AN INDEX THEOREM AND HYPOELLIPTICITY ON NILPOTENT LIE GROUPS

Kenneth Guy Miller
AN INDEX THEOREM AND HYPOELLIPTICITY ON NILPOTENT LIE GROUPS

KENNETH G. MILLER

Extending results of Grushin we determine the index of
\(p(x, D) \) where \(p(x, \xi) \) is a polynomial homogeneous with respect
to some family of dilations on \(\mathbb{R}^{2d} \) and \(p(x, \xi) \neq 0 \) if \((x, \xi) \neq (0, 0) \).
In general these operators are not elliptic. If \(G \) is a step
two nilpotent Lie group and \(P \) is a left invariant differential
operator on \(G \) which is homogeneous with respect to some
family of dilations, we apply this index theorem to prove
that \(P \) is hypoelliptic if and only if \(P^* \) is hypoelliptic. This
extends a result of Helffer and Nourrigat.

1. An index theorem. A family of dilations on a Lie algebra
\(\mathfrak{g} \) is a one parameter family of automorphisms \(\{ \delta_r : r > 0 \} \) of \(\mathfrak{g} \) of
the form \(\delta_r = \exp ((\log r)A) \), where \(A \) is a diagonalizable automorphism
of \(\mathfrak{g} \) with positive real eigenvalues. There is no loss of generality
in assuming that the smallest eigenvalue is 1. A finite dimensional
normed vector space \(V \) with norm \(| \cdot | \) determines an abelian Lie
algebra. Let \(\{ \delta_r \} \) be a family of dilations on \(V \). For \(w \in V \) define
\(\| w \| \) by \(\| w \| = r \) if \(|\delta_r^{-1}(w)| = 1 \). Then \(w \rightarrow \| w \| \) is continuous on
\(V \) and \(C^\infty \) on \(V - \{ 0 \} \) by the implicit function theorem. Let \(\mathbb{B} = \{ w_1, w_2, \ldots, w_n \} \)
be a basis for \(V \) consisting of eigenvectors of \(A \) with corresponding eigenvalues \(\mu_1, \ldots, \mu_n \). If \(w = a_1 w_1 + \cdots + a_n w_n \),
then
\begin{align}
\delta_r w &= \sum r^{\mu_j} a_j w_j \\
\| w \| &\approx \sum |a_j|^{1/\mu_j} \tag{1.1}
\end{align}

Throughout this section we will be considering a family of
dilations on the abelian Lie algebra \(\mathbb{R}^{2d} = \mathbb{R}^d \oplus \mathbb{R}^d \). We do not
necessarily assume that either \(\mathbb{R}_x^d \) or \(\mathbb{R}_\xi^d \) is invariant under \(\{ \delta_r \} \). Let
\(f \in C^\infty(\mathbb{R}^{2d}) \), \(f(w) = 0 \) for \(\| w \| \leq 1/2 \), and \(f(w) = 1 \) for \(\| w \| \geq 1 \). Define
\(\Phi(w) = 1 + f(w) \| w \| \) and \(\varphi(w) = 1 \) for all \(w = (x, \xi) \in \mathbb{R}^{2d} \). Note that
there is a \(C \) such that if \(|w - w'| \leq \Phi(w) \) then \(\Phi(w') \leq C\Phi(w) \). Thus
(\(\Phi, \varphi \)) is a pair of weight functions on \(\mathbb{R}^d \) as defined in Beals [1].
We will usually not mention \(\varphi \) and will refer to \(\Phi \) as the weight
function for the family of dilations \(\{ \delta_r \} \). Note that \(\Phi \) satisfies the
coercive estimate
\begin{align}
|w| &\leq C\Phi(w) \tag{1.3}
\end{align}
where \(\bar{\mu} = \max \{ \mu_1, \ldots, \mu_{2d} \} \).
For $m \in \mathbb{R}$, let S^m_φ denote the set of all smooth functions p on \mathbb{R}^d such that for each α and $\beta \in N^d$

$$
\sup \{ \Phi(x, \xi)^{-m+|\alpha|} | D^\alpha_x D^\beta_\xi p(x, \xi) | : (x, \xi) \in \mathbb{R}^{2d} \} < \infty .
$$

\mathcal{L}^m_φ is the set of pseudodifferential operators with symbols in S^m_φ, H^s_φ is the associated (global) Sobolev space as defined in [1] and $\| \ |_{m, \varphi}$ is a norm for the topology on H^s_φ. We note that in the special case where $m \in N$ and $m_j/\mu_j \in N$ for all j (this is necessarily the case in the context of Theorem 2 below, by Proposition 1.3 of [7]), then $\| \ |_{m, \varphi}$ can be given explicitly as follows: Let \mathcal{B} be a basis for \mathbb{R}^{2d} consisting of eigenvectors for $\{\delta_r\}$ and let $a_j(x, \xi)$ be the jth coordinate of (x, ξ) with respect to the basis \mathcal{B}. By (1.2) above and 6.17 of [1]

\begin{equation}
(1.4) \quad \| u \|_{m, \varphi} \approx \sum | a_j(x, D)^{m_j/\mu_j} u | + \| u \|
\end{equation}

where $\| \ |$ is the L^2 norm.

