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Let Z + and Z~ denote the sets of positive and negative integers
respectively. We study relations between various thinness conditions on
subsets E of Z + , with particular emphasis on those conditions that imply
Z~U£ is a set of continuity. For instance, if E is a Λ(l) set, a /?-Sidon
set (for some p < 2), or a ί/C-set, then E cannot contain parallelepipeds
of arbitrarily large dimension, and it then follows that Z~UE is a set of
continuity; on the other hand there is a set E that is Rosenthal, strong
Riesz, and Rajchman, which is not a set of continuity.

1. Introduction. Let T be the circle group and Z the integers;
denote by M(Ύ) the customary convolution algebra of Borel measures on
T, and, given μ G M(Ύ) and « 6 Z , let

β(n)=fe-""dμ(θ).

For a subset SΌf Z with infinite complement, call S a set of continuity
if, for each number ε > 0 there is a δ > 0 such that, if μ e M(T), || μ || < 1,
then the condition that

(1.1) limsup I μ{n) |< 8 implies that limsup | β(n) |< ε.

Less formally, S is a set of continuity if, for measures μ in the unit
ball of m(T), the size of lim suprtG5 | μ(n) | can be controlled by the size of
limsupπ€ΞZx5 |/i(w)| .

The definition of a set of continuity [19] was inspired by the theorem
of K. de Leeuw and Y. Katznelson [5] to the effect that Z + and Z" are
sets of continuity. Different proofs of the de Leeuw-Katznelson result
were subsequently found by J. A. R. Holbrook [22] and L. Pigno [34]. Yet
another proof will be presented in §2 of the present paper.

In §2, we consider analytic conditions. We first show that the theorem
of de Leeuw and Katznelson is a rather direct consequence of Paley's
theorem concerning the Fourier coefficients of Hι(T)-functions. We next
recall the analytic conditions that £ be a Λ(l) set, a/7-Sidon set (p < 2),
or a £/C-set, and we show by the same method that if E satisfies any of
these conditions, then Z'UE is a set of continuity. We also exhibit an
example of a set E which is a Rosenthal set, a strong Riesz set, and a
Rajchman set, but is not a set of continuity; see §2 for all definitions.
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In [34], Pigno went on to show via the construction of Cohen-Daven-
port that if E C Z + satisfies lacunarity condition (£) (defined in §3), then
Z'UE is a set of continuity. In §3 we consider various arithmetic
conditions on E and show via refinements in the original method of de
Leeuw and Katznelson that these conditions imply that Z'UE is a set of
continuity. Then we show that if E is a Λ(l) set, a/7-Sidon set (p < 2), or
a ί/C-set, then E satisfies such an arithmetic condition, because E cannot
contain parallelepipeds of arbitrarily large dimension. As a byproduct of
our analysis, we exhibit a 4/3-Sidon set that is also a A(q) set for all
q < oo but is not a ί/C-set.

After completing most of our work in this paper we learned of other
refinements of the method of de Leeuw and Katznelson due to F. Mela
[29] and B. Host and F. Parreau [23; 25]. In particular Host and Parreau
[25] have found an arithmetic characterization of sets of continuity. It is
easy to see that if E satisfies one of our arithmetic conditions then it must
satisfy the arithmetic condition of Host and Parreau. It also follows easily
from our work in §2 that every Λ(l) set, or/?-Sidon set (p < 2), or C/C-set
satisfies the arithmetic condition of Host and Parreau. We have therefore
concentrated in our presentation on the relations between various analytic
conditions and various arithmetic conditions that are stronger than the
one considered by Host and Pareau. This part of our work is essentially
disjoint from their work.

In his proof [22] of the theorem of de Leeuw and Katznelson,
Holbrook actually dealt directly with a generalization concerning contrac-
tions on a Hubert space; he also pointed out that the generalization was
really equivalent, via unitary dilations and the spectral theorem for
unitary operators, to the original de Leeuw-Katznelson theorem. In §4, we
show that the method of de Leeuw and Katznelson can be modified to
work in the setting considered by Holbrook.

2. Analytic conditions. Call a sequence {hk}°f of strictly positive
integers a strong Hadamard sequence if hk+ι > 3hk for all k\ let H\Ύ) be
the classical space of all functions / E L\Ύ) such that f(n) = 0 for all
n < 0. Paley's Theorem asserts that

/ oo \ l / 2

(2.1) Σ l / ( * * ) | 2 ^ C H / I I ,
v k=\ I

for a l l/E Hλ(Ύ) and all strong Hadamard Sequences {hk}°f; it is known
[15] that the best value of the constant CiS]/2 .

We now derive the de Leeuw-Katznelson result from inequality (2.1).

