), where JeD,, and JDOI,
< g9,I)/d by Lemma 2.1 .

If IeD\A; , and z<c I, then
@) £ (@) < g(D)/d

by the definition of A, ,. So, { ,47 wfi-1 satisfy (1.4). But, they don’t
satisfy (1.2)". So, we have to modify {,} further.
Set

Jin®) = @) + p a(%)

3.7 1eU¥ _ dp pestD=4
= /(@) + w; @) .

Since
N N
—jzzl v;,.(2) + JZZI w;x) =0,

{7, satisfy (1.2)'. (1.8), (38.4) and (3.5) are clear since a,(x) = 0.
If TeD, and w; ,(x) = 0 on I, then

@) = 4@ < g(D)Jd on I

since /f,c satisfies (1.4)’. If IeD, and w, (x)%0 on I, then, by the
definition of w; , in (8.7), there exists Je D, such that

J*o I and g{(J*) = 2dn .
By Lemma 2.1,
g;(I) =z 9;(J*) — (log; 3)d = \d
since A is large. So, by (1.8)
/@) =N = g D)/d

and (1.4)" holds.
Lastly, we show (8.2). If z,yeJ and JeD,, then

[(=v;,1®) + w;,1(®) — (—;,.) + ;)|
(3.8) = > lad®) —aw)].

N
TeUp—1dm,k
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Since the supports of {a;};eu?_ 4,, Overlap at most N 3¢ times, (8.8)

is dominated by

msk

N3¢.3%.q. | — y|-2%,

So,
|a@) = ] S | 4@ = /aa(®)] + N2 gla — y|
= {1 + N8“gj2¥|x — y|
< 2%y —y| by (2.1).
This concludes the proof of Lemma 3.1. |

LEMMA 3.2. 4,(x) < g;(I)/d — hq — log, («(I)) + 8-2/d"* + 2 on I
for any I such that <(I) < 3-27%,

Proof. There exist at most 4¢ dyadic cubes J, -+, Jun €Dy,
k(I) < 4%, such that

JNI+O.
Let

r = min g,J,) .
1<iLE(T)

Then, by (1.4)
inf /7, (x) < r/d .
xel
So, by (8.2)
(3.9) @) = r/d + 3-2%d* on I.
On the other hand,

0(1) = log, (11\/|11 B
= log, (1) 5, 1J:0 Ey)

3.10
310 > log, (| 1}/(4° max |J, 0 B])
1<i<k(l)
=7 + log, (|I|/27%%) — 2d .
Thus, the desired result follows from (8.9) and (3.10). ™

LEMMA 3.3. || 4.4llswo = e(d, N).
Proof. Let I be any cube. If #(I) < 27", then by (3.2)
(3.11) inf | |,£4(0) — eldy/|I| < 2
ceR JI

If 0<nm < hand 27" < /(I) < 2™, put



BMO AND THE CORONA PROBLEM 191

8=\ A/l

Note that by Lemma 3.2

(3.12) Bi < 9;(IM[d + q + 3290 + 2.
We will show

(3.13) |, 14w - gilauiI = C.
Put

{xel:| Fux) — B;| > a}
(3.14) ={rel: 4,(x)<B;—alUf{zel: 4,(x) > B; + a}
=G, j,0) U H(, j, a) .
First, we estimate |G(I, j, a)|. Let a > d"*2?. Note that /. (x) >
B; — d”*27 on I by (38.2). 8o, if xeG(I, j, @), then, by (3.5), there
exists Je A4;,, n <k < h, such that
xed*,
@) < B; — .

So,
Siaa(®) < B; —a+ 3% by (3.4)
and
Swa(y) < B; — a + 3%q +2d* on J by (3.2).
Thus,

9;(JJ)/d < B; — a + 3%q + 2d"* by (3.3).