We shall denote by \tilde{S}^m_φ the subset of S^m_φ consisting of functions p such that for all α and β in N^d

$$
\sup \{ \Phi(x, \xi)^{-m+|\alpha|} | D^\alpha_x D^\beta_\xi p(x, \xi) | : (x, \xi) \in \mathbb{R}^{2d} \} < \infty .
$$

We say that $p \in C^\infty(\mathbb{R}^{2d})$ is homogeneous of degree m with respect to $\{\delta_r\}$ for large w if there is a $0 < c < 1$, such that $p(\delta_r w) = r^m p(w)$ for all $r \geq 1$ and all w for which $\|w\| \geq c$. If p is homogeneous of degree m with respect to $\{\delta_r\}$ for large w and if v is an eigenvector for the generator A of $\{\delta_r\}$ with eigenvalue μ, then

$$
r^m D_v p(\delta_r w) = r^m D_v p(w) .
$$

If $\|w\| \geq 1$, let $r = \|w\|$ and $w' = \delta_r^{-1}(w)$. Then $\|w'\| = 1$ and $D_v p(w) = \|w\|^{m-r} D_v p(w')$. Thus there is a C such that

\begin{equation}
(1.5) \quad |D_v p(w)| \leq C \|w\|^{m-r} \leq C \|w\|^{m-1}
\end{equation}

for all w, $\|w\| \geq 1$. Consequently if p is homogeneous of degree m with respect to $\{\delta_r\}$ for large w, then $p \in \tilde{S}^m_\varphi$. It follows from this remark that $\Phi \in \tilde{S}^m_\varphi$ and hence $\Phi^m \in \tilde{S}^m_\varphi$ for all $m \in R$.

We say that $p \in S^m_\varphi$ is Φ-elliptic if there is a C such that $\Phi(w)^m \leq C |p(w)|$ for $|w| \geq C$. Note that if p is a polynomial and p is homogeneous of degree m with respect to $\{\delta_r\}$, then p is Φ-elliptic and only if $p(w) \neq 0$ for $|w| \neq 0$. Note that in general Φ-ellipticity does not imply ellipticity in the usual sense. For example on $\mathbb{R}^1 \times \mathbb{R}^3$, $p(x, \xi) = \xi_1^4 + x_1^3 + 2x_1\xi_1 + \xi_1^2 + \xi_2 + x_2^2$ is Φ-elliptic and homogeneous of degree two, where the dilations are given in terms of coordinates $a_1 = \xi_1, a_2 = x_1 + \xi_1, a_3 = \xi_2$ and $a_4 = x_2$, with $\mu_1 = 2, \mu_2 = \mu_3 = \mu_4 = 1$.

If Γ is an oriented curve and p maps the range of Γ into
$C - \{0\}$, let $\Delta r \arg p$ denote the change in the argument of p along Γ. In the following theorem Γ is the curve in $R_x \oplus R_\xi$ given by $x(\theta) = \cos \theta$, $y(\theta) = \sin \theta$, $0 \leq \theta \leq 2\pi$. In the case where R^2 and R^2_ξ are eigenspaces for A with eigenvalues 1 and $1 + \delta$ respectively, $\delta > 0$, this theorem was proved in [2].

Theorem 1. Let $\delta_r = \exp((\log r)A)$, $r > 0$, be a family of dilations on R^{2d}, Φ the weight function for $\{\delta_r\}$. Let $p = p_0 + p_1$ where p_0 is Φ-elliptic and homogeneous of degree m with respect to $\{\delta_r\}$ for large w and $p_1 \in S^m_{\Phi} \Phi_1$ for some $m_1 < m$. Then $p(x, D): H^m_{\Phi} \rightarrow L^2$ is Fredholm. If $d > 1$, then $\text{ind} p(x, D) = 0$. If $d = 1$, then $2\pi \text{ind} p(x, D) = \Delta \Gamma \arg p_0$. If $d = 1$ and p_0 is a polynomial, then $\text{ind} p(x, D)$ is also given by (1.6) below.