THEOREM 0. The sets Z + and Z~ are both sets of continuity.
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Proof. Since Z" is a set of continuity if and only if Z + is a set of
continuity, it is enough to show Z + is a set of continuity. To show Z + is a
set of continuity we proceed as follows:

If/is a trigonometric polynomial on T, then as a consequence of (2.1)
we have

(2-2) (i|/ωi2)
l /2

ii/ii
1/2

for all strong Hadamard sequences {hk}f to confirm this, just apply
Paley's inequality to the function f(θ) — Σn<of(n)eιnΘ. Next, fix a strong
Hadamard sequence {hk}°f and a positive integer K, and let Rκ(θ) be the
standard Riesz product

Π (1 + cosM);

given μ G M(T), put

1/2

* * ) * ( * ) I2) .

Applying inequality (2.2) to the convolution product μ * i?^ we get that

(2.3) ^ Σ | μ ( * ) J

Suppose now that | |μ|| < 1, and that limsup^^.^ \β(n) |< δ, while
lims\xpn_^ + QO\β(n)\> ε>0, where the relationship of δ to ε will be
specified later. By replacing μ by eim6μ for some integer m, we can
arrange that | μ(n) |< δ for all n < 0, and we can then choose a strong
Hadamard sequence {hk}™, so that | μ(hk) |> ε for all A:. For each integer
ίΓ, the support of Rκ has fewer than 3^ negative integers; so, by inequality
(2.3),

(2.4) ε{κ<2C[\ + 3K/28\.

Given ε, let K be the smallest integer for which ε>4C/]/K, and
put δ = yκ/1. Then inequality (2.4) does not hold, and we
conclude that, if μ G M(T), llμll < 1, and limsup^.^ | β(n) |< δ, then
limsupn_+001 μ(n) |< ε. That is, Z + is a set of continuity, as in Z". Our
proof is complete.

We now recall various analytic conditions on subsets of Z. Given
£ C Z , and an integrable function/on T, call/an E-function if/vanishes
off E\ call trigonometric polynomials that are E-functions E-polynomials.
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Given an index q E (0, oo) we say E is a A(q)-set if there is an r E (0, q),
and a constant Cq r(E) so that

(2.5) Wf\\q^CqJf\\r

for all ̂ -polynomials /. The smallest value of Cqr for which inequality
(2.5) holds for all ̂ -polynomials / is called the Λ(g, r) constant of E.
Given p E [1,2), call E a p-Sidon set if there is a constant Cp{E) so that

(2.6) ii/ii, ^ςi i/ i ioo

for all ^-polynomials /. Call the smallest such constant C (E) the p-Sidon
constant of E. Finally, call E a UC-set if, for every continuous E-function
/, the Fourier series of / converges uniformly. It turns out that there is a
constant K such that, for every ^-polynomial /, the symmetric partial
sums SN{f) of its Fourier series satisfy

(2.7) 115

again there is a smallest such constant K, called the UC-constant ofΈ, and
denoted by κ(E).

We will discuss some examples of sets satisfying (2.5), (2.6) and (2.7)
later in this section and the next section. For further information, see [28]
and the references cited therein.

THEOREM 1. Let E be a Λ(l) set, a p-Sidon set (p < 2), or a UC-set.
Then Z~UE is a set of continuity.

Proof. Suppose first that E is a Λ(l) set. Then by [2] there is an index
q in the interval (1,2) for which E is also a A(q) set. Without loss of
generality assume E is an infinite subset of Z + . It then follows by a
standard argument [32] that

(2.8) ( Σ l / O O l

for all (Z~U£)-functions/; here qr denotes the index conjugate to q, and
C is a constant depending only on the A(q, 1/2) constant of E.

Inequality (2.8) will play the same role in the present proof as Paley's
theorem did in our proof of Theorem 0; here are the details of the
argument which establishes (2.8). First it suffices to confirm (2.8) for all
(Z~U/^-polynomials. To this end let / be such a trigonometric poly-
nomial and put g(θ) = Σn>of(n)einθ. By Kolmogoroff s theorem,
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On the other hand, the fact that £ is a A(q) set implies [38, p. 204] that
versions of inequality (2.5) hold for all indices r in the interval (0, q)\
therefore

because g is an l?-polynomial. Finally,

by the Hausdorff-Young theorem. As a consequence of the above three
inequalities, we obtain inequality (2.8).

