A GRAPH AND ITS COMPLEMENT WITH SPECIFIED PROPERTIES. VI. CHROMATIC AND ACHROMATIC NUMBERS

JIN AKIYAMA, FRANK HARARY AND PHILLIP ARTHUR OSTRAND
A GRAPH AND ITS COMPLEMENT
WITH SPECIFIED PROPERTIES VI:
CHROMATIC AND ACHROMATIC NUMBERS

Dedicated to Ruth Bari

JIN AKIYAMA, FRANK HARARY AND PHILLIP OSTRAND

We characterize the graphs G such that both G and its complement \bar{G} are n-colorable, and we specify explicitly all 171 graphs for the case $n = 3$. We then determine the 41 graphs for which both G and G have achromatic number 3.

1. Introduction. We follow the terminology and notation of [1] but we include some basic definitions for completeness. A coloring of a graph G is an assignment of colors to its points so that whenever two points are adjacent they are colored differently. An n-coloring of G is a coloring of G which uses n colors. A complete n-coloring of G is an n-coloring of G such that, for every pair of distinct colors there exists a pair of adjacent points in G which receive the given pair of colors. The chromatic number $\chi = \chi(G)$ of a graph G is the least integer n such that G has an n-coloring. We say that G is n-colorable if $\chi(G) \leq n$. Alternatively, $\chi(G)$ can be characterized as the least integer n such that $V(G)$ has a partition into n subsets each of which induces a totally disconnected subgraph. Obviously if $n = \chi(G)$ then every n-coloring of G is complete. The achromatic number $\psi = \psi(G)$ of a graph G is the greatest integer m such that G has a complete m-coloring. Clearly every graph G of order p has a p-coloring, but this coloring is only complete if G is K_p.

A homomorphism of a graph G onto a graph G' is a function ϕ from $V(G)$ onto $V(G')$ such that, whenever u and v are adjacent points of G, their images $\phi(u)$ and $\phi(v)$ are adjacent in G'. Since no point of a graph is adjacent with itself, two adjacent points of G cannot have the same image under any homomorphism of G. If G' is the image of G under a homomorphism ϕ, we write $G' = \phi(G)$. The order of ϕ is $|V(\phi(G))|$. A homomorphism ϕ of G is complete of order n if $\phi(G) = K_n$. Thus every graph G has a complete homomorphism of order $\chi(G)$ and also a complete homomorphism of order $\psi(G)$, and $\chi(G)$ and $\psi(G)$ are the smallest and largest orders of the complete homomorphisms of G. It was shown by Harary, Hedetniemi and Prins [2] that G also has a complete homomorphism of order n for all intermediate n.

It is convenient to write $G > H$ when H is an induced subgraph of G. If X is a set of points in a graph G then we use $\langle X \rangle$ to denote the
subgraph G induced by X. If necessary to avoid ambiguity we can write $\langle X \rangle_G$ and $\langle X \rangle_H$ if X is a set of points in two different graphs G and H. We write $\overline{\chi}(G)$ for $\chi(\overline{G})$ and $\overline{\psi}(G)$ for $\psi(\overline{G})$.

2. The chromatic number. We are concerned in this section with those graphs G for which both G and \overline{G} are n-colorable.

Theorem 1. Let G_1, G_2, \ldots, G_k be the components of a graph G. Then $\overline{\chi}(G) = \Sigma \overline{\chi}(G_i)$.

Proof. We first prove the inequality $\chi(G) \leq \Sigma \chi(G_i)$ holds if G_1, G_2, \ldots, G_k are induced subgraphs of G such that $V(G) = \cup V(G_i)$. For each $1 \leq i \leq k$ there exists a family S_i of subsets $V(G_i)$ whose union is $V(G_i)$, with $|S_i| = \chi(G_i)$, and such that each $S \in S_i$ induces in G_i a totally disconnected subgraph. Let $S = \cup S_i$. Then S is a family of subsets of $V(G)$, whose union is $V(G)$, such that each $S \in S$ induces in G a totally disconnected subgraph. Thus $\chi(G) \leq |S| \leq \Sigma |S_i| = \Sigma \chi(G_i)$.

