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ULTRAFILTERS AND MAPPINGS

TAKESI ISIWATA

We give characterizations of closed, quasi-perfect, d-, Z-, WZ-,
W*-open, N-, WN-, W,N- and other maps using closed or open ultra-
filters and investigate relations between these maps and various proper-
ties as generalizations of realcompactness, i.e., almost-, a-, c- and wa-real
compactness, ch*-ness and weak cb*-ness. Finally we establish several
theorems about the perfect W*-open image of a weak cb* space and its
application to the absolute E( X) of a given space X.

We characterize closed, Z-, WZ-, N- and WN-maps by closed ultra-
filters in §1 and show that ¢ is W*-open iff ¢* 9L is an open ultrafilter for
each open ultrafilter 9 in §2. In §3, introducing the notion of *-open
map, we show that Be is open iff ¢ is a *-open W, N-map iff there is U~
with *QL? = V9 for each ¢ € BY, each V¥ and each p € (Bp)~'q. In §4,
we discuss invariance concerning CIP of closed or open ultrafilters under
various maps and establish invariances and inverse invariance of various
properties as a generalization of realcompactness under suitable maps in
§5. In §6, we give several theorems about the perfect W*-open image of
weak c¢b* spaces which contain, as corollaries, known results concerning
the absolute E( X) of X.

Throughout this paper, by a space we mean a completely regular
Hausdorff space and assume familiarity with [3] whose notion and
terminology will be used throughout. We denote by ¢: X — Y a continu-
ous onto map and by BX(vX) the Stone-Cech compactification (real-
compactification) of X and by B¢ the Stone extension over BX of ¢. In
the sequel, we use the following notation and abbreviation. N = the set of
positive integers, CIP = countable intersection property, nbd =
neighborhood, %7 = a closed ultrafilter converging to p. We denote by
F(AU) a closed (open) ultrafilter on X and by &(V) a closed (open)
ultrafilter on Y. ¢*F = {E C Y; ¢ 'E € F and E is closed in Y}. Simi-
larly define ¢*QL.

1. Closed ultrafilters.

1.1. In the sequel, we use frequently the following results.

() If p € Nclgy 9 '67= N{clyyx @ 'E; E € 67}, then there is 7
with @*F? = &9, For, = {¢"'EN F, E € &% F € N(p)} is a closed
filter base where N( p) is a closed nbd base of p in 8X. Obviously € - p.
Thus any 97 containing @ has the property ¢#%? = &7. It is easily seen
that the same method above can be applied to open ultrafilter and
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Z-ultrafilter respectively ie., if p € Ncly @' VU Ncly @' Z9), there is
UP(Z?) with *U? = VI @*ZF = L 9).

(2) For x € X, a closed ultrafilter & converging to x is unique and
% = {F; x € Fand Fis closed}. Obviously {x} € ¥. It is easy to see that
X is normal iff for each p € BX, a closed ultrafilter % converging to p is
unique and & = { F; p € clzy F and Fis closed}.

(3) For p € BX, a Z-ultrafilter Z7 is unique and Z7 = {Z; Z is a zero
setand p € clgyZ}.

1.2. Letp: X = Y, (Bo)p = q,p € BX and q € BY.

(1) Nelyy @™ F? = (g).

2 96T CF? o ¢*F? = &1

(3) Nelyy 9767 C (Bg)g.

(4) Nclyyo'&6” =clgy@ 'y fory € Y.

(5) *F? C &l clpF) N E+#* & for FEF? and E € &9.

(6) There is 57 such that 957 is a closed ultrafilter iff there is &7 with
p € Nclyyp 'Y

Proof. (1) It suffices to show that ﬂclﬁyq)#@” consists of only one
point. Let g, € Mclyy@*F? (i = 1,2). Then there are disjoint closed
nbd’s ¥, and V, of ¢, and ¢, in BY respectively, so X N (B¢)™'V, € 7
(i = 1,2), a contradiction.

(2) Obvious.

(3) If r € Nclgye'67 — (B)~'q, there is " with ¢7'67 C F" by
1.1(1) and (2) above. This shows (B¢)~'g D r, a contradiction.

(4) From {y} € &”.

(5) =). From cl(pF) € ¢*F? for F € $7. «). Let K € ¢¥F7? — &9,
Then § = ¢ 'K € %7. Since K & &7, there is E € 69 with KN E = &,
ie, cl{(pF) N E = I, acontradiciton.

(6) =). Let &7 = @*F7. Then ¢'67 C 7, 50 p € Ncly 97 '67%. «).
From 1.1(1).

1.3. DerFINITION. We recall that ¢: X — Y is a Z-map if ¢Z is closed
for every zero set Z and ¢ is a WZ-map if (Bg)™'y = clgy@'y for each
y € Y. It is known that a closed map is a Z-map and a Z-map is WZ [12].
Woods [21] introduced the notions of N- and WN-map. ¢ is an N(WN )-
map if (Bp)~' clgy R = clyx ¢7'R for every closed set (zero set) R of Y. An
N-map is WN and WZ. In the following, we characterize maps mentioned
above by closed ultrafilters.

THEOREM 1.4. Let p: X — Y.

(1) @ is WZ iff there is 5 with ¢*%? = &” for each y € Y and each
P € (Be)'y.

(2) g is a Z-map iff there is G such that Z € %7 and ¢* = & for each
y € Y, each p € (Bo)~'y and each zero set Z withp € clgxZ.
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(3) The following are equivalent:
(1) @ is closed.
(i) *F is a closed ultrafilter for any F.
(iii) There is F7 such that F € $? and ¢*F? = &” for each y € Y,
each p € (Bo)~! and each closed set F withp € clgy F.
(4) The following are equivalent:
(1) @ is an N-map.
(i) (Be)~'q = Nclyyx @ '& for each q € BY and each &°.
(iii) There is F7 with o*%F? = &9 for each q € BY, each &? and each
P E(Be)g.
(5) The following are equivalent:
(1) ¢ is a WN-map.
(i) clgxtp"%" = (Bo)'q for each q € BY.
(iii) ¥ Z? = %1 for each q € BY and each p € (Bop)™g.