Noticing the above fact, we can take disjoint dyadic cubes
{Jm} cC Un<k§h Aj,k such that

J.cI*,
G, j,e0)cU I,

(3.15) 0,(J)ld < B; — a + 3%q + 24",
Thus,
]G(Iy j’ a)] é 3d2 lJm] = 3dz ]Jm N Ejlzgj('f‘"‘)

= G2 3|, N E;| by (3.15)
(3.16) < Coim 3 |J, N B by (3.12)
< C2r=<d| I* () ;| < C|T|2 .
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Next, we estimate |H(I, j, @){. Let @ > (N — 1)d"?2?. Note that
v=1Bn =N by (1.2)". So, if ¢ H(I, j, a), then

San(®) =N — (%)

= 38— @ = (S B — (@) — )

1<Sm<N,m#j

Thus,
(Bw— ma(x) Z .
1<m<N,m+j
So,
T € LNJ G(I, m, a/(N — 1)),
1SmM<N,m#j
Thus,
H(I, j) a) c 'TVJ G(I, m, a/(N - 1)) .
1<Sm<N,m#j
By (3.16),
(3.17) |H(I, j, )] < (N — 1)C|I|2~e/*-D

Thus, if 1 =)= 2", then (3.18) follows from (8.16), (3.17) and
(3.14).
If «(I)>1, put

Br=N\
Bj:()y 2=j=N.

Then, (3.13) follows from the same argument. Thus, Lemma 3.3
follows from (3.11) and (3.13). I

4. A refinement of Jones’ paper ‘‘Estimates for the corona
problem?’. Let H> denote the Banach algebra of bounded analytic
functions defined on R% = {z = (x, y): x € R, y > 0}, endowed with the
usual sup norm. The corona problem is as follows. We are given a
finite number of functions F,, F}, ---, Fye H* which satisfy

inf sup | Fy(z)| > 0.

2=(2,9y) eRa_ isi<N

We then must produce G, G,, - -+, Gy € H* such that
N
2 Fi2)Gz) =1.
The functions G; are called corona solutions. As is well known, the

corona problem was solved affirmatively by L. Carleson [1]. [See also
[2], [11], [8] and [18].]
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Recently, Jones [14] gave an estimate for the corona solutions.

THEOREM A. Let 0 < e < c¢(N). Suppose F,, ---, Fyc H” satisfy
[Fille.=1, 1j<N,

(4.1) max |F;(z)| >1—¢ for any zcR:i.
1<GEN
Then, there are corona solutions G, ---, Gye H” satisfying

IIGJl]w§1+A(N98)’ 1§.7§N9
SIUF@G®)| =1+ AN, ¢) for any zeR:,

S I (Fy@)G,(2)| < AN, &) for any zeR%,
where o~
(4.2) A(N, &) = ¢(N)log™(1/e))*
log*+V¢ = log (log® ¢t) .

As is pointed out in [14], (4.2) is the best order possible when
N = 2. In this section, as an application of Theorem 1, we show

THEOREM 2. In Theorem A, we can replace (4.2) by

(4.3) A(N, €) = ¢(N)(log (1/e))™" .

REMARK 4.1. (4.3) is the best order possible when N is fixed.

In [14], Jones showed two kinds of proofs. In this note, we
show Theorem 2 by refining the second proof of [14].

As is shown in [14], though it is not explicitly stated, for the
proof of Theorem 2, it suffices to show

THEOREM 3. Let F,, ---, Fy and ¢ be as in Theorem A. Then,
there exist f,, ---, fx € BMO (B") satisfying

(4.4) S A@=1,
(4.5) 0<fx)<1, 1<j=<N,

(4.6) SPy(x — Of()dt <1/2N) of [Fyx, y)| <1 —¢e",

4.7) [ fillewo = eo(N)(log (1/e))™, 1<j=<N,

where
P,(x) = y/(z(@® + ¥7)

that is the Poisson kernel.
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The proof of the fact that Theorem 3 implies Theorem 2 is com-
plicated. We omit it in this note. Roughly speaking, it is through
“Carleson measure” that H= relates to BMO (RY). For the definition
of “Carleson measure” and for detailed discussion about the relation
between Theorem 2 and Theorem 3, that is the relation among H™,
BMO (R') and “Carleson measure”, see [14].