Now let μ E M(Ύ) with ||μ|| < 1. We first show that the size of
limsupwGZ+x£ I β(n) | controls the size of limsuprtG^ | β(n) | . To establish
this assertion, suppose that

limsup I β(n) | < δ while limsup | β(n) | > ε.
n<=Z\E n(=E

Without loss of generality assume that | μ ( w ) | < δ for all n G Z + \ £ .
Choose a strong Hadamard sequence {hk}°? in E so that | β(hk) \> ε for
all k. Given a positive integer K, let

it now follows from (2.8) that

κ V/q>

c = l

Inasmuch as | |μ|| < 1 we obtain

Well, given ε, choose K and then δ so that the above inequality cannot
hold; then the condition that

lim sup I μ (n) | < δ implies that lim sup | μ (n) | < ε.
+

In other words, we can make limsup^χ+1 μ(«) | small by making
limsup n G Z + v £ | μ(«) I sufficiently small; but by Theorem 0, we can make
limsupnGZ-| β(n) \ small by making limsupwGZ+| β(n)\ sufficiently small.
Therefore Z'UE is a set of continuity.

Suppose next that E is a /?-Sidon set for some fixed index p in the
interval [1,2), and, as before, that E is an infinite subset of Z + let
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s = 2p/(2 — p). Then it turns out that

(2.9)

for all (E U Z~)-functions/, where C is a constant depending only on the
/7-Sidon constant of E. Once this inequality is established, the rest of the
proof that E U Z" is a set of continuity proceeds as in the case of a Λ(l)
set E.

To prove inequality (2.9), recall that it is known that such an
inequality holds for all E-functions /; what is new here is the fact that the
inequality holds for the larger class of (E U Z")-functions. Now the proof
in [12, p. 406] of (2.9) for ^-functions uses a multiplier theorem of
Edwards [11, Corollary 2.3]; to deal with (E U Z~)-functions, just use the
similar multiplier theorem due to Steckin [39, Theorem 1].

Finally, suppose that E is an infinite £/C-subset of Z + . Then [31], for
each integer N > 0 there is a measure μN for which || μN || < κ(E), and

if n G E and n < N

It then turns out that there is an integer-valued function K( ) so that
for all ε > 0, and all (E U Z>functions/,

(2.10) I [n E E: \f{n) |> ε) \< K(κ(E)\\ fW./ε);

here | B \ denotes the cardinality of a given set B. Again, once this
inequality is established, the rest of the proof proceeds much as in the
previous two cases.

To prove inequality (2.10), we use a recent result due to Pigno and
Smith [37]. By homogeneity, (Replace / by [f/κ(E)\\f\\x]9 and ε by
ε^/cί^1)!!/!^]) we can reduce matters to the case where κ(E)\\f\\{ — 1.
For each positive integer N,\εtfN=f*μN\ then \\fN\\λ ^ 1 for all N, and

/ Λ K ' ' 0 iin>N

because / is an (E U Z~)-function. Pigno and Smith exhibit a function
K( )so that, if \\SN(f)\\, < 1 for all N, then

(2.11)

for all ε > 0. In their argument, however, they only use the existence of a
sequence {fN}™=ι as above. Since / i s an (E U Z~)-f unction with
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K(E)\\f\\x = 1, and since £ C Z + , inequalities (2.10) and (2.11) are
equivalent. This completes our proof of the theorem.

The following notion will be convenient in the rest of this section, and
in the next section.

DEFINITION. Let ̂ b e a family of subsets of Z. Call f a uniform family
of sets of continuity if for each ε > 0 there is a 8 > 0 so that for each set S
in f a n d every measure μ with \\μ\\ < 1, the condition that

limsup I μ(n) \< 8 implies that limsup \μ(n)\< ε.
«GZ+\5 «G5

Thus, to show that a given family f is a uniform family of sets of
continuity, we have to exhibit a uniform relation between ε and 8 for all
sets E in f. Let 1 < q < oo, and let £ be a Λ(#) set; for each r with
0 < r < q denote the A(q, r) constant of E by cq r(E), and call cq X(E) the
A(q) constant ofE. Recall [38, p. 204] that c ι/2(E) < [cqΛ(E)]^~l)^-ι\
Thus the proof of Theorem 1 shows that, if 1 < q < oo and C > 0, then
the family of all A(q) sets E with cq X(E) < C is a uniform family of sets
of continuity, as is the family of all sets £ U Z " with E as above.
Similarly, if 1 <p < 2 and C > 0, then the family of all sets E U Z~,
where E is /?-Sidon with /?-Sidon constant at most C, is a uniform family
of sets of continuity. Finally, the same conclusion holds for sets E with
£/C-constant at most C.

The example below shows that the family of all A(q) sets is not a
uniform family of sets of continuity. On the other hand we shall see in the
next section, that, for each fixed index p with 1 < p < 2, the family of all
sets Z'UE, where E is /7-Sidon is a. uniform family of sets of continuity.
Finally, we will see in the next section that the class of sets E U Z", where
E is a £/C-set, is a uniform family of sets of continuity.

