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BMO FROM DYADIC BMO
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We give new proofs of four decomposition theorems for
functions of bounded mean oscillation by first obtaining each
theorem in the easier dyadic case and then averaging the
results of the dyadic decomposition over translations in R,.

1. Introduction. Let ¢ be a locally integrable real function
on R™, let @ be a bounded cube in R™, with sides parallel to the
axes, and let |@| be the Lebesgue measure of @. Then

1
I

is the average of @ over Q. We say @ has bounded mean oscillation,
® € BMO, if

Pe = S pdwx

lell =su pI_Q—IS P — @plda < oo .

A dyadic cube is a cube of the special form
Q=1{k2" <z, <(k; + 1271 = j = m}

where n and k;, 1 < j < m, are integers, and @ has bounded dyadic
mean oscillation, ¢ € BMO,, if

leld— P — @,lda < oo .

lQi S
Then clearly BMO c BMO, with ||@||; < ||#]|, but BMO and BMO, are
not the same space; the function log|®;|X, ;5o is in BMO, but not in
BMO. In analysis BMO is more important than BMO; because BMO
is translation invariant, but BMO, is not. On the other hand, BMO,
is very much the easier space to work with because dyadic cubes
are nested (if two open daydic cubes intersect then one of them is
contained in the other). For example, for BMO the original proofs
1], [6], [8], [11] of the four theorems stated below were rather
technical, while for BMO, the analogous results are comparatively
trivial. In this paper we derive the four theorems from their dyadic
counterparts.
Here is the idea. Let T.p(x) = @(x — ). Then

qD(w)—lm S; . T.p(x + a)da .

1
= (2N)"
351
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Each of the theorems amounts to showing @ € BMO has the form
@ = F, + F, where F, and F, are BMO functions satisfying certain
additional growth conditions. By the BMO, result we have

Tp = Fi© + F

where F'{®, F{® ¢ BMO, satisfy the extra growth conditions on dyadic
cubes. To prove each theorem we show the averages

F(x) = lim

(@)
Nooo (ZN)"‘ S ﬂgNF'J (@ + a)da

are in BMO and have the correct growth. The method yields this
general result.

THEOREM. Suppose that a — @ is a measurable mapping from
R™ to BMO, such that all ¥ (x) have support a fixed dyadic cube,
such that |||l £ 1 and such that

Scp(“’(w)dx =0.
Then

Py(@) = Sa_ P (x + a)da

(2N)”‘
is im BMO and ||oy| < C.

By duality, this theorem implies Davis’s result connecting H*
and H},q. on the unit circle. The proof of theorem is implicit in
the arguments below. In §4 we show

¢N=g+§fn

where g€ L~ and where f,(x) satisfies the Lipschitz condition (8.3)
and the thinness condition (4.2). From these |py|| < C follows
easily. This general result is not explicitly used in the proofs of
Theorem 1 to 4.

Let #(Q) denote the sidelength of the cube Q. A Carleson
measure is a signed measure on the upper half space R} = R™ X
(0, ) such that for some constant N(o),

lo1(@ x (0, 2(@)]) = N(9)|Q|

for all cubes @ c R™. Here |o| is the total variation of 0. Let K(%)
be a positive function for which

1.1) K(x) = O((1 + =)™
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and
SK(x)dx ~1.
Write K,(x) = y"K(z/y), y > 0.

THEOREM 1 (Carleson [1]). If ¢ € BMO has compact support, then
there is g€ L™ and there is a Carleson measure ¢ such that

(1.2) P(@) = g(x) + SR:,_MKy(x — H)da(t, ) ,
where

lgll- = Cllo]
and

N(o) = Cllo]l,

where the constant C depends only on K(x).

Theorem 1 implies Fefferman’s Theorem [5] that H*(R™) has dual
space BMO. Under the additional hypotheses

[P K(x)| = 0 + |e))™),

the converse of Theorem 1 is true (and not difficult). It then follows
that H'(R™) = {f e L': f¥ € L'} where f# is the maximal function
SUD;_a1<y | f*K*(t)]. See [5].