Proof. (1) =). Since ¢ is WZ, we have (Bp)'y = clgx @'y and
(Bp)™'y = Nclyy97'6” by 1.2(4). Thus there is 7 with ¢*%? = &” by
1.1(1) «). For each p € (Bp)™'y, we have p € Ncly e '&” by 1.2(6).
Since Meclgy ¢ '&” = clgy @'y by 1.2(4), (Be)™'y C clgy 7'y, s0 (Be)~'y
= clgy @'y which shows that ¢ is WZ.

(2) =). Let p € (Bp)~'y and Z a zero set with p € clgxyZ. Since p is a
Z-map, ¢Z is closed, so y € pZ. On the other hand, ¢’y = XN
(Neclgx97'6”) by 1.2(4). If p € X, then there is 7 with ¢*F? = &” by
1.2(6) and since p E X, p € Z so Z € 7. Now suppose p & X. Since
y EE for E€&” and ¢Z D y, we have Z N ¢ 'E = @. We shall show
p € Nclgy(Z N ¢ 'E) for E € &”. Suppose contrary. There is a zero set
K of BX such thatp € int;y Kand K Nclg(Z N @ 'E)= 8.Z' =K N
Z#+ & and p €clgyZ’, but y & ¢Z’, a contradiction. Thus there is
9?7 D> {Z N ¢ 'E; E € &7} by 1.1(1). Obviously ¢'&” C F7, so ¢*F7 =
&Y and Z € §7. «). Let Z be a zero set and y € cl 9Z — ¢Z. Then we
have p € clgy Z N (Bp)™'y, so there is §7 with Z € 7 and ¢*F? = &.
Since {y} €67, ¢y € F7,but Z N ¢ 'y = @, a contradiction.

(3) (1) = (i1) = (iii). Evident. (iii) = (i). Suppose that there is a closed
set F of X with y € cl(¢pF) — @F. Then K = clgx F N (Bp)™'y # . Let
p € K. By (iii), there is F € 7 with ¢*%? = &”. Since {y} € & and
F € 97 we have F N ¢~'y # @ which is a contradiction.

(4) (i) = (ii). Since @ is an N-map and g € clgy E for each E € &, we
have (B9)™'q C N(Be) ' clgy &7 = Nclgy @69, and hence (Be) g =
Mclg x® &7 by 1.2(3). (ii) = (iii). From (ii) and 1.2(6). (iii) = (i). Suppose
that there is a closed set E of Y with K = (B¢) ™' clgy E — clgx ¢ 'E # &.
Let p € K and (Bo)p = q. Then g € clgy E. Let E € &7 Take F7 with
¢*F? = &7 Since p & cly, @ 'E, we have ¢”'E & F7, a contradiction.

(5) This is proven by the analogous method used in (4) above.
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2. Open ultrafilters.

21. Letg: X - Yand (Bp)p = q,p € BX, q € BY.

(1) Nclgyp*U? = ﬂclﬂy(p% = {q}.

) (p‘“V" CU? o ¢*Q? =

(3) Nelgy @™V C Nelgye ‘(cl 1y C (Bp) g

@D *U? CVieoUNCVH#* & for UE WP and V € V4.

(5) There is WP such that *U? is an open ultrafilter iff there is V4
with p € Nclgy @ ' V7.

The proof of 2.1 is obtained by the same method used in 1.2. By
1.1(1), “if part” of 2.1(5) implies that there is AU? with ¢*QL? = V9, As is
shown by 2.2 below, it is not necessarily true that if there is V7 with
p € Nclgy@™'(cl V), then there is U7 with *AUF = V7.

Exampii 2.2. Let X = [0,1) ©[1,2] and Y = [0, 2]. Define p: X - Y
by ¢o(x) =x for x €X. Let V93 [0,1), g=1€Y. Then p=1¢€
Neclyx@7'(clV7) and any U contain (1,2] and hence ¢*AU? #* V7 (cf.
3.1 below).

LEMMA 2.3. Let *U? CV, UEWU=U?, V € VI = Vand let us
put B{U, V) = U N ¢ ' (cl V). Then we have

(1) Int B(U, V) € Q.

2 If(p#clbg Yand VN oU = @, thenintcl(clV N oU) = .

3) If o*U = <V, then intcl(U) € V.

Proof. (1). By 2.1(4), B(U,V) + ©. Suppose S = int B(U,V) = @.
U—B(U,V)isopenin U, soin X. Since (X — clU) U (U — B(U,V)) is
dense in X and QU is prime, we have U — B(U,V) € A. But ¢ 'cl¥V N
(U—B(U,V))= &, and hence clV N (U — B(U,V)) = &, a con-
tradiction by 2.1(4). Thus S # @. If S & A, there is W € Q with W N
S = &. This implies S N W = int(U N ¢ (cl V) N W) =
in(UN WNelclV) =int BWUN W,V) = &, a contradiction.

(2) Since V N U = @ implies V N cl(pU) = &, we have

cdlpUNclV) CceUNclV CcleU) N (cV —V),
sointc{pU N clV) = @.

(3) If intcl U & V, we have Y — clU € <V, so X — ¢ ! cl(pU) €
AL, a contradiction.

THEOREM 2.4. ¢*QUL” is an open ultrafilter iff intcl(eU) # & for
Uea’.
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Proof. =) Let *QL? = V9, Then this follows from 2.3(3). «). Sup-
pose ¢*,”? - V' for some g € BY. Put U = QA? and V= V9. There is
VeY—o¢*U with VN oU= @ for some U Q. By 2.3(1), W=
int BU,V) €U and pW NV = &, so intcl(pW) = & by 2.3(2), a
contradiction.

2.5. DEFINITION. @: X — Y is said to be a W*-gpen map if cl U is
regular closed (i.e., cl(int(cl pU)) = cl pU) whenever U is open [8]. This is
a generalization of an open map. We use this notion in the following.

THEOREM 2.6. Let ¢: X — Y. The following are equivalent:

(1) ¢ is W*-open.

(1) Cl @U is regular closed whenever U is a basic open set of X.

(2) Int(cl U ) #* @ for each non-empty open set U of X.

(2") Int(cl pU) # @ for each non-empty basic open set U of X.

(3) Int(cl ¢™'V) = int @ Y (cl V) for each open set V of Y.

(4) 9*U is an open ultrafilter for any U .

(5) There is U? such that * U7 is an open ultrafilter for each q € BY
and eachp € (Bp)™'g.

(6) (Bp)'g= U{Nclgyo™'V; Vis an open ultrafilter converging to
q} for each q € BY.