In the following, we prove Theorem 3.

For an interval I c R', let

TI) ={z = (x,y)xel |12 <y <|I},
Fj(I) = inf,.r IF](Z)I, 1=7=N.

All we need is the following

THEOREM 4. Let F,, ---, Fy and ¢ be as in Theorem A. Then,
there exist measurable sets K, ---, By C R' such that

(C.1) mui 1IN E; NI <e”” for any interval I,

(C.2) [INE;|I>1~¢e"™ if
(4.8) FyI)<1—¢&”.

Jones showed Theorem 4 for the case N = 2. Since our proof
is very complicated, we postpone it to §5.

It is fairly easy to show that Theorem 3 follows from Theorem
4 and Theorem 1. This idea is also due to [14]. First, by Theorem
4, we get E, ---, Ey satisfying (C.1) and (C.2). Next, we apply
Theorem 1 to these E, ---, Ey and » = —(log,¢)/(52d). Then, we
get f,, -+, fv satisfying (1.2)-(1.5). (4.4), (4.5) and (4.7) follow from
(1.2), (1.3) and (1.5). So, it suffices to show (4.6).

Let (z, ¥) e R%: and 1 < j < N be such that

| Fi(x, y)} <1-—¢&".
Put
I=@-y,2+y).
Then,
F()<1—¢",

So, by (C.2) and (1.4),
(4.9) |, fioae 1 < e

On the other hand, by Lemma A and (4.7),

le—1

:fj<t> dt/2y| < 8e(N)(log (1/e))™

2
—9k—1

(4.10) Hizk sy |
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for k=1,2 ---. So, by (4.9) and (4.10),
o (azteky
[ 2o —trwar s ¢ 5[ soa
< C 3 2 Hi(log (1/e))™ + &)

= C(log (1/e))™
< 1/2N if ¢(N) is small enough .

Thus, (4.6) follows.

5. Proof of Theorem 4. First, we prepare some definitions
and lemmas.

DEFINITION. For an interval I, a function F(x, y¥) defined on R%

and a positive number a, let

'x,a)={w,v):le—ul <2v,0<v=a},
F*"(x) = inf ]F(’Ll/, ’U)I ’
(u,v)el'(z,a)
R, F,8) ={xel: F*"'(x) < 1 — ¢} .
For a measurable set F and xe R, let

My(@) = sup |[I N E|/|I] .
LEMMA 5.1. Let F(x, y) be as above. Let 6 > 0. Let I and J
be intervals such that

IcJ and F(I)= ir;i(:'l |F(z)] <1—0.
ze )
Then, I < R(J, F, 5).

Since I'(z, |J|)D T(I) for any xzel, this follows very easily.
See Fig. 1.

LEMMA D [Jones [14]. See also [4] and [17]]. Let 0 < e < c¢y.
Let F(x,y) be a complex valued function, harmonic over R: and
satisfying

|Fll. =1.
Let I be an interval such that
sup |[F(z)| >1—¢.
zeT(I)

Then,
|R(I, F, &7)| < e"|1] .
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For the proof of Lemma D, see [14].

Our fist claim is the construction of the measurable sets &, -- -,
&y C R' such that

€1 max|Inglllz1—e® if IcL=(-11),
1<SFEN

(C.2y [INn&;|/lI| <& if Icl, and if (4.8).
Note that if these &, ---, &y have been constructed, then
(5.1) Ei=(Z), 1=j=N,
satisfy
(C.1)” 12}-&]10 E}NI <& if Icl,
(C.2)” [INEHNI >1—¢e if IcI andif (4.8).