By the theorem of John and Nirenberg [7], @ € BMO if and only
if there is A > 0 such that

(1.3) 1 S eAle=saldy < oo

pI-Q—iQ

In fact, (1.8) holds with A = ¢||@]||™?, ¢ depending only on the dimen-
sion. Set

A(p) = sup{A: (1.3) holds} .

THEOREM 2 ([6]). There are constants c,(m) and c,(m) such that
if @ € BMO then

01(M) f . 2('m/) .
) sinflle—gll = e

The left inequality is immediate since A(p — g) = ¢l — gl
geL>. We prove the other inequality.
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Let w(x) > 0 be a locally integrable function on R™, and let 1 <
p< . Wesay wed, if

o= () B <

The Riesz transforms and the Hardy-Littlewood maximal funections
are bounded on L?(wdx) if and only if weAd, [2]. As p—1 the
limiting form of A, is
1
L°°(Q)> ’

lwllsy = sup (]Q]g wdx)(llE

and we say we A, if ||w(l, < oo.

THEOREM 3 ([8]). If 1 < p < oo, then we A, if and only if
1.4) w = w,(w,)'?

where w,, w, € A,.

Holder’s inequality shows that (1.4) is sufficient. Obtaining the
factorization (1.4) for we A, is more difficult.

Theorem 2 is a simple consequence of Theorem 3. Indeed, let
@ € BMO and take A(p)/2 < A < A(p). Write w = e**. Then for any

Q,

(ol o= Gy sl )

< (_1__ SQeAwardxy ,

-

so that we A,. By Theorem 3,
Agp =logw = F, — F,
where e, ef2€ A;. From A, it follows easily that
ei < M(e"i) < ce™i

almost everywhere, where M(f) denotes the Hardy-Littlewood maximal
function of f. Coifman and Rochberg [3] have shown ||log M(f)|lsmo <
C(m) whenever fe Ll,.. Consequently
F; = log M(e"4) + log(e"i/M(e"))
=; t9;
where g, € L> and ||4;]| < C(m). Hence
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_ 01— 9, "//‘1'"’50‘2__. 1
= - =g+
? A A grv

with ge L~ and ||| < 2C(m)/A.
The above reasoning also explains why Theorem 3 is a theorem
about BMO. See [8] for further application of Theorem 3.

THEOREM 4 (Uchiyama [11]). Let » > 0 and let E,, E,, ---, Ey, be
measurable subsets of R™ such that

(1.5) Min 190 Eil < g-2mi
1SisN IQ[

Jor every cube Q. Then there exists functions fi(x), f(x), -+, fa(®)
such that almost everywhere

(1.6) F@) =0, weE,.
(1.7) 0<fl)<1.
(1.8) S =1

and such that
(1.9 Ifil = Cm, N)/», 1<i<N.

The converse (with || f;]| < C'(m, N)/\) of this theorem is not
difficult. Theorem 4 for N = 2 is roughly equivalent to Theorem 2.
For N > 2 it has interesting applications to function theory. See
[8] and [11].

In §2 we prove the dyadic versions of Theorem 1 and Theorem
3. Although the arguments are well known (see [13] and [8]),
they are included for completeness and because some of their by-
products will be needed later. Theorem 3 is proved in §3 and
Theorem 1 is proved in §4. In §5 we discuss Theorem 4 and its
dyadic analogue.

We would like to acknowledge our indebtedness to Davis [4], who
showed on the circle that T,f € Hj.a. for almost every a if fe HY,
and to Varopoulos [12], who proved Theorem 2 by adapting the
argument of the dyadic case to Brownian motion.

2. Two dyadic theorems.

THEOREM 2.1. Let ¢ € BMO, and let Q, be a fixed dyadic cube.
Then there exists a sequence {Q,} of dyadic cubes Q, C Q,, and a se-
quence {a,} of real numbers such that
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(2.1) Zlulll=Cleli e,
<

for all dyadic cubes @, and there exists ge L™,
lgll- < 2[®lla,
such that
(2.2) P&) = Po, = 9(@) + 3 @i, (®)
almost everywhere on Q,. The constant C depends only on the

dimension.