Proof. (1) =>(1")=(2") & (2) and (4) = (5) are evident. (2) < (4).
From 2.4 (5) « (6). From 2.1(3, 5).

(2) = (3). It suffices to show int¢~'cl¥V C cl(¢'V). Suppose x €
int ¢7!(c1¥) — cl(¢ V). There is an open set W S x such that W N
c(¢'V)= @ and W Cint ¢ '(cl¥V). Then V N oW = &, s0 V N cl oW
= . On the other hand, oW C clV, so int(cl W) C c1 ¥V — V and hence
intcl(pW) = &, a contradiction.

(5) = (2). Let U C X be open and x € U. Then any open ultrafilter @
converging to x contains U. There is AU* such that ¢*9* is an open
ultrafilter by (5). Thus intcl U #* & by 2.4.

(3) = (2). Suppose that there is an open set U with intcl oU = . Let
us put V=Y —cloU. Then clV=7Y and intg'(cl¥) = X. But
int(cl ™'V) N U = &, a contradiction.

(2) = (1). Let U be open and put K = clint(cl U). Suppose y € pU
— K. Then there is an open set W3y with KN clW = &. Since
T=UNge'W+# @ and cleT C clW N cloU, intcl(eT) C int(cl W)
N int(cl pU) = &, a contradiction. Thus U C K and hence cl pU C K,
ie., cloU =K.
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3. *-open mappings.

3.1. DEFINITION. @: X — Y is said to be *-gpen if int(cl pU) D @U for
each open set U of X. An open map is *-open but a *-open map is not
necessarily open by 3.2 below. A *-open map is W*-open by 2.6 but a
W*-open map is not necessarily *-open by 2.2 in which it is easy to see
that ¢ is W*-open. Let U=[1,2] C X. Then U is open in X and
int(cl U) = (1,2] D U =[1,2], so ¢ is not *-open (cf. 5.6 below). We
say that @ is a W,N-map if clgy@™'R = (B@)' clgyR for every regular
closed set R of Y [10]. X is almost normal [17] (k-normal [16)) if each
regular closed set is completely separated from each closed (regular
closed) set disjoint from it.

ExaMpPLE 3.2. Let P be the set of rational numbers in [0, 1], X =
[0,11® P, Y=1[0,1] and ¢(x) = x € Y for each x € X. Then ¢ is not
open. To show that ¢ is *-open, it suffices to prove that int(cl pU) D U
for each open set U of P. Let U C P be open. There is an open set
W C[0,1] with P N W = U. W is the union of countably many disjoint
open interval W, = (a,, b,). Put P,=P N W,. Obviously cleP, =
[a,, b,] and int(cl P,) D P,, so int(cl pU) D U, i.e., ¢ is *-open.

THEOREM 3.3. Let @: X — Y. The following are equivalent:

(1) @ is *-open.

(2) Clo™'V = ¢ cl V for each open set V of Y.

(3) Nclgx ™' V¥ D cly 7'y for each y € Y and each V.

(4) There is WP with ¢*U? =V for eachy € Y, each p € clgx 7'y
and each V.

Proof. (1) = (2). Suppose that there is an open set V of Y with
x € ¢ lclV —clo'V. Take an open set W D x disjoint from cl ¢~'V.
Since V' N cl oW = @ and ¢ is *-open, we have int(cl pW) N clV = &
and int(cl ') D oW 3 ¢(x), a contradiction.

(2) = (3). Take V. Since clgy @'V = clgx¢7'(cl V) and y € clV for
VeV, wehave 7'y C Nclyy @'V, s0clgy @™y C Nelgy ™' V7.

(3) = (4). From 2.1(5).

(4) = (1). Suppose that there is an open set U with x € U and
y = @(x) € U — int(cl pU). Let W 3 y be open. Then V=W N (Y —
cloU)# &,y & Vand y € clV. Take V” 3 V. Any U* contains U. If
e*U* =V for some AU*, then ¢~ 'V € AU*, but o'V N U= &, a con-
tradiction.

In general the equality in 3.3(3) does not hold by 3.8 below. From the
definition of a WZ-map, 2.1(3) and 3.3(3) we have
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COROLLARY 34. If ¢: X—>Y is *-open WZ, then (Bo)’'y =
Nclgy ™'V for each y € Y and each V.

ExaMpLE 3.5. We give an example which shows that the converse of
3.4 is not necessarily true. Let X =[0, w,] ® [0, w,), ¥ = [0, w,] and
¢(x) = x € Y for each x € X where w, is the first uncountable ordinal.
Then ¢ is open but not WZ. It is easy to see (Bp)~'y = MNclyy @'V for
each y € Y and each V.

THEOREM 3.6. ¢: X » Y is W,N iff (Bp)'g = Nclgxe ' cl V7 for
each q € BY and each V1.

Proof. =). Since clgy (@' clV) = (Bp)~' clgy V for V € VY, (Be)~'q
C Nclgye™'cl V9 so we have the equality by 2.1(3). <). Let p €
(Be)~'clgy V — clgy @' clV for some open set ¥ of Y. Then p € (Bp)™'q
for some g € clgy V. Take V9 with V € V% Then clgx¢~' c1V D(Be)'q,
a contradiction.

THEOREM 3.7. (1) The following are equivalent ([10], Theorems 1
and 6):
(1) Y is almost normal.
(ii) Any WZ-map onto Y is W,N.
(iii) Any perfect map onto Y is W,N.
(2) The following are equivalent:
(i) Y is k-normal.
(ii) Any W*-open WZ-map onto Y is W, N.
(iii) Any W*-open perfect map onto Y is W,N.

Proof. (2) (i) = (ii). Let ¢: X - Y be W*-open and WZ. Suppose
P € (Bo) ' clgy V — clgy@' clV for some open set V of Y. Then (B¢)p
= q Eclgy V and take an open set W of BX such that p € W and
clgx WN clﬁ,{q)‘l clV = @. Since ¢ is W*-open and WZ, we have that
(Be)clgyWNeclV=@ and cle(X N W) is regular closed. Thus
clo(XN W) NclV= &, and hence clgy (X N W) Nclgy V=& be-
cause Y is k-normal. On the other hand, clg (X N W) = clyy W3S p, so
q € clgy@(X N W) N clgy V, a contradiction. (ii) = (iii). Evident.