Next we show that $\overline{\chi}(G) \geq \Sigma \overline{\chi}(G_i)$ if G_1, G_2, \ldots, G_k are the components of G. There exists a family S of subsets of $V(G)$, whose union is $V(G)$, with $|S| = \overline{\chi}(G)$, such that each $S \in S$ induces in \overline{G} a totally disconnected subgraph. For each $1 \leq i \leq k$, let $S_i = \{S \in S \mid S \cap V(G_i) \neq \emptyset\}$. Points from different components of G are adjacent in \overline{G}, so the subfamilies $S_i, 1 \leq i \leq k$, constitute a partition of S. Each S_i is such that every $S \in S_i$ induces in $\overline{G_i}$ a totally disconnected subgraph, so $|S_i| \leq \overline{\chi}(G_i)$. Thus $\overline{\chi}(G) = |S| \leq \Sigma |S_i| \geq \Sigma \overline{\chi}(G_i)$.

Since each $\overline{G_i}$ is an induced subgraph of \overline{G}, the theorem is an immediate consequence of the discussion above.

The corollaries which follow include a characterization of graphs G such that G and \overline{G} are both n-colorable.

Corollary 1a. Let G_1, G_2, \ldots, G_k be the components of G. Then G and \overline{G} are both n-colorable if and only if

(i) $\chi(G_i) \leq n$ for every $1 \leq i \leq k$, and

(ii) $\Sigma \overline{\chi}(G_i) \leq n$.

Proof. This follows directly from Theorem 1 and the fact that $\chi(G) = \max \chi(G_i)$.

Corollary 1b. If G has k components, then $\overline{\chi}(G) \geq k$. If $k = \overline{\chi}(G)$, then each component of G is complete.

Proof. As G has k components G_i, \overline{G} must contain K_k. If $k = \overline{\chi}(G)$, then $\Sigma \overline{\chi}(G_i) = k$, so for each i, $\overline{\chi}(G_i) = 1$, whence $\overline{G_i}$ is totally disconnected and therefore G_i is complete.
For the special case of disconnected graphs G such that G and \overline{G} are both 3-colorable, Theorem 1 leads to a particularly simple characterization.

Corollary 1c. If a graph G is disconnected then G and \overline{G} are both 3-colorable if and only if one of the following conditions is satisfied.

(i) G has exactly 3 components each of which is a complete graph of order no greater than 3.

(ii) G has exactly 2 components, G_1 and G_2, and G_1 is a complete graph of order no greater than 3, and G_2 is 3-colorable and $\overline{G_2}$ is 2-colorable.

Proof. Let G_1, G_2, \ldots, G_k be the components of a disconnected graph G.

Suppose first that G and \overline{G} are both 3-colorable. By Corollary 1b we need consider only two possible values of k.

Case 1. $k = 3$.
In this case $k = \chi(G)$ so Corollary 1b applies and each G_i is complete. Then $\chi(G) \leq 3$ implies that each G_i is of order no greater than 3. In this case G satisfies condition (i).

Case 2. $k = 2$.
From Theorem 1 we get $\chi(G_1) + \chi(G_2) = \chi(G) \leq 3$. Without loss of generality we may conclude that $\chi(G_1) = 1$ and $\chi(G_2) \leq 2$. As in Case 1 it follows that G_1 is complete of order no greater than 3. Thus G_2, being a subgraph of G, is 3-colorable, and $\overline{G_2}$ is 2-colorable because $\chi(G_2) \leq 2$. In this case G satisfies condition (ii).

Suppose conversely that G satisfies either (i) or (ii).

Case 1'. G satisfies (i).
Let G_1, G_2 and G_3 be the components of G. Then each G_i is complete so $V(G_i)$ induces in \overline{G} a totally disconnected subgraph, thus $\chi(G) \leq 3$. Because each G_i is of order no greater than 3 we can partition $V(G)$ into three subsets V_1', V_2' and V_3' such that $|V_i' \cap V(G_j)| \leq 1$ for $1 \leq j, j \leq 3$. Then each V_i' induces in G a totally disconnected subgraph, so $\chi(G) \leq 3$. In this case G and \overline{G} are both 3-colorable.

