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Using the theory of unconditional bases, we discuss the perturbation
theory of linear operators of discrete type.

The principal abstract perturbation theorem about discrete spectral
operators was introduced by J. T. Schwartz, and extended by
H. P. Kramer to the general case ([1], XIX.2 Theorem 7). In this paper, we
shall give a simple proof for Schwartz-Kramer's Theorem by using the
theory of unconditional bases, and omit the condition of weak complete-
ness in their theorem. In the proof of [1], XIX.2 Theorem 7, because of
using [1], XVIII.2 Corollary 33, so that it needs the condition of weak
completeness. On the other hand, all perturbant generalized eigenvectors
consist of an unconditional basis, so we can prove the theorem without
using the above corollary and omit the condition of weak completeness.

DEFINITION 1. A linear operator T in Banach space B is called
discrete type ((D) type), if ρ(T) Φ 0, and there exist an unconditional
basis {xn} of B, a sequence of complex numbers {λn} and a positive
integer iV, such that limn | λn | = + oo, λn Φ λm, V n, m E N, m> N and
n φ m, Txn = λnxn, V n > N, T[xλ,. . . ,xN] C [x,,. . . ,x^] and
σ(T\[xl9...,xN]) = {λ l 5 . . .,λ^}.

PROPOSITION 2. Let T be a linear operator of(D) type in Banach space
B> {*«}> {λΛ} andN as in Definition 1. Then σ(Γ) = {λw},

= fx E B I ίfx = ΣanXn> then Σ Ka»Xn E B]

N

Λ 2 = l n>N n

However Jor each λ £ σ(Γ), R(λ,T) = (T- λl)~ι is compact and

N ~ am

R(λ,T)x= Σ«n(T-
n=\ n>N

29
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Proof. Define a linear operator To in B as follows

3 ) ( Γ 0 ) = ί x G 5 | i f x = 2 « Λ ? t h e n 2 λ B α Λ G 2?),
V n n>N ]

N

TQX = 2 OLnTxn + Σ λ A * « > V * = Σ «Λ
n=\ n>N n

Because T is closed, so T D Γo. Without loss of generality, we can assume
0 G p(Γ). Then by | λrt | -> oo and [3], Ch. II Lemma 16.1, let

y = Σ a.r-^ + Σ r ^

for x = Σnanxn G 5, and Toy = x, so that 7 ^ ( 7 ^ ) = 5. Therefore T =

If λ 7̂  λrt, V π, because of | λ — λn \ -» oo and above Lemma 16.1, it is
easy to see (T - λ/)6D(Γ) = B. So that σ(T) = {λrt}, and we have the
formula about R(λ,T).

We can assume || JCΠ II = 1, V n. Let fm G 5*, such t h a t / m ( x J = δrt w ,
V «, m. Then there exists a positive constant Ml9 such that | | / w | | < M1 ?

V m.
For each «, let Pn, β n be the projections, such that Pn + Qn — /, and

/>„£ - [ * „ . . . , * „ ] , e w 5 - [x r t + 1 , . . . ,x m , . . . ] . By [3], Ch. II Th. 17.1, there
exists a positive constant M 2, such that \\Qn\\ ^ M 2 , V«.

Again by above Th. 17.1, there exists a positive constant M3, such
that

Let λ E p(Γ) and {yn) be a bounded sequence of B, i.e. ||j>π II < Af4,
V π. Because \fm(yn)\< MXM49 we can assume that

(replacing a subsequence of { r̂t}, if necessary). For ε > 0, there exists
Nλ ( > Λ̂ ) such that | l /(λ Λ - λ) | < ε, Vn>N{. Then for sufficiently
larger, m

λk~λ

v(«) _ /v(m)

k>Nλ

< ε + εM3\\QNιyΛ - QNιyJ < (1 + 2M2M3M4)e

Therefore i?(λ, Γ ) ^ ^ and i?(λ, Γ) are compact. D
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LEMMA 3. Let {xn} be an unconditional basis of Banach space B,J be a
subset of N. Then {xn | n E /} is an unconditional basis of [xn | n E / ] ,
where [xn\n E J]is the closed subspace generated by {xn\n E / } , and

B=[xn\n<Ξj]+[xn\n(£J}.

