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In this paper some random fixed point theorems for continuous
random operators are obtained. These theorems generalize and unify
some recent results.

1. Introduction. Random fixed point theorems are of fundamental
importance in probabilistic functional analysis. In Polish spaces, i.e.
separable complete metric spaces, random fixed point theorems were
proved by Spatek, Han3, Bharucha-Reid, Itoh, Engl and others (cf.
[1-6,8-11, 14)).

In this paper, we continue to consider this problem, and present
several random fixed point theorems for abstract continuous random
operators. These results generalize and unify some recent results.

2. Preliminaries. Throughout this paper, (£, B8, P) denotes a com-
plete probability measure space, X is a separable complete metric space
with metric d, and (X, X) is a measurable space, where X is the o-algebra
of all Borel subsets of X.

A mapping x: & — X is said to be a random variable with value in X,
if the inverse image under the mapping x of every Borel set of X belongs
to B. A mapping 7(-, -): € X X — X is said to be a random operator, if
{w €Q: T(w,x) €EB} €B for all x € X, B € X. A random operator
T(-, -): & X X —> X is called continuous, if for each w € @, T(w, -) is
continuous. A random variable §:  — X is called a random fixed point of
a random operator 7(-, -): & X X - X, if T(w, §(w)) = é(w) a.s.

LemMA 1. ([12]). Let x(w) be an X-valued random wvariable. Let
T: Q@ X X - X be a continuous random operator. Then T(w, x(w)) is also
an X-valued random variable.

Let 7: € X X — X be a continuous random operator. For any X-val-
ued random variable x(w) let O;(x(w), 0, o0) denote the random orbit of
x(w) € X under T, i.e.

OT(x("-’)aO’ °°) = {xo(‘*’) = x(w), Xl(w) = T(w, xo(w))...
x,(w) = T(w, x,_(0)) = T"(w, xo(w)),...}.
For any positive integers i, j, j = i, we put

Or(x(w), i, j) = {xi("-’)7 xi+1("-’)a~ . axj("-’)}-
21



22 SHIH-SEN CHANG

For any pair of X-valued random variables x(w), y(w), let
Or(x(w), y(w),0, 00) denote the random orbit of x(w), y(w) under 7, i.e.

Or(x(), y(«),0, o)
= {xo(w) = x(0), yp(@) = y(0), x,(w) = T(w, x,(w)),

(@) = T(w, yo(@)),....x,(0) = T(w, x, () = T"(e, xo(w)),

(@) = T(w, y, () = T"(w, yo(w)),...}.
For any positive integer i, j, j = i, we denote
Or(x(w), y(@), 1, j)
= {x.(©), yi(©), x;11(0), yici(@),. . x, (@), y ()]
For any subset A C X, let §( A) be the diameter of 4, i.e.

8(A) = sup d(x, y).
x, yEA

3. Main results.

THEOREM 1. Let T: Q@ X X — X be a continuous random operator.
Suppose that there exists a positive integer p such that for any x € X the
following holds:

(3.1) P{w € Q: §(0y(x, P, ))
< ®(w,8(07(x,0,00))} = P(E,) =1,

where ®(w, t): © X [0, o0) — [0, o0) is a random function satisfying the
following conditions

(®1) For any fixed w € Q, ®(w, t) is non-decreasing and right
continuous with respect to t.

(®2) Plw € Q: lim (t — ®(w, 1)) = 0} = P(F) = L

(® 3) Forany t > Ofo

Plw € Q: lim ®"(w,1) =0} = P(G,) = 1,

nh— o0

where ®"(w, t) is the nth iterate of ®(w, t).
Then for any random wvariable xy(w): §2 = X the sequence of the
X-valued random variable {x,( )}, defined by

xn(w) = T(w, xn_l(w)), n=1,2,...,

converges almost surely to a random fixed point of T.

To prove Theorem 1, we first verify the following lemma.
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LEMMA 2. Let the random functions ®(w, t) satisfy conditions (® 1) and
(® 3). Then

(1) for any sequence {t,(w)} satisfying the following conditions:
()t (w): 2 —=[0,0),n=12,...,
b)t(w)=t,_(w),n=273...,
O PlweEQ ¢, (0)=P(w,t(w))=PW,)=1,n=12,...,
we have

lim7,(w) =0 a.s;

(ii) Particularly, if t(w): £ — [0, o0) satisfies
Hw)=®(w, t(w)) a.s.,

then we have t(w) = 0 a. s; and
(ii1) for any t > 0, we have ®(w, t) <t a. s.