In particular, E!, ---, Ey satisfy (C.1) and (C.2) if I 1.
Now, we show the first step of this construction. See Fig. 2.
By (4.1), there exists p(1)e{l, ---, N} such that

sup) |Fop(@) >1—c¢.

zeT (I3
Set
R = R(L, qu(l), 81/3) ’

Z1) =L\R.
Set
(5 2) gp(l),l = g<1) ’

’ Ein=0 if j#=p1) and 1< N.
By Lemma D,

(5.3) |R| < e I] .
Set

G = {x e l;: Mg(x) > &'} .
By the Hardy-Littlewood maximal theorem and (5.3),
|G| = Ce™™|R| < ¢ L] .
If IcI, and I & G, then
I[INR|/|I| <™
by the definition of G. So,
(5.4) 1IN &/l ] >1—¢e".
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If IcI and if F,,,(I) <1 — ¢*%, then Ic R by Lemma 5.1. So,
(5.5) In gp(l)’l = @ .

Thus, by (5.4) and (5.5), &y, -+, &y, satisfy (C.1) and (C.2)
under an additional condition I ¢ G. This concludes the first step.

In the second step, we make each &, a little larger so that
(C.1)Y holds under a weaker condition than I ¢ G. But, if we make
& ;. too large, then (C.2)" will not hold. This is the difficult point.

Set

(5.6) G =2 12,m),

where {I(2, m)};-, are disjoint open intervals. In the second step we
repeat the above argument for each I(2, m). In the first step, we
had only to consider the intervals included in 7,. But, this time,
we cannot restrict our attention to the intervals included in I(2, m)
since the condition (C.2) is very delicate. We have to pay attention
to the relations among {I(2, m)}.. This is why we will introduce
the intervals {J(2, m)}, in the following. See Fig. 3.

LeMMA 5.2. We can inductively construct open intervals {I(h, m)},
{J(h, m)}, measurable sets {&(h, m)} and integers {p(h, m)}, where
1< h and 1 £ m, having following properties:

(i) I, 1)=1L, &Q1,1) =), p{1,1)=pQ1), J1, 1) = (—e"%,
eV IA, m) = @, A, m) = @, p(, m) =0, JA, m) = @ for m = 2,
{12, m)},, are defined by (5.6),

(il) 3. I+ 1, m)C >, I(h, m), where {I(h, m)}, are disjoint,

(ii1) 3. Ik + 1, m)| < % 30, | I(h, m)],

(iv) 3ndh, m) = {z: Ms 10,m(x) > """}, where {J(h, m)}, are
disjoint,

(v) &(h, m)cIh,m),

(vi) af Ith, m) # @, then ph, m)e{l, ---, N},

(vil) ¢f Il and if I ¢ 3., I(h + 1, m), then there exist B" < h
and n =1 such that

(56.7) In&®w,n)|/|Ilz1 — e,

(viii) if I, b and n satisfy I, J(h, m), p(h, n)e{l, --+, N}
and Fog..(I) <1 —¢" then &, n)NI= Q.

Let us accept Lemma 5.2 for the moment.

Set
(5.8) Ein = U &k, m) .

Esm:k<h,plk,m)=3F
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Note that when h = 1, this definition concides with (5.2). Note that
(59) gj,lc gj&(:...cgj‘hc... .

LeMmA 5.3.
(C.1y"” ma:IcV[In Sl =1 — e’
1<j<
of Icl, and if I& >, I(h+1,m),
(C.2)" [IN &/l ™ ¢f Icl, and if (4.8).
Proof. If IcI and if I ¢ 3, I(h + 1, m), then by (vii) there
exist ¥ < h and % = 1 such that (5.7). Since &,u,m. 2 LR/, n),
1IN & malllI] =1 — "™,

This shows (C.1)"”.
Note that by (ii) and (iv)

(5.10) % Jk + 1, m) czm, J(k, m) .
Let Icl, and F(I)<1—¢ If IcC3,,J(h, m), then by (5.10)
ICcy.,J(W, m) for any R’ €{l, ---, h}. By (viii),

eh,myNI=0@
for any A’ < h and # = 1 such that p(%’, n) = 5. So, by (5.8),
(5.11) EinNl=0.

If k,<h, ICS,,Jk;, m) and I & >, J(k; + 1, m), then by the
same argument as above

EinNI=0.
By (iv)
TN 2 Ik, + 1, m)|/| 1] = & .
Since
EinC L, U (; Ik + 1, m))
by (5.8) and (v).