Case 2'. G satisfies (ii).
In this case Corollary 1a clearly implies that G and \overline{G} are both 3-colorable.

Theorem 2. If a graph G is n-colorable, then $\chi(G)$ is the least integer t such that $V(G)$ can be partitioned into t subsets V_1, V_2, \ldots, V_t and for each $1 \leq i \leq t$, $|V_i| \leq n$ and V_i induces a complete subgraph.
Proof. By definition $\chi(G)$ is the least integer t such that $V(G)$ can be partitioned into t subsets V_1, V_2, \ldots, V_t each of which induces in \overline{G} a totally disconnected subgraph. Also for any subset S of $V(G)$, S induces in \overline{G} a totally disconnected subgraph if and only if S induces in G a complete subgraph, in which case $|S| \leq \chi(G) \leq n$.

The corollaries which follow include another characterization of graphs G such that G and \overline{G} are both n-colorable which can usefully be applied to connected graphs.

Corollary 2a. A graph G and its complement are both n-colorable if and only if there exist positive integers $s, t \leq n$ such that

(i) For each $1 \leq i \leq s$ there is a positive integer $a_i \leq t$ such that $\bigcup K_{a_i}$ is a spanning subgraph of G.

(ii) For each $1 \leq i \leq t$ there is a positive integer $b_i \leq s$ such that $\bigcup K_{b_i}$ is a spanning subgraph of G.

Moreover the minimum values of s and t which satisfy these conditions are $\chi(G)$ and $\overline{\chi}(G)$ respectively.

Proof. Suppose first that G and \overline{G} are both n-colorable. Let $s = \chi(G)$ and $t = \overline{\chi}(G)$, so $s, t \leq n$. As G is s-colorable, by Theorem 2 there is a partition of $V(G)$ into $t = \overline{\chi}(G)$ subsets V_1, \ldots, V_t such that for each $1 \leq i \leq t$, $|V_i| \leq s$ and V_i induces a complete subgraph in G. Writing $b_i = |V_i|$, we have $\bigcup K_{b_i} = \bigcup \langle V_i \rangle$ as a spanning subgraph of G.

Similarly, since \overline{G} is t-colorable and $\overline{\chi}(G) = s$, the same argument applied to \overline{G} yields $\bigcup K_{a_i}$ as a spanning subgraph of \overline{G} for some sequence of positive integers $a_i \leq t$.

Now suppose conversely that G is a graph which satisfies conditions (i) and (ii). By condition (i), there is a partition of $V(G)$ into s subsets V_1, \ldots, V_s such that for each $1 \leq i \leq s$, V_i induces a complete subgraph in \overline{G}. Then each V_i induces in G a totally disconnected subgraph. Thus $\chi(G) \leq s \leq n$, so G is n-colorable. Also note that the least value of s which can satisfy (i) is $\chi(G)$ since $\chi(G) \leq s$. Similarly by (ii) we deduce $\overline{\chi}(G) \leq t \leq n$, so \overline{G} is n-colorable and $\overline{\chi}(G)$ is the minimum possible value for t.

Corollary 2b. If a graph G and its complement are both n-colorable then the order of G is at most n^2.

Although this corollary is clearly a consequence of the partition described in Theorem 2, we should also point out that it is also a special case of the well known result of Nordhaus and Gaddum [3] that the order p of a graph satisfies the inequality, $p \leq \chi \overline{\chi}$. It is convenient to include here another useful consequence of the Nordhaus-Gaddum theorem.
COROLLARY 2c. If a graph G and its complement are both n-colorable and the order of G exceeds $n(n - 1)$, then $\chi(G) = \bar{\chi}(G) = n$.

Proof. Since $\chi(G) \leq n$ and $\bar{\chi}(G) \leq n$, if either were actually less than n then $\chi(G) \cdot \bar{\chi}(G)$ would be no greater than $n(n - 1)$.

Our final corollary of this theorem deals again with the special case $n = 3$.