However, let P(J) be the projection from B onto [xn \ n E /] such that
(I - P(J))B = [xn\ n & J], then J -> P(J) is countably additive in the
strong operator topology from the σ-field of all subsets of N into the
projections in B, and P(N) = /, P ( 0 ) = 0.

Proof. Let Pn be the projection from B to [xn] such that (/ — Pn)B =
[xm\mφnl V/i. If x = ΣnanxnE [xn \ π G/], by Pmx = 0, V m ί / ,
so that α w = 0, Vm ^ / and x = Σn<=jθίnxn. This series is also uncon-
ditionally convergent, therefore [xn \ n E /} is an unconditional basis
of [xn I n E / ] . Similarly, {xn | « ^ /} is an unconditional basis of
[xn I n £ / ] , so that

We notice the following fact: if x = Σrt«rtxrt E 5 and ε > 0, then there
exists a positive integer N, such that

where Λ is an arbitrary subset of N and Λ Π { l , . . . , i V } = 0 . I n fact, we
have N such that

Σ *nXn
1 n>N

M

where M i s the constant such that \\Σnεnβnxn\\ < M\\y\\9 Vy = 2nβnxn E
5 and I εΛ | < 1, V n E N ([3], Ch. II, Th. 17.1). Let

1 n G Λ
0 otherwise

then

Σ « « * « = Σ e π α Λ x J ^ < ε.

Now let Jt C N , / f Π JΓ.= 09\f
ε > 0. Take above N and a positive integer K such that

= lnanxn E

7 = 1
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then

where Λ =

P(J) = s-lim
K i = λ

and J ^ P(J) is countably additive in the strong operator topology. D

Now we recall that a linear operator T in Banach space B is spectral
as in [1], XVIII. 2, Definition 1, and Γ is discrete as in [1], XIX. 2,
Definition 1, i.e. every resolvent R(λ,T) of T is compact. We also say
that a discrete spectral operator T satisfies condition (F), if for all but a
finite number of spectral points λ, the space of generalized eigenvectors of
T corresponding to λ is one-dimensional.

PROPOSITION 4. Let T be a linear operator in Banach space B. Then T
is (D) type, if and only if, T is a discrete spectral operator which satisfies
condition (F).

Proof. Let T be (D) type, {xn}9 {λn} and TV as in Definition 1. We
assume that {λ,,...,λ^} = {λ,,...,λ^}, where k < N and λi Φ\j9 V 1 <
i φ j < k. If Bt is the space of generalized eigenvectors of T corresponding
to λt, 1 < / < / : , then N — Σf-λ dim Bt. We can also assume that there is a
partition {l,...,iV} = Uf=1Λf, such that Bi = [xn \ n G ΛJ, I < i < k.
Let 5W = [jcn], V n > N and % be all Borel subsets of complex plane C,
and

then by Lemma 3, Δ -> P(Δ) is countably additive in the strong operator
topology.

Let Δ G % and x G fy(T) Π P(Δ)B, we can write

Σ l V^

andλf<ΞΔ andλ^Δ

by Proposition 2,

Tx =

andXeΔ andλw'eΔ
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However, Γ |P(Δ)J? also satisfies the^ assumptions of Proposition 2, so
that σ(T\ P(Δ)B) = {λ, | λ/ E Δ} C Δ. Therefore T is a discrete spectral
operator which satisfies condition (F).

Conversely, let Γ be a discrete spectral operator which satisfies
condition (F). Let P( ) be the resolution of the identity for T and assume
that the different eigenvalues of T are λl9...,λk9 λN+ι,...,λn9... such
that

k

N = dim 0 ^({λ,})^, dim P({λn})B = 1, V n > N.