EXAMPLE 1. Fix a strong Hadamard sequence {hk}™. For each posi-
tive integer N9 let EN consist of all integers n of the form n = Σ™ ekhk,
where εk G {-1,0,1} for all k, and Σ£ = 1 \εk\<N. Then [28, p. 65] each
set EN is a Λ(#) set for all q < oo; moreover, EN is [2N/(N + 1)]-Sidon
[1]. A standard construction [28, p. 20] yields a probability measure μ so
that, if n = Σ£ = 1 εkhk as above, then μ{n) = 2~Σ '^ , and so that μ(/?) = 0
otherwise. A simple modification of the construction [10, p. 163] yields a
measure v, with \\v\\ — 1, so that v(n) — μ(n) if n is as above, and
Σ * = 1 ek = 1, while P(0) — 0 otherwise. In particular, μ and £ both vanish
off the set {0} U U £ = 1 EN; moreover,

1 / 1 \ Λ Γ + 1

limsup I P(tt) | = —, while limsup v(n) | < —
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Thus the sets EN do not form a uniform family of sets of continuity,
although each EN is a A(q) set for all q < oo, and a^-Sidon set for some
p<2.

We now consider some other analytic notions of thinness. Call a
subset E of Z a Rosenthal set if every ^-function in L°°(T) is actually
continuous. Call a measure μ an E-measure if /I vanishes off E. Call i? a
/ίiβsz set if every ^-measure is actually absolutely continuous; denote the
closure of E in the Bohr compactification of Z by cl(E), and call E a
strong Riesz set if ol(E) Π Z is a Riesz set. Call £ a weα/: Rajchman
set if every it-measure μ has the property that limn(ΞEμ(n) = 0;
call £ a Rajchman set if, for all measures μ, the condition that
l i mnezχ£ I £(«) I = ° implies that limn(ΞE | β(n)\= 0.

Concerning these notions see [28, pp. 161-163] and [33]. Clearly,
every set of continuity is a Rajchman set, and Rajchman implies weak
Rajchman; also, strong Riesz implies Riesz, and Riesz implies weak
Rajchman. It is also known [9] that if E is Rosenthal, then Z~UE is Riesz,
as is F U E for all Riesz sets F. Finally, Host and Parreau [24; 23] have
given two proofs that weak Rajchman actually implies Rajchman.

EXAMPLE 2. Let hk — 5k for all k, and form the sets EN as in the
previous example; then let

E= U {5N + 5N+ιlEN).

Then the set E is Rosenthal, strong Riesz, and Rajchman, but it is not a
set of continuity.

Indeed, suppose, to force a contradiction, that E is a set of continuity;
then its subsets will form a uniform family of sets of continuity. Consider
the sets 5^ + 5N^lEN — FN9 say; each FN is a set of continuity with
exactly the same relation between ε and δ as EN9 because translation and
dilation do not affect this relation. Since the sets EN do not form a
uniform family of sets of continuity, neither do the FN, and E cannot be a
set of continuity.

To see that E is a Rosenthal set, we consider its closure, F say, in the
dual of the subgroup of T given by

D = {exp(τr/V5"): k G Z,n £ Z + }.

Since D is countable, its dual D is metrizable, and any element y of F
must be the limit, in D, of some sequence {ym}™=\ taking all its values in
E. We suppose first that there is no index TV for which Ym E FN for
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infinitely many values of m\ then for each N, we have for all sufficiently
large values of m that 5^ divides ym. We therefore have for each element z
of D that zym — 1 for all sufficiently large values of ra, and hence that
y — limw_> 0 0^m = 0 in D. Next we suppose instead that there is an index
N for which ym E FN for infinitely-many values of m; then, by a similar
argument, y — X\mm_^ym E FN also. Therefore, the closure F of E coin-
cides with E U {0}, and, in particular, F is countable, and hence residual
in D. By the main theorem of [35], the set E must be Rosenthal.

It now follows that E is a Riesz set, because every Rosenthal set is a
Riesz set [9]. To see that E is a strong Riesz set, we show that cl(£) Π Z
C E U {0}: Indeed, if « E cl(£) Π Z, then « is the limit, in bZ the Bohr
compactification of Z, of some net (na) taking values in E; but then (na)
also converges to n in D, whence n E i 7 = E U {0}. So, cl(i?) Π Z is a
Riesz set, and E is a strong Riesz set.

Since E is a Riesz set, it is a weak Rajchman set, and by [23] also a
Rajchman set. In [25, Chap. 5] Host and Parreau independently consider a
class of examples similar to the one above, and then show that their sets
are Riesz and Rajchman, but not sets of continuity. This completes our
discussion of this example.

