INTERSECTIONS OF M-IDEALS AND G-SPACES

Ásvald Lima, G. H. Olsen and U. Uttersrud
A closed subspace N of a Banach space V is called an L-summand if there is a closed subspace N' of V such that V is the 1_1-direct sum of N and N'. A closed subspace N of V is called an M-ideal if its annihilator N^\perp in V^* is an L-summand. Among the predual L_1-spaces the G-spaces are characterized by the property that every point in the w^*-closure of the extreme points of the dual unit ball is a multiple of an extreme point. In this note we prove that if V is a separable predual L_1-space such that the intersection of any family of M-ideals is an M-ideal, then V is a G-space.

The notions of L-summands and M-ideals were introduced by Alfsen and Effros [1] who showed that they play a similar role for Banach spaces as ideals do for rings. The intersection of a finite family of M-ideals in a Banach space is an M-ideal, but as shown by Bunce [2] and Perdrizet [5] the intersection of an arbitrary family of M-ideals in a Banach space need not be an M-ideal. However, Gleit [3] has shown that if V is a separable simplex space, then V is a G-space if and only if the intersection of an arbitrary family of M-ideals is an M-ideal. Later on, Uttersrud [7] proved that in G-spaces intersections of arbitrary families of M-ideals are M-ideals. Then N. Roy [6] gave a partial converse when she proved that if in a separable predual V of L_1 the intersection of an arbitrary family of M-ideals is an M-ideal then V is a G-space. Here we present a short proof of this result.

Theorem. Let V be a separable predual L_1-space. Then V is a G-space if and only if the intersection of any family of M-ideals in V is an M-ideal.

Proof. As already mentioned the only if part is proved in [7]. For the if part we will show that

$$\partial_e V_1^* \subseteq [0, 1] \partial_e V_1^*$$

where $\partial_e V_1^*$ denotes the set of extreme points in the unit ball V_1^* of V^*. It then follows from [4] that V is a G-space. To this end let $\{x_n^*\}_{n=1}^\infty$ be a convergent sequence of mutually disjoint extreme points in V_1^*, say $x_0^* = w^*-\lim x_n^*$. For each n, let

$$N_n = \text{norm-closure } \text{lin}\{x_0^*, x_n^*, x_{n+1}^*, \ldots\}.$$
Let c denote the space of convergent sequences and define a linear operator $T: V \to c$ by

$$Tx = \left(x_n^*(x)\right)_{n=1}^\infty.$$

We identify c with the space of continuous functions on the one point compactification $\mathbb{N} \cup \{\infty\}$ of the natural numbers \mathbb{N} and we let e_n^* be the point mass in n, e_0^* the point mass in ∞. Then

$$T^*e_n^* = x_n^*, \quad n = 1, 2, \ldots$$

And consequently

$$T^*e_0^* = x_0^*.$$

Since $(x_n^*)_{n=1}^\infty$ is equivalent with the usual basis of l_1 we observe that for each n

$$T^*(\text{norm-closure lin}\{e_0^*, e_n^*, e_{n+1}^*, \ldots\}) = N_n.$$

Since, by a well-known category argument, the range of a dual map is norm closed if and only if it is w^*-closed, it follows that N_n is w^*-closed for each n. Now the dual statement of our assumption gives that the w^*-closure of arbitrary sums of w^*-closed L-sumands is an L-summand, so since an extreme point in the unit ball of an L_1-space spans an L-summand we get that N_n is a w^*-closed L-summand. Therefore

$$\bigcap_{n=1}^\infty N_n = \text{lin}\{x_0^*\}$$

is an L-summand. Hence $x_0^* = 0$ or $x_0^*/\|x_0^*\|$ is an extreme point, and the proof is complete.

References

Received February 10, 1981.

AGRICULTURAL UNIVERSITY OF NORWAY
1432 AAS-NLH, NORWAY

AND

TELEMARK DH-SKOLE
3800 BØ I TELEMARK, NORWAY
Nestor Edgardo Aguilera and Eleonor Ofelia Haboure de Aguilera, On the search for weighted norm inequalities for the Fourier transform 1

Jin Akiyama, Frank Harary and Phillip Arthur Ostrand, A graph and its complement with specified properties. VI. Chromatic and achromatic numbers ... 15

Bing Ren Li, The perturbation theory for linear operators of discrete type 29

Peter Botta, Stephen J. Pierce and William E. Watkins, Linear transformations that preserve the nilpotent matrices 39

Frederick Ronald Cohen, Ralph Cohen, Nicholas J. Kuhn and Joseph Alvin Neisendorfer, Bundles over configuration spaces 47

Luther Bush Fuller, Trees and proto-metrizable spaces 55

Giovanni P. Galdi and Salvatore Rionero, On the best conditions on the gradient of pressure for uniqueness of viscous flows in the whole space ... 77

John R. Graef, Limit circle type results for sublinear equations 85

Andrzej Granas, Ronald Bernard Guenther and John Walter Lee, Topological transversality. II. Applications to the Neumann problem for $y'' = f(t, y, y')$.. 95

Richard Howard Hudson and Kenneth S. Williams, Extensions of theorems of Cunningham-Aigner and Hasse-Evans 111

John Francis Kurtzke, Jr., Centralizers of irregular elements in reductive algebraic groups ... 133

James F. Lawrence, Lopsided sets and orthant-intersection by convex sets ... 155

Åsvald Lima, G. H. Olsen and U. Uttersrud, Intersections of M-ideals and G-spaces ... 175

Wallace Smith Martindale, III and C. Robert Miers, On the iterates of derivations of prime rings ... 179

Thomas H. Pate, Jr., A characterization of a Neuberger type iteration procedure that leads to solutions of classical boundary value problems .. 191

Carl L. Prather and Ken Shaw, Zeros of successive iterates of multiplier-sequence operators .. 205

Billy E. Rhoades, The fine spectra for weighted mean operators 219

Rudolf J. Taschner, A general version of van der Corput’s difference theorem .. 231

Johannes A. Van Casteren, Operators similar to unitary or selfadjoint ones ... 241