Proof. By Theorem 7.2 of [1] and (1.3) above, $p(x, D): H^m_{\Phi} \rightarrow L^2$ is Fredholm. By Corollary 6.13 of [1], $p_0(x, D): H^m_{\Phi} \rightarrow L^2$ is compact. Hence $\text{ind} p_0(x, D) = \text{ind} p(x, D)$. Let $f \in C^\infty(R^{2d})$ be real valued, $f(w) = 0$ for $\|w\| \leq 1/2$, $f(w) = 1$ for $\|w\| \geq 1$. Let $a(w) = f(w)/\|w\|^m/2$, $q = p_0a^2$. Then $A = a(x, D) \in \mathcal{L}_{\Phi_1}^{m_1}$, and by the pseudodifferential operator calculus $p_0(x, D)A^*A = q(x, D) + R$ where $R \in \mathcal{L}_{\Phi_1}$. Thus $\text{ind} q(x, D) = \text{ind} p_0(x, D)$. Also $q(\delta, w) = p_0(w) \neq 0$ for all $r \geq 1$ and all w, $\|w\| = 1$. If $d > 1$, $\{w \in R^{2d}: \|w\| = 1\}$ is simply connected, so q can be continuously deformed to a nonzero constant through Φ-elliptic symbols which are homogeneous of degree 0 for large w. Hence $\text{ind} q(x, D) = 0$.

Now consider the case $d = 1$. Although q is not elliptic in the classic sense, q is included in the class of symbols for which Hormander proves the index theorem in §7 of [5]. In [5] it is shown that $2\pi \text{ind} q^w(x, D) = \Delta_r \arg q$, where $q^w(x, D)$ is the Weyl pseudodifferential operator with symbol q. By (4.10) of [5] $q^w(x, D) = a(x, D)$ where $a = q + r$, $r \in \mathcal{S}_{\Phi_1}$. Thus $\text{ind} q(x, D) = \text{ind} q^w(x, D)$. Clearly $\Delta_r \arg q = \Delta_r \arg p_0$.

If $d = 1$ and p_0 is a polynomial, then $\text{ind} p(x, D)$ can also be computed as follows: Let v_1 and v_2 be eigenvectors for the generator A of $\{\delta_r\}$, chosen so that if (x_1, ξ_1) and (x_2, ξ_2) are the respective x, ξ coordinates of v_1 and v_2, then $x_1\xi_2 - x_2\xi_1 > 0$. Let Γ_+ be the line $t \rightarrow v_1 + tv_2$ and Γ_- the line $t \rightarrow -v_1 + tv_2$, $t \in R$. Let $m_2 = m/\mu_2$. Let ν_+ be the number of complex roots z of $p_0(v_1 + zv_2)$ with positive imaginary part and ν_- the number of complex roots of $p_0(-v_1 + zv_2)$ with negative imaginary part. By the homogeneity of p_0,

$$\Delta_r \arg p_0 = \Delta_{r+} \arg p_0 - \Delta_{r-} \arg p_0 \quad \text{and} \quad \Delta_{r+} \arg p_0 = -i \int_{-\infty}^{\infty} \frac{d}{dt} |p_0(v_1 + tv_2)| dt = 2\pi(\nu_+ - m_2/2).$$
Thus

\begin{equation}
\arg p_0 = -i \int_{-\infty}^{\infty} \frac{d}{dt} |p_0(tv_2 - \nu_1)| dt = 2\pi (m_2/2 - \nu_-).
\end{equation}

(1.6)

ind \, p(x, D) = \nu_+ + \nu_- - m_2.

2. Hypoellipticity of \(P^* \). Let \(\mathcal{G} \) be a nilpotent Lie algebra of step 2; i.e., \([\mathcal{G}, \mathcal{G}_2] = 0\) where \(\mathcal{G}_2 = [\mathcal{G}, \mathcal{G}] \). Let \(G \) be the corresponding connected, simply connected Lie group. A family of dilations \(\{\delta_r\} \) on \(\mathcal{G} \) induces a family of algebra automorphisms, also denoted \(\{\delta_r\} \), of \(\mathcal{U}(\mathcal{G}) \), the complexified universal enveloping algebra of \(\mathcal{G} \). An element \(P \) of \(\mathcal{U}(\mathcal{G}) \) is said to be homogeneous of degree \(m \) with respect to \(\{\delta_r\} \) if \(\delta_r(P) = r^m P \) for all \(r > 0 \). The set of all \(P \in \mathcal{U}(\mathcal{G}) \) such that \(P \) is homogeneous of degree \(m \) with respect to a given family of dilations \(\{\delta_r\} \) will be denoted \(\mathcal{U}_m(\mathcal{G}, \{\delta_r\}) \) or simply \(\mathcal{U}_m(\mathcal{G}) \) when there is no chance of confusion. We consider the elements of \(\mathcal{U}(\mathcal{G}) \) as left invariant differential operators on \(G \).