To understand why Theorem 2.1 is the dyadic formulation of
Theorem 1, replace R7* by its discrete subset 2 = {p, = (c(@), 7(Q)),
@ dyadic} where ¢(Q) € R™ is the center of @ and ~#(Q) is the sidelength
of Q. The correspondence between p, and K,(z) = Xo(2)/,q; resembles
the correspondence between (¢, y) € R7™ and K, (x — t). Let o be the
measure on < having mass a,|Q| at p,,. Then (2.1) says that

1@ x 0, /@) = 3 [ou] Qi)
= CllpllQl

and ¢ can be viewed as a dyadic Carleson measure. Since
|Ke@)iote) = S ae @),
(2.2) is now the dyadic version of (1.2).
Proof. We suppose @, = 0. Fix A = 2||@||; and set
G, = {@, C Q: Q, dyadic, |p,,| >N, and @, maximal}.
Because @, €@, is maximal, we have

2.3) |Po,| =\ + 2" @]ls = 27| 2]lg .

Indeed, if @} is that dyadic cube with QF > Q, and |Q}| = 2™|Q.l,
then

(9o, — Fep 1= 2 | Jo — popldo < 2|
k

1
| Q]
and |Pox| =\ as @, is maximal. The @, in @G, are pairwise disjoint,
because they are maximal, so that

1 L ALY
co Sielz-S|| pix| <2 |plde < 1211 < g 2.
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Write a, = @, Q. €G,. Then we have

P(x) = g,(x) + g‘, aXo, () + o.(2) ,

where g, = Xz, B, = Q\ U {Q;: Q; € G}, satisfies [g,| =\ by Lebesgue’s
theorem on differentiating the integral, where |[a,| < 2| @]; by
(2.3), and where

P, = %‘, (P@) — Pop)he,(®) .

Now because ¢ € BMO,, p.Xq, = (P — Pq,)Xq, has the same behavior
on @, that ¢ has an @, and we can repeat the construction with
each ¢ X, , and continue by induction. At stage n we have a family
G,_, of disjoint dyadic cubes and @,_, = 3, , (P(®) — @)X, (x). For
each Q;€(G,_, we set

G/(Q,) = (@, CQ;: @, dyadic, |Py, — Pg;| > )\, @, maximal}
and G, = U{G,Q,): @, €G,_,}. Then

Pai(®) = 0a(2) + 310k, (¥) + Pul®) 5
where g, = ¢, X; , E, = Us,_, @\Ue, Q:, satisfies |g,| < » and where
Q. = Po, — Po;y A CQ; €G,,, satisfies
(2.5) la,] < 2™ 2]l
by the proof of (2.3). Moreover, the proof of (2.4) now gives

(2.6) Z Q] = 1€51/2

leGn

for all Q;eG,_,. Consequently @,(x) — 0 almost everywhere, because
®, has support U, @: and this set has measure < 27"|@,|. Summing,
we obtain

P@) = 3,0,0) + 3 5 aulle,(@) -

Sinee |g,] < » and the g, have pairwise disjoint supports, g = > g,
satisfies || g|l« < N = 2||®||; and we have the representation (2.2).

To prove (2.1) fix a dyadic cube and set G;(Q) = {Q;€e UG,: Q; C
@, @, maximal}. The Q; in G,(Q) are disjoint and

Zlakllel“‘ Z > el [Qul -

@ Q=

Hence by (2.5), (2.6) and induction,



358 JOHN B. GARNETT AND PETER W. JONES

Sanl Q] = 2" [plla 3 3 [@ul
Qrc@ Qj€G1(Q) QrSQj
QreUGy,

<2pl, 3 200
=2|pllQl .

Theorem 2.1 is proved.

Notice that when applied to the translates T,p, » € BMO, the
costruction above produces functions ¢'“(x) and coefficients a{® which
vary measurably in a.

Now let w =0 and set » =logw. Then wed, 1< p< oo, if
and only if

sgp <|_é_2—] See¢‘“’9dw><rg§—| Se‘”““’@”"“”dw)p_l < oo,

By Jensen’s inequality each factor is at least 1, and hence we A, if
and only if

2.7) sup S e*vedy < oo
o Q] Je
and
(2.8) supLS 0PN < o |
e [Q]Je

For the dyadic form of Theorem 3, the suprema in (2.7) and (2.8)
are taken over dyadic subcubes of @, only.