Let

because

for every permutation σ of (TV + !, . . . ,«,. . .}, so that (xw}^= 1 is an
unconditional basis of B. Therefore T is (D) type. D

LEMMA 5. Let {xn} be an unconditional basis of Banach space B,
\\xn\\ = 1, Vw, {;/„} tea ω-linearly independent sequence of B, i.e., //

(1) / / Σ J I Xrt "~ ̂ II ^̂  +oo, rteπ {yn} is also an unconditional basis of

(2) If B is a Hilbert space, and Σn II xn — yn II2 < + oo, //zeλ2 {jrt} is also

an unconditional basis of B.

Proof. (1) It follows by [3], Ch. I, Th. 10.2, (a) 2°. ** 4°., and [3], Ch.
II, Th. 17.1, 1°.^20.;

(2) By [3], Ch. II, Th. 18.1, we can assume that {xn} is an orthogonal
normalized basis of B. Let N such that

and

Σ K - j J l 2 = λ 2 < i , o < λ < i
n>N

n>N
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then

Because of

m

Σ «„(*„ -o

Σ
n

2

II * „

m

Σ

LI

—

α
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;„»> = >

m

n=\

= λ 2 < l .

<λ :
m

2 Σ «„*„

for all finite sequences of numbers al9...9am9 so by [3], Ch. I, Th. 9.1,
(b)δ) and [3], Ch. II, Th. 17.1, 1°. *> 2°., {zn} is also an unconditional
basis of B.

Now by Σn\\zn — >>J| < +oo, and 1) of this Lemma, {yn} is also an
unconditional basis of B. D

THEOREM 6. Let T be a linear operator of (D) type in Banach space
B, {xn}> {λn} and N as in Definition 1, 0 E p(T). Let Vbe a linear opera-
tor in B, such that A — VT~a bounded, where 0 < a < 1. Let vn —
m i n m φ n I λm — λn I and we have one of the following conditions:

(2) IfB is a Hilbert space, and Σn>N(\ K I +"B)2 β/"» < + oo;
(3) Umn(| λn I +vn)

a/vn = 0, W Σ,,7 I «,71< oo, where atJ = ̂ .(
andfJSB*,fJ(xi) = διj,

(4) (IλB I +*„)"/»•„ ̂ G,Vn, and ΣitJ\atJ\< β, where ai} as in (3),
and β is sufficiently small;

(5) // B is a Hilbert space, (xn, xm) = 8n m, V n, m,
limn(| λ n I +vn)

a/vn = 0 and A is a Hilbert-Schmidt operator;
(6) IfB is a Hilbert space, (xn, xm) = δn,m, V n, m, (| λ n | +vny/vn <

G, Vn, 11̂ 4II2 — β, where \\ \\2 is Hilbert-Schmidt norm, and β is suffi-
ciently small, then (T + V) is also (D) type in B.

Proof. We can write T—Ts + F such that Tsxn - λnxn, n- 1,2,...,
and F[xl9...,xN] C [xl9...9xN], Fxn = 0, V n > N. Using (F + V) in-
stead of V, we can assume that Txn — λnxn, n = 1,2, However, we
can also assume IIJCJI = 1, Vπ. By [3], Ch. II, Th. 17.1, there exists a
constant M(> 1), such that

(1) Let N} sufficiently large ( > N) such that

0<M. a" < 1, \/n>N,
\ - an

where απ = 2Λf M | | ( | λn | +vn)
a/vn.
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For n > N]9 let Tn be a circle whose center is at λn and radius is vn/2.
When λ E Tn, because

2 — V m
λ m - λ

so that ||Λ(λ, Γ)|| < 2M/vn9 \\VR(λ9 T)\\ < an. By [2], (T + V) has one
and only one single eigenvalue λn(V) in Γπ. Since 0 < Man/(\ — an) < 1,
we can take