REMARK 1. The proof of Theorem 1 shows that E U Z~ is a set of
continuity whenever inequalities like (2.8), (2.9), and (2.10) hold for all
(E U Z~)-polynomials. This suggests considering possibly more general
classes of sets E for which such inequalities merely hold for all 2?-poly-
nomials; in the case of inequality (2.9), for instance, such sets have been
considered in [3] and [6], but the only examples known, so far, of such sets
are A(q) sets, with q>2.It is true, however, that if E is such a set, that is
if inequality (2.9) holds for some s < oo and all ^-polynomials, then
E U Z" is a set of continuity. The reason is that one can show that
inequalities of the form (2.10) then hold for all (E U Z~)-polynomials. In
fact, in showing this, one only needs a priori that inequalities of the form
(2.10) hold for all 2?-polynomials; see [16, Remark 3] for more details.

3. Arithmetic conditions. In this section, we first modify the method
of de Leeuw and Katznelson to show that various arithmetic thinness
conditions on a set E imply that E U Z~ is a set of continuity. Later in the
section, we shall compare these conditions with each other, with other
arithmetic conditions, and with analytic conditions; this will allow us to
answer several open questions about ί/C-sets.

Our first two arithmetic conditions concern the sets

(X) 00

limsup (E - Πj) Ξ U Γ\(E- #iy)
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for various sequences («y)JLi We note that, in the sequel, we could
require that nj E E for ally, because, if l i m s u p ^ ^ i ? — nβ is nonempty,
with an element m say, then «y G E — m for all sufficiently large values
of 7.

DEFINITION. Call a sequence (nJ)Jί=ι injectiυe if n^nj whenever
i ¥=j. Say that a subset E oίZ satisfies lacunarity condition (£) if the set

F= l i m i n f ( £ - n )
7-* 00

is finite for all injective sequences (nJ)Jt=v Say that E satisfies lacunarity
condition (Θ) if, for all such sequences {nj)JLl9 the set F has the property
that at least one of F (Ί Z4" and F Π Z~ is finite.

Our next two conditions concern the set Ea of all accumulation points
of E in Z>Z, the Bohr compactification of Z.

DEFINITIONS. Say that E satisfies condition (9ΐt) if Ea Π Z" is finite,
and that £ satisfies condition (&) if £ α Π £ is finite.

THEOREM 2. Let E be a subset of Z that satisfies one of the conditions
(0), (911), tfr ( £ ) . 77κ?/i E U Z~ is a set of continuity.

Proof. We need two lemmas. The first one is due to de Leeuw and
Katznelson [5].

LEMMA 1. For each ε > 0 there is a δ > 0 with the following property.
Let X be a set, let μ be a measure on some sigma-algebra of subsets of X,
with II jit II < 1, and let φ be a function in Loc(d\ μ |) with II φ II ^ < 1 then the
condition that

f I Φ \2mφ dμ < δ for all integers m>\

implies that \ fx φ dμ \ < ε.

For proofs of this lemma, see [5] and [29]. We shall prove a generali-
zation of the lemma in §4, and comment there on various methods of
proof, and on the relation of 8 to ε.

The other part of the method of de Leeuw and Katznelson is a
limiting argument, which we reformulate as Lemma 2 below. Given an
odd integer / > 1, we define a standard multi-index of length J to be a
sequence («7 )/=i s u c h that αy E {-1,1} for ally, and such that Σ^ = 1 «7 = 1.
For typographical convenience, we shall sometimes write integer-valued
sequences in the form h = (h(k))™=ι. Given such a standard multi-index
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α, such a sequence h, and a nonnegative function Φ on Z, we denote the
iterated limit

ί i f / J

lim sup \ lim sup \ \ lim sup Φ 2 aj
kι-*oo k2-*oo I (̂  kj-> oo \ j=\

byl imsup ( Λ ϊ A ) Φ.

LEMMA 2. /or eαc/z ε > 0 /Λere w β δ > 0 w/ϊ/z //*e following property.
Let μ E M(T), wzYΛ | |μ | | < 1, and let h - (h(k))£=ι be an integer-valued
sequence. Suppose that for each odd integer J > 1 there is a stan-
dard multi-index a of length J for which limsup( f t Λ ) | μ | < δ; then
] ί \ ( h { k ) ) \

We will prove this lemma, and discuss it further, after the proof of
Theorem 2. In proving the theorem, we may assume that E is an infinite
subset of Z + . As in the proof of Theorem 1, we need only show that

u p ^ e £ | β(n) | can be controlled, uniformly for all μ in M(T) with
< 1, by l imsup w e Z + x £ | μ(n) \ , and this is what we do in the cases

where E satisfies one of the conditions (0) or (S) . Fix an infinite subset E
of Z + that satisfies condition (0), and a measure μ in M(Ύ) with
llμll < 1. Given ε > 0, choose 8 > 0 as in Lemma 2, and suppose that
limsup r t G Z

+\fl β(n) I— δ. Choose a strong Hadamard sequence h —
(h(k))f=ι inE so that

(3.1) I μ(h(k)) |-» lim sup | μ(n) \ as k -» oo.