COROLLARY 2d. If a graph G of order p and its complement \bar{G} are both 3-colorable, then $p \leq 9$ and

(i) if $p = 9$, then G and \bar{G} each contain $3K_3$ as a subgraph,
(ii) if $p = 8$, then G and \bar{G} each contain $2K_3 \cup K_2$ as a subgraph,
(iii) if $p = 7$, then G and \bar{G} each contain either $K_3 \cup 2K_2$ or $2K_3 \cup K_1$ as a subgraph.

Proof. Suppose that G and \bar{G} are both 3-colorable. Then by Corollary 2b the order p of G is at most 9. If $p \geq 7$ then by Lemma 2c, $\chi(G) = \bar{\chi}(G) = 3$. Thus by Corollary 2a, depending on the value of p, G and \bar{G} must contain the subgraphs described above.

We complete this section by cataloguing all graphs G of order 6 or less and all disconnected graphs G of order 7, 8 or 9 for which G and \bar{G} are both 3-colorable. Because there are 171 graphs in this category we will not illustrate them. Rather we describe each such graph by specifying an ordered triple (p, q, n) where p denotes the order and q the size of the graph and n denotes its numerical designation in the Graph Diagrams in Appendix 1 of [1]. Every graph of order 6 or less appears in these diagrams and the triple (p, q, n) completely describes such graphs. The disconnected graphs of order 7, 8, and 9 for which $\chi \leq 3$ and $\bar{\chi} \leq 3$ do not appear in the diagrams, but their components do, and we indicate such graphs by specifying their components. There are pairs (p, q) for which only one graph of order p and size q exists. Such graphs do not have a numerical designation in the Graph Diagrams. We hereby confer the designation 1 on all such graphs. Thus in the lists which follow the triple $(2, 1, 1)$ represents the unique graph of order 2 and size 1, namely K_2. Our list of disconnected graphs of order 7 through 9 with $\chi = \bar{\chi} = 3$ are really complete, by the following argument. By Corollary 1c, all such graphs have 3 components each of order 3 or less or 2 components, G_1 and G_2, with G_1 complete of order 3 or less and $\chi(G_1) \leq 3$, $\bar{\chi}(G_2) \leq 2$. By the Nordhaus-Gaddum theorem we conclude that the order of G_2 is no greater than 6, so G_2 is in List C, our list of all graphs of order 6 or less with $\chi = 3$, $\bar{\chi} = 2$.
List A. $\chi + \overline{\chi} \leq 4$.
\begin{align*}
\chi &= \overline{\chi} = 1: (1, 0, 1) \text{ which is } K_1.
\chi &= 1 \text{ and } \overline{\chi} = 2: (2, 0, 1) \text{ which is } \overline{K}_1.
\chi &= 2 \text{ and } \overline{\chi} = 1: (2, 1, 1) \text{ which is } K_2.
\chi &= 1 \text{ and } \overline{\chi} = 3: (3, 0, 1) \text{ which is } K_3.
\chi &= \overline{\chi} = 2, \text{ connected: } (3, 2, 1), (4, 3, 2), \text{ and } (4, 4, 2) \text{ which are } P_3, P_4 \text{ and } C_4.
\chi &= \overline{\chi} = 2, \text{ disconnected: } (3, 1, 1) \text{ and } (4, 2, 2) \text{ which are } K_1 \cup K_2 \text{ and } 2K_2.
\end{align*}

List B. $\chi = 2$ and $\overline{\chi} = 3$.
Connected: (4, 3, 3), (5, 4, 4), (5, 4, 6), (5, 5, 3), (5, 6, 5) and $p = 6$ with $(q, n) = (5, 7), (5, 10), (5, 14), (6, 7), (6, 9), (6, 11), (7, 5), (7, 14), (8, 23), (9, 17)$.
Disconnected: (4, 1, 1), (4, 2, 1), (5, 2, 2), (5, 3, 1), (5, 3, 4), (5, 4, 1), (6, 3, 5), and (6, 4, 8).

List C. $\chi = 3$ and $\overline{\chi} = 2$.
Connected: (4, 4, 1), (4, 5, 1), (5, 5, 4), (5, 6, 1), (5, 6, 4), (5, 6, 6), (5, 7, 1), (5, 8, 2), and $p = 6$ with $(q, n) = (7, 23), (8, 5), (8, 14), (9, 7), (9, 9), (9, 11), (10, 7), (10, 10), (10, 14), (11, 8), (12, 5)$.
Disconnected: (4, 3, 1), (5, 4, 5) and (6, 6, 17).