= 1 ^ jr(-i)'R(λ,τ)[VR(λ,τ)Ydλxn

as corresponding eigenvector. By

-^JI^ 1 T- /ΊlΛ(λ,Γ)||||Fi?(λ,Γ)||/ί/|λ|<Mlαl
/=i Z 7 r Jτn / = 1

and condition 1, so that

2 Wxn(V)-xJ<+oo.

However, since

μ.-x,

so t h a t l i m n | λ n ( F ) | = +oo.
Let Γ be a closed road, containing the points λl9...9λN, and such

that dist(Γ, {λ^. .jλ^}) = v/29 where v — vamn>Ήχvn. With the aid of
[2], page 34 Lemma 4.10 and page 178 Theorem 6.17 we are able to show
that (T+V) has different eigenvalues λι(V),...,λk(V) (k<Nλ) in Γ,
and there exist linearly independent elements xx(V)9... 9xN(V) of B such
that

(T+ V)[Xι(V)9...9xNι(V)] c[xλ{V),...9xNι(V)]

and

Now it is sufficient to prove that [xn(V)\n — 1,2,...} is an uncondi-
tional basis of B. Because of Lemma 5, we only need to prove that
[xn( V) I n = 1,2,...} is ω-linearly independent.
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Let

T+ V)dλ Vn>Nγ

then

PHxm(V) = 8Λtmxm(V) V m 6 N a n d « > J V ,

If Σmβmxm(V) = O, then 0 - Pnlmβmxm(V) = βnxn(V) and βn = 0,
Vn>Nu and Σ%=xβmxm(V) = 0. But {xm(F) | 1 < m < JV,} is linearly
independent, so that βn — 0, V«. This shows [xn{V)\n — 1,2,...} is
ω-linearly independent.

(2) Similarly to (1), let Nx sufficiently large (> N) such that

0 < M Ί

 a" < 1 Vn>Nx

For n > Nv let ΓB as (1). When λ e Γπ, we also have ||R(λ, T)\\ <
2M/vn and \\VR{\,T)\\ <an. Hence (T + V) has one and only one
single eigenvalue λn(V) in Γn, and corresponding eigenvector is

/=o

It is obvious that limn | λπ(F) |= +oo. We also take Γ and
x,(F),...,x iVi(F)asin(l).For«>JV1,as(l)

\\xn(V)-xn\\^4M2\\A\\(\λn\+vn)
aΛn.

By condition (2)

Similarly as (1), {xn(V)\n — 1,2,...} is ω-linearly independent. By
Lemma 5, {xn(V)\n EN} is an unconditional basis of B, so that
( Γ + F) is still (£>) type.

(3) Let

sup IIfj =K, bn = y2MK2\au\(\λn\ +vn)
a.

μ

Because of \\A\\ < KΣij | a{J \ , so bn > an (the definition of an, see (1)). By
assumption, for large n,

0 < M 1

 b \ < 1.
1 K
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Let Tn as (1), then there exists only one single eigenvalue λ n (F) of
(T + V) in Γw, and the corresponding eigenvector xn(V) has also the
formula as (1). For λ E Γ n

λ«
λ« ~ λ λ/t, ~ λ

λk - λ
κ

(Axkι_χ, fk)

- λ

so that

' 2

;(?MM?^-

and Σn II
(4) Take

/ = 1 A: ,y

— JCΛ || < +00. The rest part of proof is similar as (1).

β<(2M(M+ l)KG)~

the proof is similar as (3).
(5) Let

cn = 2M\\A\\2(\λn\+Vn)
a/vn

because \\A\\ < \\A\\2, so that cn > an. If n sufficiently large,

0 < M , C" < 1.
1 - ^

Let Γn as 1), then λn(V), xn(V) as (1). For λ G Γn,

\\R(λ,T)[VR{λ,T)]ιxn\\2
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and

V2

so that

The rest part of proof is similar as (2).
(6) Take

β<(2M(M+ \)G)~ι

the proof is similar as (5).
This completes the proof of Theorem 6.
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