By passing to a subsequence of h we can demand that

F= lim (E-h(k))

exist. By hypothesis, at least one of the sets F Π Z " and F Π Z + is finite.
Suppose first that F Π Z~ is finite. By replacing the sequence h by

one of its tails, we can arrange that -h(\) < m for all m in F. Now
Λ(l) - h(Ί) < -Λ(l), because h is strong Hadamard; so h{\) - h(2) £ i7.
By passing to a subsequence of A, we can require that A(l) — h(2) & E —
Λ(3), that is that Λ(l) - Λ(2) + Λ(3) ί £ . We continue to refine the
sequence h in this fashion. Specifically, given (/z(/c))^=1, let Lm be the set
of all integers having the term

h{kλ) - h(k2) + h(k3) +Λ(* ,- i ) " *(*,)>

where 7 is even, the signs alternate in the pattern 4-, - , . . . , + , -, and
1 <kλ<k2< < kj < m. Since the sequence h is strong Hadamard,
the set Lm is disjoint from F, and we can then choose h(m + 1) so that the
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set h(m + 1) + Lm is disjoint from E; on the other hand, h{m + 1) + Lm

is a subset of Z + .
In other words, if a is a standard multi-index of the form (1, - 1 , . . . ,

- 1 , 1), and if kx < k2 < - - < kj9 then

axh(kλ) + aq2h(k2)

lΐkλ<k2< < kj_v then

lim sup

Therefore, limsup(α h) \ β |< ε, and, by Lemma 2, l imsup^^ | β(h(k)) |<
ε, as required.

The remaining possibility is that the set F Π Z + is finite. By replacing
the sequence Λ by one of its tails, we can demand in this case that
h{\) > n for all n in F. Thus Λ(2) — A(l) > «, and we can pass to a
subsequence of h for which -A(l) + h(2) + h(3) £ E. We continue to
refine the sequence h in this fashion. Specifically, having chosen A(l),
/z(2),... ,/ι(m), we will find that the set -Lm is disjoint from F9 and we can
then choose h(m + 1) so that h(m + 1) — Lw is disjoint from 2?; more-
over h(m + 1) — Lm will be a subset of Z + . It will then follow, as before,
that if a is a standard multi-index of the form (-1,1,-1,1,...,-1,1,1),
then limsup(α Λ ) | β \< ε, and, by Lemma 2, that lim s u p ^ ^ | β(h(k)) | < ε.

As noted above, we follow a similar procedure if E satisfies condition
(&). That is, we choose a strong Hadamard sequence, h with values in E,
so that relation (3.1) holds; we then refine h so that h(m + 1) + Lm is
disjoint from E for all m, and we apply Lemma 2.

In the remaining case, when E satisfies condition (911), we show that
limsupnGZ-| β(n) \ , rather than limsupn G £ | β{n) \ , can be controlled by
lim supn G Z+x £ I β(n) \ . To this end, we choose a sequence h, with values in
Z", so that -h is strongly Hadamard, and so that

\β(h(k)) |-*limsup|/x(w) | as A: -» oo.
nGZ"

We can then refine h so that the positive integers of the form

h(kλ) + h(k2) - h(k3) + +h(kJ__ι) - h(kj),

where kλ < k2 < - - < kj9 all lie outside the set E. Finally, we apply
Lemma 2 with multi indices a of the form (1,1,-1,.. .,1,-1). This
completes our proof of the theorem.

Proof of Lemma 2. Given ε, choose δ as in Lemma 1. Let β =
limsup^oo I β(h(k)) \ by passing to a subsequence of Λ, we can require
that I β(h(k)) |-» β as k -» oo. Let φk(t) = exp(-iΛ(A:)ί) for all real t\ by
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passing to a further subsequence of h, we can make the sequence (φk)°£=λ

converge weakly in L2(d\ μ |), to a function φ say. Then | /φdμ \ — β, and
the desired estimate that β < ε will follow from Lemma 1 provided we can
confirm, for all integers m >: 1, that | / | φ | 2 m φ dμ | < δ.