(iii) = (i). This follows from the same method used in 1.5 of [21].
Suppose that there are disjoint regular closed sets E and K such that
clgy ENclpy K3 g. Let X =Y ® E. Define ¢: X > Y by ¢(x) = x for
x € X. It is evident that ¢ is W*-open perfect. On the other hand,
clyx@ 'K =clgy K and (Be) 'clyy KN BE # &, so (By)'clyyK +
clgx @ 'K which shows that ¢ is not W,N.
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ExaMPLE 3.8. In 3.7(2,ii), “WZ-ness of ¢” is necessary as shown by
the following. Let Y = [0, 3], X = [0,2) & (1,3] and ¢(x) = x for x € X.
Then ¢ is open and Y is metrizable. ¢~'(1) = 1 and (Bp)~'1 # clﬁxq)"‘(l)
=1 and hence ¢ is not WZ. Let Y 3 y = 1 and V” 3 [0, 1). Then it is
obvious Mclgy @™l V= {1} - (Be)~'y. Thus ¢ is not W, N by 3.6 and

hence Bo is not open by 3.10 below. But B¢ is W*-open by Theorem 4 of
[7). Let Y 3 z = 2 and V* 3 [0, 2). Then it is easy to see that M clBXqJ‘“V’
2 clgyx @'z = {2} (cf. Remark of 3.3).

THEOREM 3.9. If : X — Y is a *-open Z-map, then it is open.

Proof. Let U be open in X and x € U. Then there is a zero set Z with
xeEmZ=WCZCU and oU D ¢Z =cleZ D cl p(int Z) D
int(cl @(int Z)) D oW 3 ¢(x), and hence ¢ is open.

THEOREM 3.10. Let ¢: X — Y. Then the following are equivalent:

(1) By is open.

(2) @ is *-open and W,N.

(3) Clyx 97"V = (Bo)~' clgy V for each open set V of Y.

@ (Bo)'qg = Nclgx 9™V for each q € BY and each V.

(5) There is WP with o*WU? = V1 for each g € BY, each V' and each
p €E(Bp)g.

Proof. (1) = (2). Let Ube open in X and put W = BX — clgy(X — U).
Then U= W N X and clygy W=clg, U. Since By is closed, we have
(Bo)clpy W= clgy(Be)U = clgy U D (Be)W DO @U and cloU =Y N
cley@U D Y N (Be)W D @U. Since Bo is open, int(clU) D @U, ie., ¢
is *-open. We shall show that ¢ is W.N. Let Vbe openin Y. T = BY —
clgy(Y — V) is open and V' =Y N T. Since clgy T = clgy V and Bo is
*-open, clgy(Be)™'T = (Bp)~'clgy T = (Be)~' clgy V. Thus it suffices to
show clgx(Bp)'T = clgy @' clV. Suppose p € (Bp)'T — clgyo ' clV.
Let g € T and (Bo)p = q. Take an open set S of BX such that S 3 p and
PIBXS N clBX(p‘1 clV = @. Let us put K = intgy((Bp)clgyS). Then K =
1ntp,,(clﬁy(,8(p)S)' Dﬁ(B(p)S Sqand KNV=6g, so KNclg, V= 0.
This is a contradiction because g € clgy V. (2) = (3). From 3.3(2). (3) =
(4). From 2.1(3) and the fact that ¢ € clz, V for each V € V7. (4) = (5).
From 2.1(5).

(5) = (1). We first show that Bo is *-open. Let p € (Bep)™! clgy W —
Clgx( Be) "W for some open set W of BY. Then there is an open set U of
BX with p € intgyclgy U and clgy U N clgy(Bp) 'W = @. Let (Bp)p =
g and take V' with W € V9. Then any QU7 contains U. If ¢*U? = V1
for some A*, then 'W € AU”?, but UN ¢ 'V = &, a contradiction.
Thus B¢ is *-open by 3.3, so open by 3.9.
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If o: X > Y is open WZ, then By is open by Theorem 4.4(1) of [12].
Let XCZ C BX and { = (Bo)| Z. Then {: Z — {Z has the Stone exten-
sion B¢ = Be, so B¢ is open, and hence { is *-open W, N by 3.10. Thus we
have

THEOREM 3.11. Let ¢: X — Y be open WZ. Then for any space
Z,XCZCPBX,{: Z-§Z CBY is *-open W,N where { = (Bo) | Z.

4. Countable intersection property.

4.1. DErFINITION. We denote by {F,}, 192 ({F,},. 1D or {F},. |2
resp.) a decreasing sequence of closed sets (zero sets or regular closed sets
resp.) with empty intersection. ¢: X — Y is said to be a d (d’ or d*
resp.)-map if NcleF, = @ for each {F},1 D ({F,},. 1D or {F}, 1@
resp.) [5, 8, 11]. Obviously a d-map is d’ and a d’-map is d* ([8], Theorem
7). We say that ¢ is hyper-real if (Be)(BX — vX) C BY — vY. A hyper-real
map is d* [11] (cf. the diagram of 5.4 below). Let us put X* = X — X.

F(X; 0) = { p € X*; any %” has CIP}.

F(X; 0, A) = { p € X*; there is ¥ with CIP and %} without CIP}.

F(X, A) = {p € X*; any 97 does not have CIP}.

F(X; v, A) = (vX — X) N F(X; A).

Similarly we define U( X; 0), U(X; 0, A), U(X; A) and U(X; v, A) using
free open ultrafilters. It is known that BX — vX C U(X; A), U(X; A) C
F(X; A) and F(X; 0) C U(X; 0) [13]. Concerning invariance of CIP under
a map, we note the following. Let ¢: X — Y.

(1) If U has CIP, then any V' D ¢*QL has CIP by 2.3(1) where “Q has
CIP” means “MNclU, # @ for U, € A”. Thus, in general, for : X - Y,
we have U(Y; A) N (Be)U(X; 0) U U(X; 0,A)) =@ and hence
(Be)'U(Y; A) C U(X; A).

(2) If 9 has CIP and ¢*% = &, then & has CIP. This follows from
o'E€FforE € 6.

(3) The following (a) and (b) are not necessarily true as is shown by
4.2 below.

(a) o*U = Vdoes not have CIP for 9 without CIP.

(b) o*% = & does not have CIP for ¥ without CIP.

Problem. Does & D ¢*% have CIP whenever % has CIP?