List D. $\chi = \overline{\chi} = 3$, order 6 or less.
Connected: $p = 5$ with $(q, n) = (5, 2), (5, 5), (5, 6), (6, 2), (7, 2); (6, 5, 3); (p, q) = (6, 6)$ with $n = 8, 10, 13, 14, 18, 20$;
$(p, q) = (6, 7)$ with $n = 6, 7, 8, 9, 10, 11, 12, 13, 16, 19, 20, 21, 24$;
$(p, q) = (6, 8)$ with $n = 1, 2, 6, 7, 8, 9, 10, 11, 12, 13, 16, 19, 20, 21, 24$;
$(p, q) = (6, 9)$ with $n = 2, 3, 5, 8, 10, 13, 14, 18, 19, 20; (6, 10, 3), (6, 10, 12), (6, 10, 15)$.
Disconnected: (5, 3, 2), (5, 4, 2), (5, 5, 1);
$p = 6$ with $(q, n) = (4, 6), (5, 12), (5, 15), (6, 2), (6, 3), (6, 5), (6, 19), (7, 1), (7, 2)$.

List E. $\chi = \overline{\chi} = 3$, of order 7, 8, or 9, disconnected $3K_3, 2K_3 \cup K_2, K_3 \cup 2K_2, 2K_3 \cup K_1,$ and $K_3 \cup G$ where G is any connected graph in List C, and $K_2 \cup G$ where G is any connected graph of order 5 or 6 in List C, and $K_1 \cup G$ where G is any connected graph of order 6 in List C.

Of the 171 graphs which appear in these lists, 116 have $\chi = \overline{\chi} = 3$. In addition to these the complements of the 51 graphs in List E are connected graphs of order 7 through 9 with $\chi = \overline{\chi} = 3$. And Corollary 2d implies that there are many other graphs of order 7 through 9 with
\(\chi = \bar{\chi} = 3 \) which are not in our lists, of which one example is \(G = C_7 + e \) where the edge \(e \) joins two points whose distance in \(C_7 \) is 2. In this case clearly both \(G \) and \(\bar{G} \) contain \(K_3 \cup 2K_2 \) as a subgraph so \(\chi(G) = \bar{\chi}(G) = 3 \).

3. The achromatic number. We first characterize graphs \(G \) with \(\psi(G) = 2 \).

Theorem 3. A graph \(G \) has achromatic number 2 if and only if each component of \(G \) is complete bipartite.

Proof. Obviously the union of complete bipartite graphs has \(\psi = 2 \). For the converse, assume that \(\psi = 2 \), then \(\chi \leq 2 \) since \(\chi \leq \psi \) for any graph. Thus \(G \) must be bipartite. Moreover each component of \(G \) cannot contain \(P_4 \) as an induced subgraph since \(\psi(P_4) = 3 \). Thus each component of \(G \) must be complete bipartite.

Corollary 3a. The only graphs with \(\psi = \bar{\psi} = 2 \) are \(C_4, 2K_2, K_{1,2} \) and \(K_2 \cup K_1 \).

We now develop some results in the form of five lemmas for finding all graphs with \(\psi = \bar{\psi} = 3 \). We write \(uAv \) to indicate adjacency and \(u \bar{A}v \) for nonadjacency. The first lemma was proved by exhaustion and we omit the detailed verification.

Lemma 4a. Among all graphs of order 6, only the six graphs \(2K_3, 2K_2 + K_2, C_4 + K_2 \) and their complements \(K_{3,3}, C_4 \cup K_2 \) and \(3K_2 \) satisfy the property that either \(G \) or \(\bar{G} \) contains two point-disjoint triangles and \(\psi = \bar{\psi} \leq 3 \).

\[
\begin{align*}
2K_3; & \\
2K_2 + K_2; & \\
C_4 + K_2; & \\
K_{3,3}; & \\
C_4 \cup K_2; & \\
3K_2; & \\
\end{align*}
\]

Figure 1. The six graphs of order 6 with \(\psi, \bar{\psi} \leq 3 \)
LEMMA 4b. Among all graphs of order 7, only the six graphs $2K_3 \cup K_1$, $2K_3 + \overline{K}_3$, $C_4 + \overline{K}_3$ and their complements satisfy the property that either G or \overline{G} contains two point-disjoint triangles and $\psi, \overline{\psi} \leq 3$.