THEOREM 2. Let \(\mathcal{G} \) be a nilpotent Lie algebra of step two and \(\{\delta_r\} \) a family of dilations on \(\mathcal{G} \). If \(P \in \mathcal{U}_m(\mathcal{G}, \{\delta_r\}) \) is hypoelliptic, then \(P^* \) is hypoelliptic.

When \(\{\delta_r\} \) is the natural family of dilations for a grading \(\mathcal{G} = \mathcal{G}_1 \oplus \mathcal{G}_2 \) of \(\mathcal{G} \), then this result was proved in Helffer and Nourrigat [4]. For the Heisenberg group such a result was proved in Miller [6]. It follows from this theorem that any hypoelliptic \(P \in \mathcal{U}_m(\mathcal{G}) \) is locally solvable.

The proof is based on the Helffer-Nourrigat-Rockland characterization of the hypoelliptic operators in \(\mathcal{U}_m(\mathcal{G}) \): \(P \in \mathcal{U}_m(\mathcal{G}) \) is hypoelliptic if and only if \(\pi(P) \) is injective in \(\mathcal{U}_m(\mathcal{G}) \) for every nontrivial irreducible unitary representation \(\pi \) of \(G \). (See [3] and [8]. That this result holds for arbitrary dilations is shown in [7].) We shall also need some other preliminary information before beginning the proof of Theorem 2.

By Lemma 1.2 of [7] there is a basis \(\{X_i, \cdots, X_N; \cdots, X_n\} \) of \(\mathcal{G} \) such that each \(X_j \) is an eigenvector for the generator \(A \) of \(\{\delta_r\} \), \(\{X_{N+1}, \cdots, X_n\} \) spans \(\mathcal{G}_2 \), and for each \(k > N \) there are \(i \) and \(j \leq N \) such that \([X_i, X_j] = X_k \). Let \(\mu_j \) be the eigenvalue of \(A \) corresponding to \(X_j \). If \(\alpha \in \mathbb{N}_n \), let \(\alpha \mu = \sum \alpha_j \mu_j \) and \(X^\alpha = X_1^{\alpha_1} \cdots X_n^{\alpha_n} \). Then \(P \in \mathcal{U}_m(\mathcal{G}) \) if and only if

\begin{equation}
P = \sum_{\alpha = m} a_\alpha X^\alpha
\end{equation}

for some \(a_\alpha \in \mathbb{C} \).

Let \(\mathcal{G}_i \) be the subspace of \(\mathcal{G} \) spanned by \(\{X_i, \cdots, X_N\} \). Letting
\(\mathcal{F}^* \) denote the vector space dual of \(\mathcal{F} \), we define \(\delta_r \) on \(\mathcal{F}^* \) to be the transpose of \(\delta_r \) on \(\mathcal{F} \) for each \(r > 0 \). Since \(\mathcal{F}_1 \) is invariant under \(\{ \delta_r \} \) (on \(\mathcal{F}^* \)) restricts to a family of dilations on the vector space \(\mathcal{F}^* \). For \(\eta \in \mathcal{F}^*_1 \) define \(||\eta|| \) as in \(\S 1 \). If \(X \in \mathcal{F} \), let \(X = X' + X'' \) where \(X' \in \mathcal{F}_1, X'' \in \mathcal{G}_2 \). For \(\eta \in \mathcal{F}^*_1 \),

\[
(2.2) \quad \pi_\eta(\exp X) = \exp i\langle \eta, X' \rangle
\]
defines a unitary representation of \(G \) on \(C \). It follows from (2.1) that if \(P \in \mathcal{U}_m(\mathcal{F}) \), then

\[
(2.3) \quad \pi_{\delta_r P}(P) = r^m \pi_\eta(P) = \pi_\eta(\delta_r P) ; \quad \eta \in \mathcal{F}^*_1 .
\]

We next recall some facts about the representation theory for \(G \). More details are given in [7]. Let \(\zeta \in \mathcal{F}^*_2 \). Then there is a \(d = d(\zeta) \leq N/2 \) and a basis \(\mathcal{B}(\zeta) = \{ Y_1(\zeta), \ldots, Y_N(\zeta) \} \) for \(\mathcal{F}_1 \) such that \(\mathcal{B}(\zeta) \) is orthogonal with respect to the inner product determined by the basis \(\{ X_1, \ldots, X_N \} \) and such that

\[
(2.4) \quad \langle \zeta, [Y_j(\zeta), Y_{j+d}(\zeta)] \rangle = 1 \quad \text{for } j \leq d ;
\]
\[
\langle \zeta, [Y_j(\zeta), Y_k(\zeta)] \rangle = 0 \quad \text{for all other choices } j < k \leq N .
\]
(In [7] we had \([Y_j(\zeta), Y_{j+d}(\zeta)] = \lambda_j I \). This was necessary because we wanted the basis to be orthonormal, but that is not needed here.) For any \(\rho \in \mathbb{R}^{N-2d} \) there is an irreducible unitary representation \(\pi_{\rho, \zeta} \) of \(G \) on \(L^2(\mathbb{R}^d) \) such that