4.2. ExamMPLE. Let Y = {y}. In (1) and (2) below, define ¢(x) = y.
Then ¢ is open, closed, RC-preserving, Z-preserving and an N-map where
@ is RC(Z)-preserving if @F is regular closed (a zero) set whenever E is a
regular closed set (a zero set).
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(1) Let X be pseudocompact but not countably compact. Then ¢ is a
d’-map but not a d-map. Evidently there is & without CIP but ¢*% = {y}
has CIP.

(2) Let X be a non-pseudocompact space. Then ¢ is not a d*-map.
Evidently there is Q without CIP but ¢*Q = {y} has CIP. It is easy to
construct an N-map which is not a d*-map by taking a suitable space X.

THEOREM 4.3. Let ¢: X — Y. The following are equivalent:
(1) p is a d-map.

(2) If F does not have CIP, so neither does any & D ¢*F.
3) (Be) (Y U F(Y; 0)) C X U F(X,0).

4 (Be)'Y C X U F(X; 0).

Proof (1) = (2). From the fact that NcleF, = @ for {F,€%}| @
and cl pF, € &.

(2) = (3). There is ¥7? without CIP for p € F(X; A) U F(X; 0, A), so
every & D ¢*%? does not have CIP by (2) and hence (B¢)p & Y U
F(Y,0),s0 (B9) (Y U F(Y; 0) C XU F(X;0).

(3) = (4). Evident.

(49) = (1). Let {F,},1 @ and y € Ncl @F,. Then clgy F, N (Be)~'y #
@ for n € N. Take p € (NclgyF,) N (Bep)~'y and F? with F, € 57,
n € N. Then p € F(X; 0) by (4) but ¥” does not have CIP, a contradic-
tion.

REMARK. In general, the equality of 4.3(3) does not hold as shown by
5.6 below. An analogous theorem concerning a d*- and d’-map was
obtained respectively (see, 4.4(2,3) below). A closed d-map is precisely
quasi-perfect (= closed and each fiber is countably compact), so we have
the following 4.4(1) using 1.4(3) and 4.3.

4.4. Let : X - Y. (1) @ is quasi-perfect iff 9*F is a closed ultrafilter for
each % and ©*F does not have CIP for each & without CIP.

(2) @ is a d*-map iff (Bp)~'Y C AU X[11].

(3) ¢ is a d"-map iff (Be)~'Y C X U U(X; 0) [5].

45 Letgp: X - Y.

(1) Let ¢ be a d’-map and ¢* = V. If A does not have CIP, then
neither does V.

(2) If ¢ is not a d’-map, there is QU without CIP such that every
VD ¢* has CIP.

3) If @ is W*-apen, then @ is a d’-map iff * U does not have CIP for
each 9 without CIP (cf., 4.6(2)).
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Proof. (1) Since AU does not have CIP, there is {U, € U} | with
NclU, = @.1f Vhas CIP, Y — cl U, € Vfor some n. ¥ = Vimplies
e (Y —cloU) = X — ¢ i(cl pU,) € AU, a contradiction.

(2) Since ¢ is not d’, there is {U,}open V @ Wwithy € Ncl @U, for some
y € Y. This implies (B¢)'y N clgx U, # @ forn € N. By 1. 1(2) there is
QP without CIP and U, € U? where p € (MNclgy U,) N (Bp)~'y. Obvi-
ously any VD ¢*9L? converges to y, i.e., Vhas CIP.

(3) =). From (1) and 2.6 «). From (2) and 2.6.

4.6. Definitions and some properties. Let ¢: X — Y. ¢ is said to be an
sd-map if F does not have CIP iff no & D ¢*% has CIP. We say that ¢ is
an sd’-map if some VD ¢* does not have CIP for A without CIP.

(1) A quasi-perfect map is sd by 4.4 and an sd-map is d by 4.3.

(2) Any W*-open d’-map is sd’ by 4.5(3) and an sd’-map is d’ by
4.5(2).

(3) If @ is sd, then we have that (8¢) (Y U F(Y; 0)) C X U F(X; 0),
(Be)F(X; 0,A) C F(Y;0,A) and (Be)F(X; A) C F(Y; A) U F(Y; 0, A).

(4) If ¢ is sd’, then we have that (8¢) (YU U(Y; 0) C XU
U(X; 0), (Be)U(X; 0,A) C U(Y; 0, A) and (Be)U(X; A) C U(Y; A) U
U(Y; 0,A).

(5) If ¢ is *-open W.N, then (Bo)'U(Y; 0,A) C(X; 0,A),
(Be)'U(Y; A) C U(X, A) and (Be)U(X; 0) C Y U U(Y; 0) by 3.10 and
4.1(1).

(6) If @ is a *-open W,N d’-map, then (B@)~'U(Y; A) = U(X; A) by
3.10. (Be)'U(Y; 0,A) = U(X; 0,A) and (Be) (Y U U(Y; 0) =
U(X; 0).

(7) If @ is closed, then (Be)(F(X; 0) U F(X; 0,A) N K(Y; A)= @
by 1.4(3) and 4.1(2).

(8) If @ is an N-map, then we have (B@)F(X; 0) N (F(Y; 0,A) U
F(Y; A)) = @ by 1.1(1) and 1.4(4).

It is not necessarily true that a perfect map is sd’ as shown by 4.7
below. X is said to be nd — cp if for a decreasing sequence {F,} of
nowhere dense closed sets with N F, = &, there is {U, },pen | With F, C U,
and NclU, = @. It is easy to see the following

(9) If X is countably paracompact, then X is nd — cp.
(10) If X is pseudocompact, then X is countably compact iff X is
nd — cp.

4.7. If Y is pseudocompact but not countably compact, then there is a
space X and a perfect map ¢: X — Y which is neither sd’ nor W*-open.
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Proof. Let A = {a,; n € N} be a discrete closed set of Y and put
X =Y ® A. Define p(x) = x. Obviously ¢ is perfect but not W*-open.
Let us put U, = {a,; m=n} C A C X and take QU with U, € AU, n € N.
Then @ does not have CIP but any VD ¢*Q has CIP because Y is
pesudocompact.

THEOREM 4.8. Let p: X — Y.
(1) If Y is countably compact, then X is countably compact iff ¢ is sd.
(2) If Y is pseudocompact, then X is pseudocompact iff @ is sd’.

4.8(2) is a generalization of 4.3 of [12] and Theorem 12 of [8].