To do this, we use the fact that there must be a sequence (χpk)f=] so
that each ψk lies in the convex hull of {Φj}j>k, and so that (ψk)™=ι

converges strongly in L2(d\ μ |), to φ. Given an integer m as above, let a
be a standard index of length / = 2m + 1 for which limsup ( α h) | μ | < δ.
Since 11ψ 1̂100 < 1 for all k, and ψk -» φ in | μ | -measure, we have that
/ I φ | 2 w φ dμ is equal to

(3.2)

In fact, the value of this iterated limit is independent of the order in
which the limits are computed, and different orders of iteration lead to
different estimates for the quantity (3.2), in terms of l imsup w G 5 | μ(n) \
for various sets 5; this is how it is possible to relate quantities like

The integral inside the iterated limit (3.2) is a convex combination of
terms of the form

that is, of the terms μ(axh(jλ) + oί2h(j2) + +ajh{jj)), wherey"j > kλ,
j2>k2,..., andy7 >: kj. It follows from this fact, and our hypothesis that
lim sup(α Λ ) I μ I < δ that | / | φ | 2 m φ dμ \ < δ. This completes our proof of
the lemma.

Before introducing more arithmetic conditions, we compare the ones
we have mentioned so far with each other and with the analytic conditions
of §2. In [34], Pigno pointed out that all 1-Sidon sets satisfy condition (£),
and he used the Cohen-Davenport Procedure to show that, if E satisfies
condition (£), then E U Z" is a set of continuity; it had been shown
earlier [19] that the union of a Sidon set and a set of continuity is always a
set of continuity. Condition (0) seems worth mentioning in Theorem 2,
because it is easy to devise examples of sets satisfying condition (Θ) that
do not satisfy the stronger condition (£). On the other hand, the positive
part of the set E2 considered in Example 1 does not satisfy condition (Θ),
although it is a ί/C-set [41], a (4/3)-Sidon set, and a K{q) set for all
q < oo.

Condition (911) arises in the study [30] of strong Riesz sets; many
interesting sets, such as the set of all prime powers are known [8] to satisfy
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this condition. Condition (&) arises in the study of certain sets of
interpolation; indeed [36], if L\R)\E C l\Ύ)\ E, then Ea Π E is empty.
It is known [43], [27] that there are UC-stts and sets that are A(q) for all
q < oo, that are dense in bZ. It does not seem to be known whether a set
that is/7-Sidon for some/? < 2 can be dense in bZ.

None of the conditions (Θ), (91L) and (&) implies any of the others.
First, the sets constructed in [7, Lemma 2] have no integer accumulation
points, and hence satisfy (9IL) and (&), but it is easy to see that they do
not satisfy (Θ). In Example 4, at the end of this section, we will exhibit
sets that satisfy (91L) but not ( £ ) , other sets that satisfy ( £ ) but not (91L),
and a set satisfying the classical Faber gap condition, and hence condition
(£), but which is dense in bZ.

The sets EN of Example 2 suggest the following weakening of condi-
tion (£).

DEFINITIONS. Say that a subset E of Z satisfies lacunarity condi-
tion (£j) if it satisfies condition (£). Define a sequence of lacunarity
conditions (£N)™=2 by saying that £ satisfies condition (tN) if the set

^ jE — /iy.) satisfies condition (tN_ι) for all injective sequences

THEOREM 3. Le/ TV Z>£ a positive integer. Then the sets E U Z", where E
satisfies condition (tN),form a uniform family of sets of continuity.

Proof. We can proceed much as in the proof of Theorem 2. For
instance, given an infinite subset E of Z + that satisfies conditions (£N),
and a measure μ with | |μ | | < 1, we choose a strong Hadamard sequence h
in is along which | μ | converges to \imswpnξΞE\ μ(n) | . We suppose that
lim supneΞZ+N£ I μ(«) | < δ, and we show that, if a is a standard multi-index
of length J > N, and having the form (1,-1,1,...), then lim sup(Λ h) \ μ \ <
δ. We then use a version of Lemma 2 in which the existence of suitable
multi-indices a is only assumed when J > N; these versions of Lemma 2,
with a relation between ε and δ determined by N, follow from correspond-
ing versions of Lemma 1, which we will discuss in §4. We can deal with
l i m s u p ^ e z | β(n) \ via Theorem 0, or obtain direct estimates for this
quantity as in the last part of the proof of Theorem 2.

Finally, we remark that another way to prove the present theorem is
to imitate a procedure that is standard [30] in the analysis of Riesz
sets. Specifically, in order that £ U Z " be a set of continuity it
suffices that Ea Π Z be a set of continuity, or that the various sets
limsup /_0 0(£' — tfy), for all injective sequences (rij)JLl9 form a uniform
family of sets of continuity. We omit the details of this second proof of
the theorem.
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We obtained Theorems 2 and 3 before we learned of the recent work
by Host and Parreau [23; 25]. Their arithmetic characterization of sets of
continuity holds in all discrete abelian groups. Here is a description of it
in the context of Z. Given any injective sequence h = (hk)f=v define
corresponding sets EN(h) as in Example 1.