\[
\begin{align*}
\pi_{\rho, \zeta}(Y_j(\zeta))u(t) &= \partial u/\partial t_j , \quad j \leq d ; \\
\pi_{\rho, \zeta}(Y_{j+d}(\zeta))u(t) &= i\rho_j u(t) , \quad j \leq d ; \\
\pi_{\rho, \zeta}(Y_{j+2d}(\zeta))u(t) &= i\rho_j u(t) , \quad j \leq N - 2d ; \\
\pi_{\rho, \zeta}(Z)u(t) &= i\langle \zeta, Z \rangle u(t) , \quad Z \in \mathcal{G}_2 .
\end{align*}
\]

Furthermore every irreducible unitary representation of \(G \) is unitarily equivalent to \(\pi_{\rho, \zeta} \) for some \(\zeta \in \mathcal{F}_2^* \) and some \(\rho \in \mathbb{R}^{N-2d(\zeta)} \). Note that if \(\zeta = 0 \) we obtain the representation defined by (2.2).

For \(\zeta \in \mathcal{F}_2^* \), \(t \in \mathbb{R}^d \), \(\tau \in \mathbb{R}^d \) and \(\rho \in \mathbb{R}^{N-2d} \), \(d = d(\zeta) \), let \(\eta(t, \tau; \rho, \zeta) \) be that element \(\eta \) of \(\mathcal{F}_1^* \) such that

\[
\begin{align*}
\langle \eta, Y_j(\zeta) \rangle &= \tau_j , \quad \langle \eta, Y_{j+d}(\zeta) \rangle = t_j , \quad j \leq d ; \\
\langle \eta, Y_{j+2d}(\zeta) \rangle &= \rho_j , \quad j \leq N - 2d .
\end{align*}
\]

Let \(f \in C(\mathbb{R}^N) \) satisfy \(f \equiv 0 \) in a neighborhood of 0 and \(f \equiv 1 \) outside some bounded set. Define

\[
\Phi_{\rho, \zeta}(t, \tau) = 1 + f(t, \tau, \rho) \| \eta(t, \tau; \rho, \zeta) \| .
\]

Let \(\zeta \in \mathcal{F}_2^* \), \(\zeta \neq 0 \), be fixed. If for all \(\rho \in \mathbb{R}^{N-2d} \), \(q_\rho \in C(\mathbb{R}^{2d}) \) and for all multi-indices \(\alpha \) and \(\beta \) there is a \(C_{\alpha \beta} \) such that
for all \((t, \tau, \rho) \in \mathbb{R}^N\) we will write \("q_{\rho} \in S_{\rho, \zeta}^k\) uniformly in \(\rho\). \(\mathcal{L}_{\rho, \zeta}^k\) is the space of pseudodifferential operators with symbols in \(S_{\rho, \zeta}^k\); \(H_{\rho, \zeta}^k\) the corresponding global Sobolev space as defined in [1].

It follows from (2.5), (2.6) and (2.2) that, for \(X \in \mathcal{G}\),

\[
\text{sym} \pi_{\rho, \zeta}(X)(t, \tau) = \pi_{\tau(t, \tau, \rho, \zeta)}(X),
\]

where \(\text{sym} Q\) denotes the symbol of the operator \(Q\). Let \(\zeta \in \mathcal{G}_\ast^\ast\) be fixed and let \(\{X_1, \ldots, X_N\}\) be the basis for \(\mathcal{G}\) described at the beginning of this section. By (2.7) and (1.2),

\[
\pi_{\rho, \zeta}(X_j) \in \mathcal{L}_{\rho, \zeta}^{\mu_j} \quad \text{uniformly in } \rho \text{ if } j \leq N,
\]

\[
\pi_{\rho, \zeta}(X_j) \in \mathcal{L}_{\rho, \zeta}^{\nu_j} \quad \text{uniformly in } \rho \text{ if } j > N.
\]

Thus if \(P \in \mathcal{U}_{m}(\mathcal{G})\), then \(\pi_{\rho, \zeta}(P) \in \mathcal{L}_{\rho, \zeta}^{m} \) uniformly in \(\rho\).