Proof. (1) =). Evident. «). If X is not countably compact, there is
{F}ql 9. Take & 3 F, for each n. Then % does not have CIP and hence
there is & without CIP containing ¢*% because ¢ is sd. But this is a
contradiction because Y is countably compact.

(2) is obtained by the same method used in the proof of (1).

THEOREM 4.9. Let ¢: X - Y and Y be nd — ¢p.
(WD Ifopisd’, thengis sd’.
Q) Ifpisd, then o is sd.

Proof. (1). Suppose that there is QU without CIP such that each
YD ¢* has CIP. If *Q = , then V does not have CIP by 4.5(1), and
hence we may assume that ¢# 7 Y for each VD ¢*9L. Since U does
not have CIP, there is {U, € U}{Z with NclU, = F. ¢ being d’,
NcloU, = . Let ¥V € V— ¢*AL. Then there is U € A with U N ¢V
= @ and hence we may assume U, C U for each n. Now ¢B(U,, V) C
oU, N clV, so by 2.3(2) K, = cl p(int B(U,, V')) is nowhere dense and
MK, = &. Since Y is nd — cp, there is {V,},.., | @ such that K, C ¥,
and NclV, = &. Obviously ¢~'V, D int B(U,, V), so V, € V by 2.3(1)
which shows that “V'does not CIP, a contradiction.

(2) By 4.3, it suffices to show that if F has CIP, then any & D ¢*% has
CIP. Suppose that F has CIP and some & D ¢*% does not have CIP. We
may assume & 7 ¢*%. There is {E, € & — ¢*F}| &. Then there is
F €% with E, N oF = @, and hence E, N oF = @ for each n. Since
&3 K, =E, N cloF # @ and K, is nowhere dense, there is {¥, },pen | 2
such that K, C ¥V, and NclV, = &.If clV, & ¢*F, then thereis D € F
with clV, N oD = @. V, being open, V, N cloD = & and hence K, N
cl 9D = @ which contradicts & D ¢*%. This shows cl ¥, C ¢*F for each
n, so F does not have CIP, a contradiction.
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5. Spaces and mappings.
5.1. We recall the following [13].
(1) X is almost realcompact iff U( X; 0) U U(X;0,A) = &.
(2) X is c-realcompact iff U(X; 0) = &.
(3) X is a-realcompact iff F( X; 0) U F(X;0,A) = &.
(4) X is wa-realcompact iff F( X; 0) = &.
(5) X is weak cb* iff U(X; v, A) U U(X; 0,A) = @.
(6) X is pseudocompact iff U(X; A) U U(X; 0, A) = &.
(7) Xis cb* iff F(X; v, A) U F(X;0,A) = @.
(8) X is countably compact iff F(X; A) U F(X; 0,A) = @.
Dykes and Frolik proved the following respectively.
(9) Let : X — Y be perfect. Then
(i) X is almost realcompact iff Y is almost realcompact [2].
(ii) X is a-realcompact iff Y is a-realcompact [1].
From (1) ~ (8), we have the following diagram.

countably compact = pseudocompact

\/ {
realcompact = cb* = weak cb*
{
almost realcompact = a-realcompact
Y y
c-realcompact = wa-realcompact

52.Letp € X*,Z= XU {p} C BX and Y the space obtained from
Z by identifying p and a fixed point x, of X. It is easy to see that the
identifying map ¢ is W*-open but not *-open. In this case we have

(W) Ifp € VX — X, then ¢ is d* [11].

(2) If p € U(X; 0), then @ is d’ [5].

THEOREM 5.3. (1) The following are equivalent:
(i) X is wa-realcompact.

(ii) Any d-map defined on X is perfect.

(iii) Any W*-open sd-map defined on X is perfect.

(2) The following are equivalent ([S], Theorem 1 and [8], Theorem 13):
(i) X is c-realcompact.

(ii) Any d’-map defined on X is perfect.

(iii) Any W*-open d’-map defined on X is perfect.

(3) The following are equivalent ({11}, Theorem 6.3):
(1) Y is cb*.

(i1) Any d*-map onto Y is hyper-real.

(iii) Any perfect map onto Y is hyper-real.
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(4) The following are equivalent:
(i) Y is weak cb*.
(ii) Any sd’-map onto Y is hyper-real.
(iii) Any W*-open d’-map onto Y is hyper-real.
(iv) Any W*-open perfect map onto Y is hyper-real.

Proof. (1) (i) = (ii). From 4.3(2, 3) and wa-realcompactness. (ii) = (iii).
Evident. (iii) = (i). If X is not wa-realcompact, take p € F(X; 0) in 5.2.
Obviously ¢ is W*-open sd-map but ¢~'(x,) = x, and (BX)'x, D p, so
@ is not perfect.

(4) (i) = (ii). Since @ is sd’, (Bp)(BX — vX) C (Be)U(X; A)U
U(Y; A) U U(Y; 0,A) = BY — vY because Y is weak cb*, i.e., ¢ is hyper-
real. (ii) = (iii). From 4.6(2). (iii) = (iv). Evident. (iv) = (i). Suppose that
there is U7 without CIP and p € vY — Y. There is {U, € A} | @ with
MclU,= &. Let us put X =Y @ 3 ®cl U, and define ¢(x) = x. Obvi-
ously ¢ is W*-open perfect. On the other hand, vX = vY @ X ®v(cl U,)
and vp is onto vY, but (vp)~!p (p € vY)is not compact where vy =
(Be) | (vX), and hence ¢ is not hyper-real.

5.4. NOTE AND PROBLEM. We define that ¢: X — Y is a d,(d,)-map if
(Be)'YC XU U(X; 0) U U(X; 0,A)(C XU F(X; 0) U F(X; 0,A)).
Then we have the following;:

(1) X is almost realcompact iff any d,-map defined on X is perfect.

(2) X is a-realcompact iff any d,-map defined on X is perfect.

“only if” part of (1) and (2) are obvious and “if” part of (1) and (2) are
obtained by the method used in 5.2 taking p € U( X; 0, A) U U(X; 0) and
p € F(X; 0, A) U F(X; 0) respectively. But these definitions of d,- and
d,-map are affected.

Problem. What is the intrinsic definition of a d, (or d,)-map? Con-
cerning various maps in this paper, we have the following:

open = *-open = W*-open < W™*-openandd’

{
perfect open WZ = W,N « N= WN sd’ hyper-real
{ \ l {
quasi-perfect = closed = Z = WZ d’ d*
$ 7 N oo
closed and d = sd = d =d, = d,.