Proof. Assume that $\psi = \overline{\psi} = 3$ and that G contains two point-disjoint triangles $T_1 = \{v_1, v_2, v_3\}$ and $T_2 = \{v_4, v_5, v_6\}$. Then the subgraph H of G induced by these six points in one of the three graphs, $2K_3$, $K_2 + \overline{K}_2$ or $C_4 + \overline{K}_2$, of Lemma 4a; otherwise either G or \overline{G} contains an induced subgraph of order 6 which has achromatic number at least 4 and so ψ or $\overline{\psi}$ would be at least 4, a contradiction to the hypothesis. By w we denote the seventh point in $V(G) - V(H)$, and divide the proof into three cases according to whether H is $2K_3$, $2K_2 + \overline{K}_2$, or $C_4 + \overline{K}_2$.

If $G = H \cup K_1$, it is easily verified that $\psi = \overline{\psi} = 3$. Now we may assume that $G \supset H \cup K_1$ properly. Then there is a point v_i in G which is adjacent to w. Without loss of generality we may assume that wAv_i. On the other hand, there is at least one point v_i, $i = 4, 5$ or 6, which is not adjacent to w, say v_4 as shown in Figure 3, otherwise all three points v_i, $i = 4, 5$, and 6 are adjacent to w and so $\{v_4, v_5, v_6, w\}$ induces K_4, a contradiction.
Then it is easy to see that $\psi(G) = 4$ regardless of whether or not wAv_i for $i = 2, 3, 5, 6$, a contradiction.

Case 2. $H = 2K_2 + \overline{K}_2$.

As $\psi = \bar{\psi} = 3$, we know that $\chi, \bar{\chi} \leq 3$ so by Lemma 2c, $\chi = \bar{\chi} = 3$. Thus by Corollary 2d, \overline{G} contains a triangle. As $H = 2K_2 + \overline{K}_2 = G - w$, it follows that G contains $C_4 \cup K_2$ as an induced subgraph. Hence there are two possibilities: either $G \supset F_1$ or $\overline{G} \supset F_2$, where F_1, F_2 are the graphs illustrated in Figure 4, which we now consider as two subcases.

Figure 4. A step in the proof of Case 2

Case 2a. $\overline{G} \supset F_1$.

If $\overline{G} \not= F_1$, then w is adjacent to at least one more point of G, i.e., to v_1, v_2, v_4, or v_5. We may assume that w is adjacent to v_1 or v_2 from the symmetry of F_1. In either case, $\bar{\psi} = 4$, a contradiction. On the other hand, if $\overline{G} = F_1$ then $\bar{\psi} = 4$, a contradiction.

Case 2b. $\overline{G} \supset F_2$.

If $\overline{G} = F_2$, then $\psi = \bar{\psi} = 3$. If $\overline{G} \not= F_2$, then w is adjacent to one of the points v_i, $i = 1, 3, 4$ or 6. From the symmetry of F_2, we may assume that wAv_1. Then it is easy to see that $\psi = 4$, a contradiction.
Case 3. \(H = C_4 + \overline{K}_2 \).

Since \(\overline{G} \supseteq K_3 \) from Corollary 2d, and \(H = 3K_2 \), it follows that \(\overline{G} \supseteq 2K_2 \cup K_3 \). We may assume without loss of generality that \(\{v_2, v_5, w\} \) induces \(K_3 \) in \(\overline{G} \); see Figure 5. If \(\overline{G} = 2K_2 \cup K_3 \), then \(\psi = \overline{\psi} = 3 \). If \(\overline{G} \neq 2K_2 \cup K_3 \), then \(w \) must be adjacent to at least one of \(v_i \), \(i = 1, 3, 4 \) or 6. Assuming now that \(wAv_1 \), we see that \(\overline{\psi} = 4 \), a contradiction.