Lemma. Let \(P \in \mathcal{U}_{m}(\mathcal{G})\) satisfy \(\pi_{\eta}(P) \neq 0\) for each of the one dimensional unitary representations \(\pi_{\eta}, \eta \in \mathcal{G}_\ast^\ast, \eta \neq 0\). Then for fixed \(\zeta \in \mathcal{G}_\ast^\ast\), \(\zeta \neq 0\), there is a \(c > 0\) and a \(C > 0\) such that

\[
|\text{sym} \pi_{\rho, \zeta}(P)(t, \tau)| \geq c \Phi_{\rho, \zeta}(t, \tau)^m
\]

for all \(\rho \in \mathbb{R}^{N-\delta}\) and all \((t, \tau) \in \mathbb{R}^{\delta}\) such that \(|t| + |\tau| \geq C\).

Proof. Let \(S = \{\eta \in \mathcal{G}_\ast^\ast : \|\eta\| = 1\}\) and let \(c_1 = \min \{\pi_{\eta}(P) : \eta \in S\}\). For arbitrary \(\eta \in \mathcal{G}_\ast^\ast, \eta \neq 0\), let \(r = \|\eta\|^{-1}\). Then \(\|\delta_{\rho, \zeta}\| = 1\). (2.3) implies that \(|\pi_{\eta}(P)| \geq c_1 \|\eta\|^m\). Thus letting \(p_{\rho, \zeta}(t, \tau) = \pi_{\tau(t, \tau, \rho, \zeta)}(P)\), we have

\[
|p_{\rho, \zeta}(t, \tau)| \geq c_1 \|\pi_{\tau(t, \tau, \rho, \zeta)}(P)\|^m.
\]

Let \(p_{\rho, \zeta} = \text{sym} \pi_{\rho, \zeta}(P)\). By (2.7), the pseudodifferential operator calculus, (2.9) and the remark following (2.9),

\[
p_{\rho, \zeta} - p'_{\rho, \zeta} \in S_{\rho, \zeta}^{m-1} \quad \text{uniformly in } \rho.
\]

Now there exist \(c_2 > 0\) and \(C_2\) such that if \(|t| + |\tau| \geq C_2\) then \(|\eta(t, \tau; \rho, \zeta)|^m \geq c_2(|t| + |\tau|)\) for all \(\rho\). Thus, by (2.10), there exist \(c_3 > 0\) and \(C_3\) such that if \(|t| + |\tau| \geq C_3\), then \(|p'_{\rho, \zeta}(t, \tau)| \geq c_3 \Phi_{\rho, \zeta}(t, \tau)^m\) for all \(\rho\). Also, by (2.11), it follows that given \(\varepsilon > 0\) there is a \(C_\varepsilon\) such that if \(|t| + |\tau| \geq C_\varepsilon\), then for all \(\rho\)

\[
|p_{\rho, \zeta}(t, \tau) - p'_{\rho, \zeta}(t, \tau)| < 1/2s \Phi_{\rho, \zeta}(t, \tau)^m.
\]

The lemma follows by taking \(C = \max\{C_2, C_\varepsilon\}(c_3)\).
Proof of Theorem 2. By the theorem of Helffer-Nourrigat-Rockland, to prove P^* hypoelliptic it suffices to show that $\ker \pi_{\rho, \zeta}(P^*) = 0$ for all $\zeta \in \mathcal{S}_z^*$ and all $\rho \in R^{N-2d(\zeta)}$, except $\zeta = 0, \rho = 0$. (We consider $\pi_{\rho, \zeta}(P)$ and $\pi_{\rho, \zeta}(P^*)$ as bounded operators from $H^m_{\rho, \zeta}$ to $H^0_{\rho, \zeta}$). If $\zeta = 0$, then

$$\pi_{\rho, \zeta}(P^*) = \pi_{\rho, \zeta}(P) \neq 0$$

for all $\rho \neq 0$. If $\zeta \neq 0$, then by Theorem 7.2 of [1] and the above lemma, $\pi_{\rho, \zeta}(P)$ is Fredholm for all ρ. Also by Remark 1.4 of [4] and the Helffer-Nourrigat-Rockland Theorem, $\ker \pi_{\rho, \zeta}(P) = \ker \pi_{\rho, \zeta}(P) \cap \mathcal{S}_z^* = 0$. Hence it suffices to prove that $\text{ind} \pi_{\rho, \zeta}(P) = 0$.