THEOREM 5.5. Let ¢: X — Y.

(1) Suppose that ¢ is a d-map. Then we have
(i) If X is wa-realcompact, so is Y.

(ii) If X is a-realcompact, so is Y.
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(2) Let @ be an sd’-map. Then if X is c-realcompact, so is Y (this is a
generalization of Theorem 1.3 of [T} by 4.6(2)).

(3) Let ¢ be a d’-map. Then if X is almost realcompact, so is Y.

(4) Let ¢ be hyper-real. Then if X is weak cb*, so is Y.

(5) Let @ be hyper-real. Then if X is cb*, so is Y ([11], Theorem 5.7(2)).

Proof. (1) (1). From 5.1(4), 5.3(1) and 4.3(3) (note that a perfect map is
sd). (i1). From the diagram of 5.1, 5.3, (i) above and 5.1(9(i1)).

(2) From U(Y; 0) = @ by 4.6(4) and U(X; 0) = &, or from 4.6(4),
Theorem 2 of [4] and the fact that uX = X U U(X; 0).

(3) From the diagram of 5.1, 5.3(2) and 5.1(9(1)).

(4) Suppose that there is V7 without CIP for ¢ € vY — Y. Then
(Bp)lqg C U(X; 0). Take p € (Bp)~lqg and WP D ¢ V9. Since AU* has
CIP, so does ¢*U? = V9 a contradiction. Thus U(Y; v, A) U
U(Y; 0,A) = &, so Y is weak cb*.

Since a compact space is realcompact, by 4.2(1,2), it is easily seen
that almost-, ¢-, a- and wa-realcompactness, ch*-ness and weak ch*-ness
are not inverse invariant under an open, closed, Z-preserving, N-map.
Moreover, by the following Example 5.6, we have that (1) c-realcompact-
ness is not inverse invariant under a W*-open perfect map and (2)
cb*-ness and weak cb*-ness are not invariant under a W*-open perfect
map.

5.6. ExaMpLE. K. Morita [15] constructed an M-space, non c-real-
compact space X and a perfect map ¢ such that the perfect image Y [14]
of X by ¢ is not an M space. It is easy to see that ¢ is W*-open but not
*-.open. An M-space is ch* and hence weak cb*. On the other hand, Y is
c-realcompact [6] but neither a-realcompact [22] nor weak c¢b* [11] and
vY — Y= U(Y; 0,A) = F(Y; 0, A) consists of only one point (see [12,
15]). We note that (Be) (Y U F(Y; 0)) = (Be)~'Y # X U F(X; 0) (cf.
Remark of 4.3 and Remark 6.4 below).

THEOREM 5.7. Let p: X > Y.

(1) Let @ be an sd’-map. Then if Y is weak cb*, so is X.

(2) Let ¢ be a d-map. Then if Y is cb*, so is X ([11], Theorem 5.5).

(3) Let @ be a d’-map and Y almost realcompact. Then we have
) UX;0,A) = 2.

(i1) If X is c-realcompact, then X is almost realcompact.

(iii) If @ is perfect, then X is almost realcompact (5.1(9)).

(4) Let ¢ be an sd-map and Y a-realcompact. Then we have
() F(X;0,A)=@.

(ii) If X is wa-realcompact, then X is a-realcompact.

(iii) If @ is perfect, then X is a-realcompact (5.1(9)).



386 TAKESI ISIWATA

(5) Let ¢ be a perfect open map. If Y is a c-realcompact, so is X ([5],
Theorem 4).
(6) Let @ be a perfect N-map. Then if Y is wa-realcompact, so is X.

Proof. (1) @ being hyper-real, by 5.3(4)BX — vX = (Bo) (BY — vY)
and U(X; v, A) U U(X; 0, A) = & by 4.6(4) and 5.1(5), and hence X is
weak ch*.

(3) (). By 4.1(1) and 4.4(3), (Be)U( X; 0, A) C U(Y; 0, A) and hence
we have U(X; 0, A) = @ because Y is almost realcompact. (ii). From (i)
and 5.1(1,2). (iii). (New proof) Let p € U(X; 0). Then any VD ¢*?
has CIP and converges to a point ¢ € vY — Y by 4.1(1) and X = (B¢)~'Y.
Since Y is almost realcompact, v¥ — Y = U(Y; v, A), a contradiction.
Our assertion follows from (i) and 5.1(1).

(4) (1). By 4.6(3), (Bep)F(X; 0, A) C F(Y; 0,A),s0o F(X; 0,A) =&
and hence X is a-realcompact because Y is a-realcompact. (ii). From (1)
and 5.1(3,4). (iii)). (New proof) Let p € F(X; 0). Since ¢ is sd, some
& O ¢p*F has CIP and converges to a point ¢ € vY — Y by X = (B¢)7'Y.
Since Y is c-realcompact, vY — Y = F(Y; v, A), a contradiction. Our
assertion follows from (i) and 5.1(3).

(5) (New proof) From 4.6(6) and X = (B¢)"'Y.

(6) Since p is N(Be)F(X;0) C Y U F(Y; 0) = Y by 4.6(8), and since
@ is perfect (B9)~'Y = X and F(Y; 0) = & because Y is wa-realcompact
and hence X is wa-realcompact.

6. Weak cb*-ness and absolute. Using preceding results we give new
proofs of several theorems concerning the absolute E( X) of X which are
obtained as corollaries of theorems about perfect W*-open images of
weak cb* spaces.

THEOREM 6.1. Let @ be a perfect W*-open map of a weak cb* space X
onto Y. Then we have

(1) @ is hyper-real iff Y is weak cb*.

(2) (Be)vX = YU U(Y; 0) U U(Y; 0, A).

(3) X is realcompact iff Y is almost realcompact.

(4 vX = (Be)'T for some Twith Y CT C BY iff T=Y U U(Y; 0)
and U(Y; 0,A) = &.

Proof. (1) From 5.3(4) and 5.5(4).

(2) Suppose (Bp)'g C BX — vX for some point g € U(Y; 0) U
U(Y; 0, A). Then there is V¢ with CIP and QU7 with ¢*? = Y for
p € (Bo)'q. Since A7 does not have CIP and ¢ is sd’, V7 does not have
CIP, a contradiction.
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(3) =). Since ¢ is perfect and X =vX, we have U(Y, 0) U
U(Y; 0, A) = & by (2), so Y is almost realcompact <). Since Y is almost
realcompact (Bp)vX = Y by (2). On the other hand, (B¢)”'Y = X, and
hence vX = X, i.e., X is realcompact.