THEOREM 2.2. Let @(x) be a real function on a dyadic cube Q,
and let 1 < p < co. Assume

(2.7d) sup _1_8 e-vedy < oo |,
oca, Q] e
Q dyadic
and
(Z.Sd) sup ,l_g e~ (e—eQ)/ (2= ] < oo .
o< |Q|Je
Q dyadic
Then

P—Pe=9g+F -G,
where g€ L=, ||g|le < C,, where
2.9 sup {(.L SQeHim)He—Flle(Q)} < G,

ece, Q]
Q dyadic
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and where
(2.10) sup K!%fls e‘”“’””dx)He“’”‘"”l]me} <G,.
Qdya't?ic ¢

The comstants C,, C,, C; depend only on m and the bounds in (2.7d)
and (2.8d).

Thus if w = e¢® satisfies the dyadic A, condition (i.e., if 2.7d)
and (2.8d), then w = w,(w,)"® where w, = ¢*%™""/ and w, = %/
satisfy A, on dyadic subcubes of Q,.

Proof. The construction is the same as in the proof of Theorem
2.1. By (2.7d) and (2.8d) and by Jensen’s inequality, @, € BMO,.
Fixx > 2||@||; to be determined later and set G, = {Q, C Q,: Q, dyadic,
|Pq, — Po,| > N\, @, maximal} and by induction

G.= U {@.cQ;: Q, dyadic, |9y, — P;| >\, @, maximal} .

QjEGn—l

For @,€G,, @,CQ;eqG,_,, set a,=(Py,—P,;).- The proof of (2.8) gives
(2.11) A< ey <N+ 20l .
As in the proof of Theorem 2.1, we have

P =Py + 9+ EGZ. akak(x) ’

where ||g]le < N, Write

2.12) F=3aX,,
ap>0
(2.13) G - - Z a/kXQk .
ap<0

Then ¢ = @, +g + F — G.
To prove (2.9) and (2.10) we recall that there is ¢ > 0, depending
only on the bounds in (2.7d) and (2.8d), such that

(2.14) sup _l__s e dy < oo
ok TQ] Je
Q dyadic
and
(2.15) sup LS e~ e=pQU PNy & oo
ece |Q[ Je

Q dyadic

See [3] or [10].
We prove (2.9). Fix Q;¢ UG, with a; > 0 and set
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Gi@;) ={Q:,c UG,:Q, %@, a, >0, @, maximal} ,

and by induction G;.(Q)= U{Gi(Q.): .Gl (Q;)}. The critical
inequality for the proof of (2.9) is

(2.16) S | Qs | < (20)re~nutar

G;{(Qj)Ile -

where C is the sumpremum in (2.14). By induction we need only
obtain (2.16) for » = 1. There are two case.

Casel. Q,;€G,and Q,€G,.,. Then ¢, — @, > \, so by Jensen’s
inequality

elitol < 1 S PLSRICEI D i
97

~ Q]

Since the @, are disjoint this gives

[le < e—(1+s)l 1 S e(1+e)(.0~’PQj)dx
Q

Casze:'llel = Caselle‘
S e—(l—f—e)l 1 S e(H—s)(?‘@Qj)dx
1Q;] Je

< Ce—tor

Case 2. Q;€G, and Q,€G,,,, p =2. Then if Q,€G,y,, 1=r=
p —1, and if @, Q,, it must be that a, < 0. Let D, ={Q,€G,.:
Q,cQ,, a, <0} and by induction D, ={Q,€G,,,:3Q,€D,,, Q,CQ,,
a, < 0}. Then as in the proof of Case 1, |UD,| < Ce™"*9¥»71 Q| <
1/21Q;| if X is large enough. Induction then shows |JD,| < 27"|Q;]|.
For Q,eD,, r=1, let UQ,) ={Q,cG,;,: ®CQ, a, > 0}. By Case
1, IUU,)I=C|Q.e "% Consequently,