We consider first the case when $d = d(\zeta) < N/2$. Let $q_{\rho, \zeta} = \text{sym} \pi_{\rho, \zeta}(P^*)$. By (2.12) and the above lemma there is a $c > 0$ and a C such that $|q_{\rho, \zeta}(t, \tau)| \geq c\Phi_{\rho, \zeta}(t, \tau)^m$ for all $(t, \tau, \rho) \in R^N$ with $|t| + |\tau| \geq C$. Choose $f \in C^\infty(R^{2d})$ such that $f(t, \tau) \equiv 0$ if $|t| + |\tau| \leq C$, $f(t, \tau) \equiv 1$ if $|t| + |\tau| \geq 2C$. Let $a_{\rho, \zeta} \in S_{\rho, \zeta}^m$ uniformly in ρ and $b_{\rho, \zeta} = 1 - a_{\rho, \zeta} \circ q_{\rho, \zeta} \in S_{\rho, \zeta}^m$ uniformly in ρ, where $p \circ q$ denotes the symbol of $p(t, D)q(t, D)$. Let $\psi(\tau) = (1 + |\tau|^2)^{1/2m}$. There is a $C > 0$ (depending on ζ), such that $\psi(\tau) \leq C(1 + |\tau|^2)^{1/2m}$, and, by (2.8), such that $|\rho|^i \leq C\Phi_{\rho, \zeta}(t, \tau)$. Let $a_{\rho, \zeta} \in S_{\rho}^m$ uniformly in ρ and $|\rho|^i b_{\rho, \zeta} \in S_{\rho}^0$ uniformly in ρ. By the L^2 boundedness theorem for pseudodifferential operators there is a C_1 such that $\|a_{\rho, \zeta}(t, D)u\| \leq C_1 \|u\|$ and $|\rho|^i \|b_{\rho, \zeta}(t, D)u\| \leq C_1 \|u\|$, for all $u \in L^2(R^d)$ and all ρ. Thus if $|\rho|^i \geq 2C_1$,

$$\|u\| \leq \|a_{\rho, \zeta}(t, D)\pi_{\rho, \zeta}(P^*)u\| + \|b_{\rho, \zeta}(t, D)u\| \leq C_1 \|\pi_{\rho, \zeta}(P^*)u\| + 1/2 \|u\|.$$

Hence $\pi_{\rho, \zeta}(P^*)$ is injective and thus $\text{ind} \pi_{\rho, \zeta}(P) = 0$ if $|\rho|^i \geq 2C_1$. Since $\text{ind} \pi_{\rho, \zeta}(P)$ is independent of ρ, $\text{ind} \pi_{\rho, \zeta}(P) = 0$ for all ρ. If $d = d(\zeta) = N/2$, we write π_{ζ} for $\pi_{0, \zeta}$. Define $\varphi: R_+^d \oplus R_+^d \to \mathcal{S}_z^*$ by $\varphi(t, \tau) = \eta(t, \tau; 0, \zeta)$, as defined before (2.6). Let $\delta_{\tau} = \varphi^{-1} \circ \delta_{\tau} \circ \varphi$. Then $\{\delta_{\tau}\}$ is a family of dilations on R^{2d}. Let $p_{\zeta}(t, \tau) = \pi_{\eta(t, \tau; 0, \zeta)}(P)$. It follows from (2.3) that p_{τ} is homogeneous of degree m with respect to $\{\delta_{\tau}\}$ and by (2.12) p_{ζ} is Φ_{ζ}-elliptic. Since $p_{\zeta} = \text{sym} \pi_{\zeta}(P) \in S_{\zeta}^{-1}$ we can apply Theorem 1 to find $\text{ind} \pi_{\zeta}(P)$. If $d > 1$, then $\text{ind} \pi_{\zeta}(P) = 0$.

If $d = 1$ and $B(\zeta) = \{Y_1(\zeta), Y_2(\zeta)\}$, set $Y_1(-\zeta) = Y_2(\zeta), Y_2(-\zeta) = Y_1(\zeta)$. Then $B(-\zeta) = \{Y_1(-\zeta), Y_2(-\zeta)\}$ satisfies (2.4) for $-\zeta$. Also $\eta(t, \tau; -\zeta) = \eta(\tau, t; \zeta)$ and $p_{-\zeta}(t, \tau) = p_{\zeta}(\tau, t)$. By Theorem 1

$$2\pi \text{ind} \pi_{-\zeta}(P) = \Delta_{p_{-\zeta}} \arg p_{-\zeta} = -\Delta_{p_{\zeta}} \arg p_{\zeta} = -2\pi \text{ind} \pi_{\zeta}(P).$$

But $\ker \pi_{\zeta}(P) = \ker \pi_{-\zeta}(P) = 0$ implies $\text{ind} \pi_{\zeta}(P) \geq 0$ and $\text{ind} \pi_{-\zeta}(P) \geq 0$. Thus $\text{ind} \pi_{\zeta}(P) = 0$.

REFERENCES

Received November 20, 1980.