Proof. (i). By the right continuity of ®(w, ¢) with respect to ¢ and
condition (¢), it is easty to see that the set

W:(F%W;,)O(F)G,)e% and P(W)=1,

n=1 >0

where the sets W,, n=1,2,..., and G,, respectively, are defined by
condition (c¢) and (@ 3).
For an arbitrary, but fixed, ® € W it follows from (c) that

0= tn+1(a>) = q)((:), tn((b)) = (I)Z(a’, tn—l(a)))
=--- =0, 1,(a)).
Using conditions (® 3) we have

0 < lim ¢,,,(&) < lim ®"(&, ¢,(&)) = 0.

n— oo
Hence

lim ¢ (w) =0 a.s.
n— oo

(if) Putting ¢, (w) = t(w), n = 1,2,... in (i), we obtain immediately
t(w) =0a.s.

(iil) Suppose that there exists some #, > 0 such that ¢, < ®(w,t,)
a. s. From (ii) we have 7, = 0. This yields a contradiction. Hence the
conclusion of (iii) holds.

This completes the proof of Lemma 2.

Now we return to the proof of Theorem 1.
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For any X-valued random variable x,(w), by the continuity of ran-
dom operator T, it follows from Lemma 1 that the random orbit of x,(w)
under Ti.e., Op(xy(w),0, 0) = {x,(w)}5 0,

(3.2) x,(0) =T(w, x,_(0), n=12,...

is a sequence of X-valued random variables. By the separability of X, the
continuity of T(w, -), and the right continuity of ®(w, -), it follows that

the set
H= {(

By the assumptions of Theorem 1, for the random variable x (w) € X we
have

(3.3) 8(04(xp(w), p, ) = ®(w, 8(04(x4(w),0,0))) Ve € H.
It follows from (3.1) and (3.3) that

N Ex) N F( N G,)} €B and P(H)=1.

xeX >0

(3:4)  8(0r(xo(®), np, 0)) = 8(Or(x(s-1y(®), P, )

< ®(w, 8(0r(x(,-1,(@), 0, 0)))

=0(w, 8(0,(xp(w),(n — 1)p,®))), wEH,n=12,....
However
(3:5) 3(07(xo(w), (n = 1)p, ))

= max{3(0, (). = D),

i

3(0,(xe)mp + 1) s () x (o)
(n—1)p=r=np
s=np+1

= max{S(OT(xO(w), (n— I)P, np)), ‘S(OT(XO(‘*’), np, 00)),
sup  d(x,(w), xnp(w)) + sup d(xnp(w), xs(w))}

(n—1)p<r<np sznp+1
< 8(0r(x4(w), (n = 1)p, np)) + 8(0r(xo(w), np, 0))-
From (3.4) and (3.5) we obtain
(3.6)  8(0r(xo(w),(n— 1)p,0))
< 8(0r(xo(@), (n — 1)p, np))
+®(w, 8(0r(xo(w),(n — 1)p,))), w€EH.
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Taking n = 1 in (3.6) we have

(3.7) 8(07(x(@),0, 0))
= S(OT(xO(w),O, P))

+0(w, 8(07(xo(w),0,))), w€EH.

Now we prove that for w € H
8(04(x4(w),0, 0)) < 0.

Suppose this is not the case, hence there exists some & € H such that

8(07(x(©),0,00)) |,—5 = .
Letting

A4,(®) =8(0p(xo(w),0,n)) |-z, n=1,2,...,

we know that {4 (&)} is an increasing sequence of positive numbers and
nliff)lo 4,(@) = 8(0;(x(), 0, )) o=z = 0.
By condition (® 2) and (3.7) we have
0 = lim (4,(6) — ©(a, 4,(5))
< 8(07(x0(©), 0, p)) |= < 00
This yields a contradiction. Hence we obtain

8(0r(xy(w),0,00)) <0 Vw € H.
Putting

t (w) = {8(0T(x0(w), np, 00)) forw € H,
n 0 forw € Q\H, n=0,1,2,...

from (3.4) we know that {7,(w)} satisfies all conditions of Lemma 2 (i).
Therefore we have

lim 8(O0(xy(w), np, 0)) =0 a.s.

n-—00
This implies that {x,(w)} is a Cauchy sequence of X-valued random

variables. Suppose x,(w) = x,(w) a. s. Hence x,(w) is also a X-valued
random variable. Letting #n — oo in the following equality

x,(0) = T(w, x,_(w)),
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and invoking the continuity of 7, we have

x4(@) = T{w, x.(@)) a.s.