(4) =). By (2), we have (Bp)vX=T=Y U U(Y; 0) U U(Y; 0, A).
Since ¢ is perfect and W*-open, ¢ is sd’ and (B8¢) (Y U U(Y;0)) C X U
U(X; 0) =vX by 4.6(4). We shall show U(Y; 0,A) = @. Let g €
U(Y; 0, A). Then (B¢)~'g C U(X; 0) and there is V¢ without CIP but any
QL? has CIP for each p € (B¢)'q. Since ¢ is W*-open, ¢*U? = V9 for
some p € (Bp)~'q and some AU” and hence V7 has CIP by 4.1(1), a
contradiction «). By (2), (Be) UX =Y U U(Y; 0) U U(Y; 0,A) =Y U
U(Y; 0). Since @ is sd’, (Be)U(X; A) C U(Y; A) U U(Y; 0, A) = U(Y, A)
by 4.6(4). Thus (Be)~'T = vX where T = Y U U(Y; 0).

Let E( X) be the set of all fixed open ultrafilters on X topologized by
using {U% U is open in X} as a basis where U° = {QU; U € U}. E(X) is
called the absolute of X and it is a Hausdorff extremally disconnected
space. Define n: nU = MNcl . Then it is known that 5 is a perfect
irreducible map and BE(X) = E(BX). Since nU° = cl U [18], n is W*-
open by 2.6(2). We note that an extremally disconnected space is weak
cb*.

COROLLARY 6.2. (1) vE(X) = (B7)'vX (= E(vX)) iff uX = vX ([7],
Theorem 2.4 and [8), Theorem 4.2) iff X is weak cb*.

(2) (BnVvE(X) = a,X ([22], Lemma 2.1).

(3) E(X) is realcompact iff X is almost realcompact [1].

(4) vE(X)=(Bn)"'T for some T with XCTCBX iff T=XU
U(X; 0) and U(X; 0, A) = & ([20], p. 330 and [22], Theorem 3.3).

(5) E(X) is pseudocompact iff X is pseudocompact ([20], Proposition
2.5).

Proof. We note that E( X) is weak cb* and 7 is perfect W*-open. (1)
Since uX = { p € BX; each A7 has CIP} ([7], Lemma 2.5) and uX = X U
U( X; 0) by 4.4, we have that vX = uX iff X is weak cb*. Thus (1) follows
from 6.1(1). (2) From 6.1(2) and g, X = X U U(X; 0) U U(X; 0, A) ([22],
Theorem 2.3). (3) From 6.1(3). (4) From 6.1(4). (5) From 4.6(2) and 4.8(2).

THEOREM 6.3. Let ¢ be a perfect W*-open map of a non-realcompact
cb* space X onto Y. Then we have

(1) Y is cb* iff @ is hyper-real.

(2) If Y is weak cb* then Y is cb*.

(3) If vY = Y U {q}, then Y is not weak cb* iff Y is c-realcompact but
not a-realcompact.
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Proof. (1) From 5.3(3) and 5.5(5). (2) Since Y is weak cb*, ¢ is
hyper-real by 5.3(4), so Y is cb* by 5.5(5) because X is cb*.

(3) =). By 5.1(5) and vY = Y U {q}, we have U(Y; 0) = &, s0 Y is
c-realcompact by 5.1(2). On the other hand, (B¢)F(X; 0) C F(Y; 0) U
F(Y; 0, A) = F(Y; 0, A) because F(Y; 0) C U(Y; 0) = &. Thus Y is not
a-realcompact «<). From realcompactness = (weak cb*-ness) + (c-
realcompactness).

6.4. REMARK. The space X in Example 5.6 is not weak ¢b* [11] and Y
is a perfect W*-open image of an M-space (we note that an M-space is
cb*). Thus Y is c-realcompact but not a-realcompact by 6.5(3). On the
other hand, this assertion follows also from the following Corollary 6.7
since ¢: X — Y in 5.6 is irreducible [5].

COROLLARY 6.5. Let ¢ be a perfect irreducible map of a non-real-
compact cb* space X onto Y with vY = Y U {q}. Then Y is not weak cb* iff
Y is c-realcompact but not a-realcompact.

Proof. By Proposition 1.9 of [19], X and Y are co-absolute, so E( X)
and E(Y) are homeomorphic. Since X is cb*, E( X) is c¢b* by 5.6(2), so
E(Y) is also. Since the canonical map: E(Y) — Y is perfect and W*-open,
we have our assertion by 6.3(3).

THEOREM 6.6. (1) If V is an open set of Y with pseudocompact closure,
then any V¢ 3 V has CIP.

(2) Let o: X > Y be W*-open and d’. Then S = BX — (Bp) vY is
dense in BX — vX and BY — (Bo)clgxyS C Y U U(Y; 0) (this is a gener-
alization of Theorem 2.8 of [20]).

(3) Let vY be locally compact. Then we have

(1) Y is weak cb* [4].
(i) If : X - Y is sd’, then @ is hyper-real.
(iii)) E(vY) = vE(Y) ([20], Proposition 2.10).

Proof. (1) Suppose that there is {V, € V9} | with NclV, = . Then
we have {cI(V' N V,)} @ which contradicts the pseudocompactness of cl V.

(2) Suppose p € (BX — vX) — clgyS. Then any AU” does not have
CIP, so ¢*U? = V7 for some V9, g € v¥Y — Y and hence V7 does not
have CIP by 4.5(1). There is U € QL7 and an open set W of BX such that
W N X=Uandclgy W clgyS = @. By 2.3(3), int(cl pU) € V. Since
(BY —vY) N clgy(Be)W = @ and clgy(int(cl pU)) is compact and con-
tained in vY, cl U is a regular closed by 2.6 and pseudocompact [4]. Thus
V¥ has CIP by (1), a contradiction. Let us put R = Y — (Be)clgyS. R
is locally compact and X N R € V' for any point ¢ € R and any V9,
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Thus V7 has a member whose closure is pseudocompact, so has CIP by
(1) and hence R C Y U U(Y; 0).
(3) (1) From (1). (ii). From (i) and 5.3(4). (iii). From (i) and 6.2(1).
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