![Figure 6. A labelling of \(K_3 \cup 2K_2 \)](image)

Lemma 4c. If \(G \) is a graph of order 7 such that neither \(G \) nor \(\overline{G} \) contains two point-disjoint triangles, then \(\psi \) or \(\overline{\psi} \) is at least 4.

Proof. Assume that \(\psi = \overline{\psi} = 3 \), then \(\chi, \overline{\chi} \leq 3 \) since \(\chi \leq \psi \). By applying Lemma 2c, \(\chi = \overline{\chi} = 3 \). Thus \(G \supseteq K_3 \cup 2K_2 \) or \(G \supseteq 2K_3 \cup K_2 \) by Corollary 2d. But by the hypothesis, \(G \) cannot contain two point-disjoint triangles and so, \(G, G \supseteq K_3 \cup 2K_2 \). Now we label the points of \(K_3 \cup 2K_2 \) as in Figure 6.
By the symmetry of G and \bar{G}, it is sufficient to handle only the case u_2Aw_2. By the hypothesis that G cannot contain two point-disjoint triangles, v_1Aw_2 and v_2Au_2. Then regardless of the presence or absence of other lines, we can easily verify that $\psi = 4$, a contradiction.

Lemma 4d. There are no graphs of order at least 8 such that $\psi = \bar{\psi} = 3$.

Proof. Assume that G has order 8 and $\psi = \bar{\psi} = 3$. Then $\chi = \bar{\chi} = 3$ by Lemma 2c. Thus both G and \bar{G} contain $2K_3 \cup K_2$ as a spanning subgraph by Corollary 2d. The subgraph of G induced by the set of points of $2K_3$ must be one of the three graphs, $2K_3, 2K_2 + \bar{K}_2$ or $C_4 + \bar{K}_2$ of Lemma 4a. We now divide the proof into three cases:

Case 1. G contains $2K_3$ as an induced subgraph.

By Corollary 2d, both G and \bar{G} contain $2K_3 \cup K_2$ hence of course $\bar{G} \supseteq 2K_3$. It is convenient to label G as in Figure 7.

![Figure 7](image)

Figure 7. A subgraph of \bar{G}

By symmetry, we may assume that both point sets $\{u_3, u_6, v_1\}$ and $\{u_2, u_5, v_2\}$ induce K_3 in G. Then it is easily verified that $\bar{\psi} = 4$.

Case 2. G contains $2K_2 + \bar{K}_2$ as an induced subgraph.

Let F_1, F_2 be the graphs illustrated in Figure 8.
Since $\bar{G} \supset 2K_3$ by Corollary 2d, there are two possibilities: either $\bar{G} \supset F_1$ or $\bar{G} \supset F_2$. However in either case, $\psi = 4$.

Case 3. G contains $C_4 + \bar{K}_2$ as an induced subgraph.

Since $\bar{G} \supset 2K_3$ by Corollary 2d, we may assume that both $\{v_1, u_2, u_3\}$ and $\{v_2, u_3, u_4\}$ induce K_3 in \bar{G}, see Figure 9, and thus $\psi = 4$, a contradiction.
Combining the preceding four lemmas, we obtain the following result.

Lemma 4e. Let G be a graph of order at least 7, then G has $\psi = \bar{\psi} = 3$ if and only if G is one of the six graphs, $2K_3 \cup K_1$, $K(3, 3, 1)$, $C_4 \cup C_3$, $2K_2 + \bar{K}_3$, $2K_2 \cup K_3$ and $K(3, 2, 2)$.

We are now ready to specify all the graphs with $\psi = \bar{\psi} = 3$.

Theorem 4. There are exactly 41 graphs G such that both G and \bar{G} have achromatic number 3: six have order 7, twenty are of order 6, fourteen of order 5 and just one of order 4.

Proof. By Lemma 4d, we know that there are no such graphs of order $p \geq 8$. Lemma 4e lists all six graphs with $p = 7$ and Figure 2 shows them. To complete the list of all the graphs with $\psi = \bar{\psi} = 3$, we had to resort to the method of brute force by an exhaustive inspection of Appendix I of [1] for $p = 4, 5, \text{and} 6$.