Q] _ > 1 U@,
Caszezin] '=1[Qj191§7rlu @)
= Ce“”“”i__l_ S Q.

r=1 [QJI QZeDT
< Ce—(1+s)1 < o-r
- rz=:|1 ’

because the cubes @, ¢ D, are disjoint for each . Summing the twe
cases gives (2.16) for » = 1.
Now fix a dyadic cube @ C @, and set

FL”—‘ZakXQk, F2:ZakXQko
Q=@ Q=@

ap>0 ap>0

On Q, F=F,+ F, F, is constant, and F, = 0. Hence
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__l__ 7 —(F(+Fy) — _1__ S Fi+Fg —(F+Fg||
<|Q] Sqe dw>“3 | oy = (IQi (2 dw)He Iz

éI%?—]S edx ,

and it suffices to establish

(2.17)

|

S efde < C, .
Q

O

If {Q,} denotes the set of maximal cubes @, @ having a; > 0,
then 31|Q;| < |Q]| and

IQlS Q1
Now by (2.11),

{fre@: Fi(x) > (n + D\ + 2" elldc U @,

+0 .
el

(" — Ddx < 3, Qs l<|Q.{ SQjeFldx> = Sl}p(lﬁl?-l queFldx) .

so that by (2.16),

1
|Qs1
If A > A, C, ||®]l2) the series sums and we obtain (2.17) and therefore
(2.9).
The proof of (2.11) is the same except that (2.15) is used in
place of (2.14).

S efidx § 2 e‘"“”“?m”“”’d’(ZC)”e_”‘HE” .
; =0

3. The proof of Theorem 3. Let w =e°c A4, and let Sy be
the cube {|z;| =< 2", 1 <1< m).

LEMMA 3.1. There exist gy(x), Fiy(x) and Gy(x), x € Sy, such that
ng\rlloo = C, and

@ o R (O L
3.2 ggg(Té_l SQ eGN/p~1dx>|]e~sz/p—l”LOO(Q) =G,

and such that
P(x) — Psy = gn(@) + Fy(®) — Gy(®), ®weSy.
The constants C,, C,, C, do not depend on N.

We first show how Lemma 3.1 easily implies Theorem 3. We
suppose @5, = 0. By Lemma 3.1,

P = Ry + (Fy — (Fy)s) — (Gy — (Gy)s,)
:RN+FN—§N, reSy,
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where Ry = @5, + gy + (Fy)s, — (Gy)s, satisfies ||Ry|l. < 2C, since
|Psy + (Fw)s, = (Gx)s,| = |Ps, — (9)s,] = C.. For N> M, (3.1) and
(3.2) give

1B = (P, lar s C

ISM } Sar
1 G i 2
|Sy| Ss,,,IGN — (Gy)s, "dx < C,

and hence as (FN)SO (sz)so =0, I(FN)S,I‘ = Cy, I(GN)le = Cy. Con-
sequently {(Fy: N= M} and {GN N = M} are bounded in L*S,).
Choose N, — o so that FN] — F Gy v; — G weakly in LXS,) for all M
and so that Ry, — g weak-star in L~. Then

p=g+F -G

with ||g|l- < C,. For any cube @ there is a sequence of finite convex
combinations

F(’") = Zt;imFNj’n ’ ti.'n z 0 ’ th"” = 1 ’
J

converging to F' almost everywhere on S, c@. Then by Fatou’s
Lemma and Holder’s inequality

1
Q]

and hence w, = e’"" € A4,. Using (3.2) we see w, = ¢*?'c A, in the
same way.

<]—é718 pdx>|| e || o = hm I < S FNj,ndx>tf"ﬂ I1 e s |imi < C, ,

Proof of Lemma 3.1. We assume @5 = 0. For aeSy we use
Theorem 2.2 on T,p(x) = ¢(x — a) with @, = Sy,, (which we pretend
is a dyadic cube) to obtain

Tagp —_— g(a) + F@ — G(a)

where F, and G, satisfy (2.9) and (2.10) respectively and where
llgll- < C, (since € BMO and @y, = 0, SuD,cs, (TaP)s,,, 18 bounded)
Almost everywhere on Sy,

pa) = =\ T (TP))ia

1
| Syl

(a) 1 3]
§ T_g")e)de + o le§ T_(F)(x)da

| S TG @)da = g@) + F@) ~ 6@

18yl
1

=
Clearly ||g|l- < C,. By (2.12) there are af” > 0 such that
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FOom =3 3 0@,

B#=0 £(Qp)=2""&(Sy)
= 3, fa"(%)
7n=0

and by (2.13), G'(x) has a similar representation. Write

— 1 (a)
hu@) = g | (s

so that F = 35 fa.