(6.12) L0 EalllIl = 1IN &, /I + 110 3 I + 1, m)|/H]
éex/mo-

So, (C.2)"" follows from (5.11) and (5.12). This conclcudes the proof
of Lemma 5.3. Ll
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Set

o

g': (g,‘,k, 1SQSN.

! k=1 -
Let I < I,. Since
[ Ih + 1, m)|—0 as h—

by (iii), there exists %, such that
I¢gUIh +1,m) for any h=h,.
Thus, "
max |10 &,[/|1| = maxlim |10 &)/l ] by (5.9)
= limmax |1 () &;,1//1]
=1—¢" by (C.1)".
If T I, and if (4.8), then
[I0 &5/ = lim [T &ul/l] by (5.9)
< e by (C.2)".

Thus, these &, (1 £j < N) satisfy (C.1) and (C.2). So, E}
(1 £ j £ N) defined by (5.1) satisfy (C.1)” and (C.2)".

Lastly, we remove the restriction Ic I, in (C.1)” and (C.2)".
By the same argument as above, for each positive integer L we get

measurable sets EF, ---, Ef such that
(C.1y™ m_il}V]Im Ef|/|I|<e”® if Ic(—-L, L),
1<5<

(C.2)" IINEF|/II| >1—¢e if Ic(—L,L) and if (4.8).
There exists a sequence

I1ISLA)<L@2)< ---
such that
{XEJI:(k)}f=1 , 14N,

converge weakly * in L*. Let
E; = {x e R: w*lim,_., XE]L(M(Q;) > 1/2}.
Then,
min |10 &|/|I| < min 2 S w*lim Zgrady)| I
1<§<N 1<§<N I I
= 21lim min |I N EF?|/|I]| < 26V < &/ .

koo 1<§KN
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Thus, (C.1) follows. If F;(I) <1 — &3, then
TN E;|/|I] =1~ |InE;|/|]]
=1 -2{1| - S w*-lim XEI:(mdy}/II]
I koo 7
=1-2{1| —lim|InEf* Y]
k
g 1 — 2{1 —_ (1 — 61/100)} g 1 — 61/101 .
Thus, (C.2) follows. This concludes the proof of Theorem 4.
Proof of Lemma 5.2. Assume that {I(h, m)}, (h =2, ---, k; m =
1’ 2; ot '): {J(hy m)}’ {g(h, m)}; {p(h, m)}’ (h = 2; Tty k— 1’ m =
1,2, ---), have been defined so that they satisfy (i)-(viii). Define
{J(k, m)},. by (iv). We show how to define {&(k, m)}., {p(k, m)}, and

{Itk + 1, m)},.
Let

tI)=min{l £ 5 < N: selgg) |Fy(z)] > 1 —¢}.
By (4.1), t(I) is well defined.
If I(k, n) = @, then set
Lk, n) =@, ok, n)=0.
If I(k, n) # @, then there exists unique J(k, m,) satisfying
Ik, m) < J(k, m,)
by the definition of {J(k, m)},. Set

R(k, m) = I(k, n) N R(J(k, M), Foisie,mpns ey,
&k, n) = I(k, n)\E(k, n) ,
p(k, n) = H(J(k, m,)) .

Note that

(5.13) mm,gc“m’m) &Lk, n) C J(k, m\R(J(k, m), Fysi,mns €7°) -
Set

(5.14) Z Ik +1,1) = %‘, {x € Ik, n): Mgy, (x) > %}

where {I(k + 1, i)}, are disjoint open intervals. Then,
Sk + 1, 9)| = Ce™® 3 | R(k, n)|
by the Hardy-Littlewood maximal theorem ,
< Ce™® 3 | R(J(k, m), Fyizie,mny €71
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by the definition of {R(k, n)}.,
(5.15) =< Cev»na 301 J(k, m)] by Lemma D,
é Ce—1/25+1/4—1/100 Z II(k’ n) |

by the definition of {J(k, m)}, and
the Hardy-Littlewood maximal theorem ,

< eV 3 [k, n)]

Lastly, we show that the above defined {J(k, m)}., {& %, m)}in,
{p(k, m)},, and {I(k + 1, m)}, satisfy (ii)-(viii). (ii) and (iv)-(vi) are
clear. (iii) follows from (5.15).