As the determination of all graphs with $\psi = \bar{\psi} = n \geq 4$ appears to be hopelessly complicated, we can realistically ask only for the construction of additional families of graphs with $\psi = \bar{\psi}$.

References

Received February 18, 1980.

Nippon Ika University
Kawasaki, 211, Japan

University of Michigan
Ann Arbor, MI 48109

AND

University of California
Santa Barbara, CA 93106
PACIFIC JOURNAL OF MATHEMATICS
EDITORS
DONALD BABBITT (Managing Editor)
University of California
Los Angeles, CA 90024

J. DUGUNDJI
Department of Mathematics
University of Southern California
Los Angeles, CA 90089-1113

HUGO ROSSI
University of Utah
Salt Lake City, UT 84112

R. FINN and H. SAMELSON
Stanford University
Stanford, CA 94305

C. C. MOORE and ARTHUR OGUS
University of California
Berkeley, CA 94720

ASSOCIATE EDITORS
R. ARENS E. F. BECKENBACH B. H. NEUMANN F. WOLF K. YOSHIDA
(1906–1982)

SUPPORTING INSTITUTIONS
UNIVERSITY OF ARIZONA
UNIVERSITY OF OREGON
UNIVERSITY OF BRITISH COLUMBIA
UNIVERSITY OF SOUTHERN CALIFORNIA
CALIFORNIA INSTITUTE OF TECHNOLOGY
STANFORD UNIVERSITY
UNIVERSITY OF CALIFORNIA
UNIVERSITY OF HAWAII
MONTANA STATE UNIVERSITY
UNIVERSITY OF TOKYO
UNIVERSITY OF NEVADA, RENO
UNIVERSITY OF UTAH
NEW MEXICO STATE UNIVERSITY
WASHINGTON STATE UNIVERSITY
OREGON STATE UNIVERSITY
UNIVERSITY OF WASHINGTON
Nestor Edgardo Aguilera and Eleonor Ofelia Harbourne de Aguilera, On the search for weighted norm inequalities for the Fourier transform 1
Jin Akiyama, Frank Harary and Phillip Arthur Ostrand, A graph and its complement with specified properties. VI. Chromatic and achromatic numbers ... 15
Bing Ren Li, The perturbation theory for linear operators of discrete type 29
Peter Botta, Stephen J. Pierce and William E. Watkins, Linear transformations that preserve the nilpotent matrices 39
Frederick Ronald Cohen, Ralph Cohen, Nicholas J. Kuhn and Joseph Alvin Neisendorfer, Bundles over configuration spaces 47
Luther Bush Fuller, Trees and proto-metrizable spaces 55
Giovanni P. Galdi and Salvatore Rionero, On the best conditions on the gradient of pressure for uniqueness of viscous flows in the whole space ...77
John R. Graef, Limit circle type results for sublinear equations 85
Andrzej Graef, Ronald Bernard Guenther and John Walter Lee,
Topological transversality. II. Applications to the Neumann problem for $y'' = f(t, y, y')$.. 95
Richard Howard Hudson and Kenneth S. Williams, Extensions of theorems of Cunningham-Aigner and Hasse-Evans 111
John Francis Kurtzke, Jr., Centralizers of irregular elements in reductive algebraic groups ... 133
James F. Lawrence, Lopsided sets and orthant-intersection by convex sets .. 155
Ásvald Lima, G. H. Olsen and U. Uttersrud, Intersections of M-ideals and G-spaces .. 175
Wallace Smith Martindale, III and C. Robert Miers, On the iterates of derivations of prime rings .. 179
Thomas H. Pate, Jr, A characterization of a Neuberger type iteration procedure that leads to solutions of classical boundary value problems ... 191
Carl L. Prather and Ken Shaw, Zeros of successive iterates of multiplier-sequence operators ... 205
Billy E. Rhoades, The fine spectra for weighted mean operators 219
Rudolf J. Taschner, A general version of van der Corput’s difference theorem ... 231
Johannes A. Van Casteren, Operators similar to unitary or selfadjoint ones ... 241