LEMMA 3.2. If sup;|x; — y;| < 27"/(Sy) then

c.2"
7(Sy)

3.3) Ifa@) — fiw)] = le —yl,

with C, independent of n.

Proof. By (2.11), |e¢'®| £ C, and hence
C

| Syl SSN 2(Qp)=2""Z(3 )

Ifa@) — fu)] = [ Lol + ) — Xo(y + a)|dex .

The integrand is twice the characteristic function of {@#eSy: ¢ + «
and y + a fall in different Q,, #(Q,) = 2-"/(S,)}, and this set has
probability not exceeding

&2 — vl
=127 (Sy)

Returning to the proof of Lemma 3.1, we fix Q@ S, with
27k(Sy) < 2(Q) £ 27%'/(S,). Then

F@) = 3, 1,(@) + 5@ = F@ + F@)

= 1; | Ss Fi¥x + a)da + _l'; | SS Fi*(x + a)da .
N N N N

By Lemma 3.2,

C & ooy
750 2@ =C.

sup Fy(w) — inf Fi(2) <
Hence as F, = 0,
__1_ Fi+F —FFFN ] < _L 7
(IQI SQe 2d90>l|e = = C<IQ| SQe dx) .
But by Jensen’s inequality,
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by (2.17). The proof of (3.2) is the same.

4. The proof of Theorem 1. We suppose ¢ € BMO has support
S,={x]=1,1<i<m}and Sgodx = 0. For each a«eS, we have,
by Theorem 2.1,

Tp@) = ol — a) = g“(x) +QZQ a2 g, (@)
<%0

where @, = {|2;| £ 2,1 < 7 < m}, where ||g"”||- < C|| ||, and where

(4.1) QchQlaz‘f”l Q| = Cllell Q] .
Write
@) = 3 X)),

Z(Q)=2""7
so that T, o) = ¢ () + D20 £i”(x). Then as before

g 9z + a)da + S
So =

- 1
P = A8

1 (@)
S Lofn (x + a)da
= (@) + 3, £.(@)

where || g|l« < C||®||. For any cube @ we have

1 1 (@)
(4.2) Q] SQ ré(@) (@] de = sup <[QI SQz—n%(Q)If% (x>ldx)
1 (@)
= sup(g 5, loi 1@u]) = €l

where @ is concentric with Q and (@) = 87/(Q). Thus for any
6 >0,do = > f.(x)do,, where do, is surface measure on R™ X {y =
027"}, is a Carleson measure and N(o) < Cé~"|®||, and

[Kue = 2oz, ») = 3 fur Ko@)
= 2 h(®) -

We will show that when 6 is small,

(4.3) | S —hll = 2ol
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With an iteration, that will prove Theorem 1.
To prove (4.3) fix a cube @ and a point x,€Q. We have

N IS (@ = h@ — (£ = h)o)ldz

Q] Je
erzacw| Q] Je
+ 2/(@@%“@)' a] S | ful@) — R (2)|d

+25 5 | 1A@ — bz

=2% +2%+23%,

where A = 2 is a constant to be determined.
To estimate >, recall that

(4.4) lfa@) — fui(p)] = C2*||p]| |2 — v

by the proof of Lemma 3.2. The convolution &, = K,-.xf, has the
same continuity as f,, since Sde =1, and we have

sz » L

1 27N> A£(Q) I Q l

22l |z —mlds < Clolc@ 5 2

2% <(4£(Q)) L

= Clell/A.