This completes the proof of Theorem 1.

THEOREM 2. Let ®(w, t) be the same as in Theorem 1, and let T be a
continuous random operator from & X X — X. Suppose that there exists a
positive integer p such that for any k € N (N denotes the set of all
non-negative integers) and any x € X the following holds:

(3.8) PloeQ:d(T?(w, x), TP *(w, x))
Sq)(wﬂs(OT(x’ano)))} P( k)

Then the conclusion of Theorem 1 still holds.

Proof. By the assumptions on X, T'and @, it is easy to see that the set
E=N NE,EB and P(E)=1.
xEX k=0

Hence for any pair r, s € N (with no loss of generality we can assume
r=s), and any x € X, it follows from (3.8) that for any w € E the
following holds:

d(T7*"(w, x), T?**(w, x))

d(T?(w, T"(w, x)), TP (0, T (@, x)))
(0w, (OT(T(w x),0, 00)))

O(w, 8(0r(x,r, )))
o

i

IA

i

=®(w,8 T(x 0, 0))).
Consequently
8(0,(x, p,0)) = sufod(TP“(w, x), T?"*(w, x))
< ®0(w, 8(0;(x,0,0))), wEE,
i.e.

8(0r(x, p,0)) = ®(w, 8(0;(x,0,0))) a.s.

This implies that from (3.8) we can deduce (3.1). Therefore the desired
conclusion follows from Theorem 1.
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This completes the proof of Theorem 2.

REMARK 1. In the deterministic case, the main result in Pal and Maiti
[13] is a special case of Theorem 2.

As a corollary of Theorem 1 and Theorem 2 we have the following
result.

COROLLARY 1. Let T: @ X X — X be a continuous random operator.
Suppose that there exists a positive integer p such that for any x € X one of
the following conditions holds:

(3.9) P{w € Q: 8(04(x, p,0)) = @(w)8(07(x,0,0))} = 1;
(3.10) foranyk € N

Plo € Q: d(T?(w, x), T"*(w, x)) = @(w)8(0,(x,0,00))} =1,

where @(w): © — [0, 00) is a random variable satisfying

Plwoe:0<@(w)<1)=1.
Then the conclusion of Theorem 1 holds.

Proof. Taking ®(w, 1) = @(w)-¢, t =0, it is easy to see that in this
case conditions (® 1), (® 2), (® 3) are all satisfied, and the conclusion
follows from Theorem 1 and Theorem 2, respectively.

THEOREM 3. Let T: Q@ X X — X be a continuous random operator. Let
® be the same as in Theorem 1. Suppose that there exist positive integers
P, q such that for any pair x, y € X

(3.11) Ploe€Q:d(T?(w, x), T w, y))
< ®(w,8(0;(x,y,0,0)))} = P(E,) = 1.

Xy

Then T has a unique X-valued random fixed point x.(w); and for any
X-valued random variable x ( w) the sequence {x,(w)}, where

x(0)=T(w,x,_(0)), n=1,2,...,
converges almost surely 10 X ,(w).
Proof. With no loss of generality, we can assume p = g.

_ Considering the set G=NcxN,ec x(E,,), it is easy to see that
G € Band P(G) = 1. ' '
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For any x €X, any Kk €N and any w € G, we denote y =
TP~ 9"%(w, x). From (3.11) we have

d(T7(w, x), Tw, T?""*(w, x)))
=d(T?(w, x), T" (@, x))
< ®(w,8(04(x, 777" (w, x),0, 0)))
= (@, 8(07(x,0, 0))).