WICHITA STATE UNIVERSITY
WICHITA, KS 67208
PACIFIC JOURNAL OF MATHEMATICS

EDITORS

DONALD BABBITT (Managing Editor)
University of California
Los Angeles, CA 90024

HUGO ROSSI
University of Utah
Salt Lake City, UT 84112

C. C. MOORE and ARTHUR AGUS
University of California
Berkeley, CA 94720

ASSOCIATE EDITORS

R. ARENS E. F. BECKENBACH B. H. NEUMANN F. WOLF K. YOSHIDA

SUPPORTING INSTITUTIONS

UNIVERSITY OF ARIZONA
UNIVERSITY OF BRITISH COLUMBIA
CALIFORNIA INSTITUTE OF TECHNOLOGY
UNIVERSITY OF CALIFORNIA
MONTANA STATE UNIVERSITY
UNIVERSITY OF NEVADA, RENO
NEW MEXICO STATE UNIVERSITY
OREGON STATE UNIVERSITY
UNIVERSITY OF OREGON
UNIVERSITY OF SOUTHERN CALIFORNIA
STANFORD UNIVERSITY
UNIVERSITY OF HAWAII
UNIVERSITY OF TOKYO
UNIVERSITY OF UTAH
WASHINGTON STATE UNIVERSITY
UNIVERSITY OF WASHINGTON

The Supporting Institutions listed above contribute to the cost of publication of this Journal, but they are not owners or publishers and have no responsibility for its content or policies.

Mathematical papers intended for publication in the Pacific Journal of Mathematics should be in typed form or offset-reproduced, (not dittoed), double spaced with large margins. Please do not use built up fractions in the text of the manuscript. However, you may use them in the displayed equations. Underline Greek letters in red, German in green, and script in blue. The first paragraph or two must be capable of being used separately as a synopsis of the entire paper. Please propose a heading for the odd numbered pages of less than 35 characters. Manuscripts, in triplicate, may be sent to any one of the editors. Please classify according to the scheme of Math. Reviews, Index to Vol. 39. Supply name and address of author to whom proofs should be sent. All other communications should be addressed to the managing editor, or Elaine Barth, University of California, Los Angeles, California, 90024.

50 reprints to each author are provided free for each article, only if page charges have been substantially paid. Additional copies may be obtained at cost in multiples of 50.

The Pacific Journal of Mathematics is issued monthly as of January 1966. Regular subscription rate: $102.00 a year (6 Vols., 12 issues). Special rate: $51.00 a year to individual members of supporting institutions.

Subscriptions, orders for numbers issued in the last three calendar years, and changes of address should be sent to Pacific Journal of Mathematics, P.O. Box 969, Carmel Valley, CA 93924, U.S.A. Old back numbers obtainable from Kraus Periodicals Co., Route 100, Millwood, NY 10546.

PUBLISHED BY PACIFIC JOURNAL OF MATHEMATICS, A NON-PROFIT CORPORATION

Printed at Kokusai Bunken Insatsuisha (International Academic Printing Co., Ltd.).
8-8, 3-chome, Takadanobaba, Shinjuku-ku, Tokyo 160, Japan.

Copyright © 1982 by Pacific Journal of Mathematics
Manufactured and first issued in Japan
Thomas E. Armstrong and Karel Libor Prikry, On the semimetric on a Boolean algebra induced by a finitely additive probability measure249
Walter Russell Bloom, Strict local inclusion results between spaces of Fourier transforms .. 265
Richard Clark Brown, Notes on generalized boundary value problems in Banach spaces. II. Infinite-dimensional extension theory271
Sui Sun Cheng, Isoperimetric eigenvalue problem of even order differential equations .. 303
Lung O. Chung and Jiang Luh, Derivations of higher order and commutativity of rings .. 317
Ali Ahmad Fora, A fixed point theorem for product spaces327
Barry J. Gardner, Radical classes of regular rings with Artinian primitive images ..337
John Brady Garnett and Peter Wilcox Jones, BMO from dyadic BMO351
Allen E. Hatcher, On the boundary curves of incompressible surfaces373
Richard Howard Hudson and Kenneth S. Williams, Resolution of ambiguities in the evaluation of cubic and quartic Jacobsthal sums379
Viktor Losert, Counter-examples to some conjectures about doubly stochastic measures .. 387
Kenneth Derwood Magill, Jr., P. R. Misra and Udai Bhan Tewari, Structure spaces for sandwich semigroups 399
Mark Mandelker, Continuity of monotone functions 413
Kenneth Guy Miller, An index theorem and hypoellipticity on nilpotent Lie groups ... 419
Evelyn M. Nelson, Homomorphisms of mono-unary algebras 427
Marvin E. Ortel, The support of an extremal dilatation 431
R. S. Pathak and O. P. Singh, Finite Hankel transforms of distributions ... 439
Richard Cole Penney, The theory of ad-associative Lie algebras 459
Linda Ruth Sons, Zero distribution of functions with slow or moderate growth in the unit disc .. 473
Russell Bruce Walker, Transversals to laminations 483