To estimate >, note that by (4.4) and the bound || f,|l- < C| 2|l
(because |a{?| < Cll®]|), we have

1o — farKunlle < el @l

if 0 is small, independent of n. Therefore

2%‘,§28H¢H 2 =CelelilogA=|loll/6

Z(Q)£27724/(Q)

Hence 23, < ||p|l/6 if A is large.

if elog A is small.
Finally, we have
1

2. = sup =
3

Q] SQz n%(m'fm ~ K

by the definition of f,. After a translation it is enough to considgr
a=0. Let @® =@ and pave R™ with cubes Q’ congruent to Q.
Then ‘

0 L X, (%) _ Yo K () d
TERZ 000G T8 @l 7
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By a change of scale,

1 Xq, () _ Lo+ Kipiqn() d
inSRm Q.| N f v

does not depend on #(Q,). Thus for ¢ > 0 we can choose § so that

de < ¢/|Q] .

LS Xek(x) _ XQk*Ka/(Qk)
Q| Jeo! [Q:] |Qs

Moreover, if @, @, QY = @, then Xy () =0 on @ and by (1.1),

1 X+ Kopn(®) . Coz(Q)
e T o = sup Kugau@ — 1) S e S

zeqQy

Cos(Q)
~ (dist(@Y, @)m*+

since dist(Q,, Q) = dist(Q?”, Q). Therefore

S<e s Ll

ate@  [Q]
1 0
+ O0(Q) & et G e
and by (4.1),
‘ QY|
25 5 Csllpl + Glle 4@ 5 rrrabgy

dx

R™/Q0) lx — xolm‘H

< Gelloll + Gollol«@ |

S Ce+allell = llell/6

if ¢ and 6 are small.

5. The proof of Theorem 4. We begin with the dyadic form
of the theorem, which is also due to Uchiyama.

THEOREM 5.1. Let A > 0, let Q, be a dyadic cube in R™, and let
E,E, -, Ey be measurable subsets of Q, such that

3 lQnEzl —2m2
(6.1) Min=or =2

for all dyadic Q@ < Q,. Then there exist fi(x), fu(x), « - -, fx(®) such that
almost everywhere on Q,,

(5.2) fil) =0,xekE,,
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(5.3) 0= fl@)=1;

(5.4) S =1;

and

(5.5) sup = ,g fi = (felde < Cilm, N)/x .

Q dyadlc

Proof. By (5.1), |N E;| =0 and the bounded solutions f;(x) =
(1 — X, (@)/ 21 — Xz, (x)) satisfy (5.5) if \ is not large. Thus we
assume » > N.

We shall inductively choose families G, of dyadic cubes @, cC @,
and functions ", 1 < 4 < N such that

W) = gl +Qk§: a;i o, () ,
n

(5.6) 0=y =N,
(57) Z"ﬁ'(m —

(n — __1_ [Q I
(5.8) (™), < Max(o, N+ 1og2(le e ))
if @.€@G,, and
(5.9) la,.| = N°—1,Q,eG,nz1.

For each dyadic cube Q@ c@Q,, (5.1) ensures there exists an index
(@), 1 < i(Q) < N, such that

1 | Q|
(5.10) 2vs log2<~———————-————|Q o [>

To start the induction take G, = {G}, and ¥{"(x) = a;,Xo, (), Where

_{0, i % i(Qy)
Yo T N, i =iQ) .

Then (5.6) and (5.7) are trivial and (5.8) follows from (5.10) and our
choice » > N. At » =0, (5.9) is not required.

Let G, be the set of maximal dyadic cubes satisfying Q,CQ;eG,_,
and

(n—1) _l. —‘@k—l‘——"
(5.11) W e, > — 1°g2<le n EA> ’
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for some 4, 1 <1 < N. Define

—Min(N + 1, (" )g, , © #* i(Qy)

. Z Ak ’ 1= ’L(Qk) .
F#FURE)

Ay =

Then by definition 4{" = 3" + 3, cq, @i.1kq, clearly satisfies 4™ = 0
and 3}, ¥ = \. Thus (5.6) and (5.7) hold. Since |a; .| < N + 1 for
i # 1(Q,), and since |a,q,,] = (N — 1)(N + 1), (5.9) holds.