By Theorem 1, for any random variable x,(w), the sequence of X-valued
random variables {x,(w)} defined by

x,(0) =T(w,x, («0), n=12,...,

converges almost surely to a random fixed point of 7.
To prove T has a unique X-valued random fixed point, we proceed as

follows:
Let x,(w), X(w) be two X-valued random fixed points of T’ therefore

(3.12)  d(x4(w), #(0)) = d(T7(w, x4(@)), Tw, ¥(v)))
< ®(w,8(0p(xs(w). %(w).0,00)})
= (I>(w, d(x,(w), )Z(w))) a.s.
Using Lemma 2(i1) we get d(x,(w), ¥(w)) =0 a.s.,, 1.e. xy(w) = X(w)
a.s.
This completes the proof of Theorem 3.

From Theorem 3, we can easily deduce the following corollaries.

COROLLARY 2. Let T: © X X — X be a continuous random operator.
Suppose that there exist positive integers p and q such that for any pair
x,yeX

Plw € Q,d(T?(w, x), Tw, y)) = @(w)8(04(x, y,0,0))} =1,
where @(w): Q — [0, 00) is a random variable such that

Ploe:0<@(w)<1)=1.
Then the conclusion of Theorem 3 holds.

REMARK 2. In the deterministic case, Corollary 2 is a generalization of
Fisher [7, Theorem 2].
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COROLLARY 3. Let T: @ X X —» X be a continuous random operator.
Suppose that there exist positive integers p, q such that for any pair x, y € X

(3.13) P{lw € Q:d(T?(w, x), TY(w, y))
< ®(w,max[d(x, y), d(x, T?(w, x)),
d(y, Tw, ), d(x, Tw, y)),
d(y, T?(w, x))])} = 1.

Then the conclusion of Theorem 3 holds.

ReMARK 3. Corollary 3 is a generalization of Theorem 4 in Chang [3]
and Theorem 1 in [4].

In particular, from Theorem 3 we can obtain a deterministic result as
follows:

COROLLARY 4. Let (X, d) be a complete metric space, T: X - X a
continuous mapping and ® a function satisfying the following conditions:
(1) ®: [0, o0) — [0, o0) is nondecreasing and right continuous;
(1) lim (¢# — (1)) = oo;
(iii) For eacht >0

lim ®"(z) = 0.

n— o0

Suppose that there exist positive integers p, q such that for any pair x, y € X
d(T’x, T) < ®(8(0,(x, y,0, 0))).
Then T has a unique fixed point in X and for any x, € X the sequence
{x, = T"x,} converges to this fixed point of T.

THEOREM 4. Let T be a continuous random operator satisfying the
following conditions:

(3.14) P{G Unn [w € Q:d(T?(w, x), T"(w, y))

=< ®(w, 8(04(x, y,0, oo)))]} =P(Q) =1,

where ®(w, t) is the same as in Theorem 1.

Then the conclusion of Theorem 3 holds.
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Proof. By the assumptions of Theorem 4, it is clear that the set

HIIQﬂFﬂ(ﬂG,) €®B and P(H) =1,
>0
where the sets Q, F, G,, respectively, are defined in (3.14), (® 2) and (@ 3).
For an arbitrary, but fixed ® € H,, hence & € Q, there exist positive
integers p,, g, such that forany x, y € X

d(Tn(&, x), T*(&, y)) < (&, 8(0,(x, ,0,x0))).

By Corollary 4 there exists a unique fixed point x,(&®) of 7(&, -). Taking
any X-valued random variable x,(w), we define a sequence of X-valued
random variables {x, (w)}:

x,(w) =T(w, x,_(w), n=12,....

As w = & by Corollary 4 we know that x,(®) converges to x,(®). This
means that x,(w) converges almost surely to x,(w), hence x,(w) is also a
X-valued random variable and

xe(w) = T(w, x*(w)) a.s.
This completes the proof of Theorem 4.

REMARK 4. Theorem 6 of [3] is a special case of Theorem 4.

Especially, taking p = g and ®(w, ) = (1 — 1/m)t in Theorem 4,
where m is some positive integer, we obtain a generalization of an
important random fixed point theorem of Bharucha-Reid (cf. [1, Theorem
3, 4] or [2, Theorem 6]). The main results in Hans$ [8, 9] and Spacek [14] are
also special cases of Theorem 4.
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