Vol. 99, No. 2, 1982

Recent Issues
Vol. 332: 1  2
Vol. 331: 1  2
Vol. 330: 1  2
Vol. 329: 1  2
Vol. 328: 1  2
Vol. 327: 1  2
Vol. 326: 1  2
Vol. 325: 1  2
Online Archive
Volume:
Issue:
     
The Journal
About the journal
Ethics and policies
Peer-review process
 
Submission guidelines
Submission form
Editorial board
Officers
 
Subscriptions
 
ISSN 1945-5844 (electronic)
ISSN 0030-8730 (print)
 
Special Issues
Author index
To appear
 
Other MSP journals
Resolution of ambiguities in the evaluation of cubic and quartic Jacobsthal sums

Richard Howard Hudson and Kenneth S. Williams

Vol. 99 (1982), No. 2, 379–386
Abstract

If p 1 (mod 2k) is a prime, the Jacobsthal sum Φk(D) is defined by

        p∑−1 x(xk + D )
Φk(D ) =   (----p----) (k = 2,3,⋅⋅⋅ ).
x=1

It is shown how to evaluate Φ2(D) and Φ3(D) for any integer D.

Mathematical Subject Classification
Primary: 10G15, 10G15
Milestones
Received: 15 February 1980
Revised: 27 October 1980
Published: 1 April 1982
Authors
Richard Howard Hudson
Kenneth S. Williams