We now verify inequality (5.8). If 7 = 4(Q,), then by (5.6) and
(5.10),

(n) — _l_ |Qk|
(P SN —N + mlogQ(—leﬂEil).

Suppose Q,€ G, and 7 # i(Q,). If QFf D@, is that dyadic cube with
|Qk| = 2™ | @], then (3" )ox = (y4" V), and

logz<m%9£]?il> <m + logz<%ﬁ> .

Since @, is maximal, (5.11) fails for Q;, and so we have

_1 | Qs | (n—1)
(5.12) 1= log, (m) > (y* ), -
If a,, = —(i" ), then (i), =0 and (5.9) is clear. If a,, =
—(N + 1), then (5.9) follows from (5.12). Thus the induction is
completed.
We thank J. Michael Wilson for this argument.
To obtain convergence and ultimately (5.5) we observe that if

Q;€G,_,;, then
(5.13) ZHIQ,A = 27"VQ,] .

Qe G,,:
(A=

Indeed, if the left side of (5.13) is nonzero, we have (y{*™),, > 0,
and then (5.11) and (5.8) yield

S Q] S 2m e S QN K|

Qpeald Qpectd
=@ Q9
=27"Q; .

Since N2™™" < 1, (5.9), (5.13) and induction show 3 || 4™ — 4i» 0|, <
o, so that

Pro() = lim ™ ()
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exists almost everywhere. Moreover, if @ €@, is a dyadic cube,
then by (5.9) and (5.13)

1
51l = @elda
(5.19) < I?Tlg Z | @i, | o, (w)d
<2(N*—-1) Z [Q1/1Q] = 2(N* — I)Z(NZ*”‘”)‘
lebG,,L
= Cy(m, N) .

Write f; = 4/A. Then (5.5) follows from (5.14) and (5.6) and
(5.7) give (5.3) and (5.4).

To conclude the proof we establish (5.2). Almost every point
x €@, lies in a unique dyadic cube Q,(%), (@, =2 k=0,1,2, ---
For almost such x, Q.(x) € UG, for only finitely %, because by (5.13),
SLlU{Qy: Q,eG,}| <. Hence for almost every x there exist k,< oo
and n, < 8 such that for £ >k, and n > n,

Q)¢ G,
and
(@) = ") .
So by the definition of G,,

Pi(@) = (Pi" oy = 1 0F: <|—Q1—(Qw])‘%?l§—]>

k>k, n>mn, almost all z. On the other hand,

& <.|Qk<x) n Eii> ( :
almost everywhere on E,. Therefore f,(z) = +,(x) = 0 almost every-
where on E,.

Proof of Theorem 4. The argument is much like the proof of
Theorem 3. Let S, be the cube {x:|z;| < 2¥}. It is enough to

produce f; (%), ---, fy.»(x) which satisfy (1.6), (1.7) and (1.8) for xz ¢
S, and also

(5.15) g | fiw = el da = Clom, Mo,

by then taking f.(x) an L~ weak-star limit of {f, ,(x)}5-..
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So fix S,. For acS, we set E¥ ={x + a: 2 E,N Sy} < Sy,..
With @, = S,.:, (6.1) holds for E®, ---, E{”, and Theorem 5.1 gives
us fix), .-, f¥(x) satisfying (5.2), (5 3), (5.4) and (5.5) on S,,,.
Define, as before,

fou(®) = fi@ + a)da, weS,.

[ Sl g
Then (1.6), (1.7) and (1.8) hold on S,. To prove (5.15) write

LS S i@

=0 =2 Sy 4 1)

[ (@) =

and

If Qc S, and 27%/(8,,,) < 72(Q) < 27'/(S,,,), then

Ifi M(x) (f w)Qldx = Z |f7,,'n(x) - (fi,n)Q[dx

lQlS
+23%

IQIS

57 V@ lda = 5+ 23]

By the proof of Lemma 3.2

C(N)2"
M (Sisr)

so that 3, < C(N)/n, and by (5.13) and (5.9),
3. =sup 3, Jasil Q]

a8y Qpcta
< N -1 g
N

Ifz‘,'n(x) fin(y)l = ‘.’l;—'y‘ ’

Hence (5.15) holds and Theorem 4 is proved.
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