Let

Icl and I3 Ik+1,m).

I I1¢3, Ik, m), then (vii) follows from the hypothesis of induction.
Let

Ic Ik, n).
Then, by (5.14)
[IN Rk, n)|/|I| <.
So
1IN &k, n)|/|I| >1—¢&".

Thus, (vii) follows.
Let

IcJk, m)y, ok nyefl, - -, N} and
(5.16) Fopn(I) <1 —¢&"7.

If I(k,n)N I+ @, then
Ik, n) < J(k, m)
by the definition of {J(k, m)}, and
(5.17) p(k, n) = UJ(k, m))
by the definition of p(k, »). So, by (5.16)-(5.17) and Lemma 5.1,
Ic R(J(k, m), Fyiymns €7°) .

Thus, by (5.13)

Ingkn) =0.
Hence, (viii) holds. This concludes the proof of Lemma 5.2. |
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(x,131)

X

J
FIGURE 1
&) = Sp(l),l = &(@1,1)
ey ) — —) 6t 3
R, R R,
-1 kG 9' L_G_,l Lﬁl 1
1(2,1) 1(2,2) 1(2,3)
FIGURE 2
1/3 1/3
ROI(2,1F (500,19)2 &) RUDF, (102,2))* & )
B — = 1
I(2,1): 1(2,2) I(z,3)
J(2,1) 3(2,2)
FicuRre 3

6. Further discussion. Jones [14] showed that for the case
d = 1 Corollary 1 follows from Theorem A. By the same argument,
we can show that for the case d = 1 Theorem 1 follows from Theo-
rem 2.

The following is completely due to [14].

Let E,, ---, Ey C R' be such that (1.1). Let &;(z) be the harmonic
extension to R% of X;,(v) and Hh(2) be the harmonic extension to
R’ of the Hilbert transform of X, (»). If

[(x — 2%, © + 2%y) N E;|/|(x — 2%y, © + 2%y)| < 27%

and if ) is large enough, then

hi(z, y) =\ (/@ — £ + y»))dt/z

o, Y@ — & + y)dt/m + dt/(zy)

—tl>
/2

S(z—ﬂy,x-(-zzy)ﬂEj

SEj
92—

A

Set
Fj(z) = 2 Wi+l | ywhere 4 = vV =1,
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Then,
F,e H>,
1 Fill. =1,
max [ Fyz)| >1—2N2"%* for any z€R: by (6.1).
1<5<N
Let G, ---, Gy be corona solutions guaranteed by Theorem 2. Since
1G]l =2
[Fyz,0)| <2 a.e.on E;,
we get
(6.2) |Gy(z, 0)F;(z, 0)| < 2-27Y <1/2N a.e. on E,.
Since

[ Im (F(-, 0)G,(+, 0))[|.. = A(N, 2N27%%) < Cy/\

by Theorem 2 and since the Hilbert transform is a bounded operator
from L~ to BMO, we get

(6.3) I Re (Fi(+, 0)G(+, 0)) ||nxo < Cu/ .
Set
fi(w) = max (Re (Fy(z, 0)G,(z, 0) — 1/2N), 0) .

Then,

fi®)=0 on E; by (6.2)
and

| illexo = Cy/x by (6.3) .
Since

S\Re(F,G)=1,
é fi®)=1/2 for any xzecR'.

Set

Fi@) = Fiw) 3 Fio)
Then, these satisfy (1.2)-(1.5).

REMARK. Recently, J. B. Garnet and P. W. Jones found a simple
proof of [15]. And their method simplifies the proof of Theorem 1
in this paper. I would like to thank Professor P.W. Jones for
valuable information and for his encouragement.
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