DEFINITION. Say that a subset 5Όf Z satisfies condition HP if there is
an integer N for which, for every injective sequence h, every translate of
EN(h) intersects Z\S.

In checking to see whether a given set satisfies this condition, it is
enough to look at translates of the sets EN(h) when h is strong Hadamard.
It is easy to see that if S is a set of continuity, then S satisfies condition
HP; Host and Parreau proved the converse.

Theorems 2 and 3 follow from this result, because it is easy to verify
that if E satisfies the hypotheses of Theorem 2 or 3, then £ U Z " satisfies
condition HP; in fact, Host and Parreau carry out such a verification in
the case where Ea Π Z is finite [25, Chap. 5]. Theorem 1 also follows from
Host and Parreau's characterization, but this is less obvious; one way to
carry out the deduction runs via inequalities (2.8), (2.9), and (2.10), and
another is to use Theorem 4 below.

The main result of Host and Parreau does not seem accessible by our
methods, but they mention something similar that does follow from
Lemma 2. Let us say that a subset S of Z satisfies condition FPN if, for
every injective sequence h, every translate of EN(h)\EN_x(h) intersects
Z \ S. Then using versions of Lemma 2 of the present paper, or, for that
matter, Lemma 2 of [5], one can show that, for each fixed positive integer
N, the sets that satisfy condition FPN form a uniform family of sets of
continuity. Note, however, that there are sets [25, Chap. 5] that satisfy
condition HP, but satisfy condition FPN for no value of N.

We now consider some arithmetic conditions that turn out to follow
from the analytic conditions used in Theorem 1.

DEFINITIONS. Let N be a positive integer. Call a subset P of Z a
parallelepiped of dimension N if P has exactly 2N elements and can be
represented as a sum Pλ + P2 + +PN of N two-element sets. Call a
pair of subsets Q and R of Z an alternating pair of size N if they both have
exactly N elements, and if, when they are enumerated in increasing order
as {qn}n=\ and {rn}%=u respectively, it is the case that

9 2 ~ 0i ^ r2 ~ r\ < <l3 ~ 9ι ^ r3 ~ rx < ' *
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THEOREM 4. Let E be a Λ(l) set, a p-Sidon for somep < 2, or a UC-set.
Then there is an integer N for which E contains no parallelepiped of
dimension N; moreover, E satisfies condition (tN) for this value ofN. If E is
a p-Sidon set, with p < 2, then there is an integer I determined by p, and
independent of E, so that E satisfies condition (£ 7 ) . Finally, if E is a
UC-subset of Z + or Z~, then there is an integer M for which E contains no
difference Q — R arising from an alternating pair (Q, R) of size M.

COROLLARY 1. The sets E U Z~, where E is a UC-set, form a uniform
family of sets of continuity, so do the sets E U Z~, where E is a p-Sidon set
for some fixed value of p < 2.

Proofs. Suppose first that E is a/?-Sidon set with 1 <p < 2; let / be
the smallest integer such that / > (2 — p). Then it is known [26] that there
is an integer M, depending on E, so that E contains no sum Sx +
S2 + - - +Sj of M-element sets S(. It follows easily that E satisfies
condition (£ 7 ) ; the part of Corollary 1 concerning /?-Sidon sets then
follows by Theorem 3. Finally, let L be the smallest integer for which
2L > M; then E cannot contain a parallelepiped of dimension N = IL.

Suppose next that E is a Λ(l)-set. Fix an index q in the interval (1,2]
for which E is also a A(q) set. Recall that

Σ \Kn)\Λ

for all ^-polynomials/, and all indices r satisfying 0 < r < q. Let g(t) —
1 + eu\ we shall see below that | |g | | Γ -> 1 as r -> 0. Assuming this to be
so, we can choose an index r in the interval (0, q) for which ||g\\r < 2ι/q'.
Then

(3-4) 2"">c ί >,(i0(||g||Γ)A r

for all sufficiently large values of N. We claim that if inequality (3.4)
holds, then E contains no parallelepiped of dimension N.

To verify this claim, suppose to the contrary that E does contain such
a parallelepiped P = P^ + P2 + +PN of dimension iV; denote the two
elements of each set Pn by kn and mn. Given real numbers tn and θ, let

Fn(tn, θ) = exp(/M) + exp[/(m^ + tn)];

= (tι,t2,...,tN), and

n=l
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Then for each fixed value of t, the function θ\-*ft{θ) is a P-polynomial,
and hence an is-polynomial; also \fn(m) \ = 1 for all m in P, whence

(3.5) (

On the other hand, by Fubini,

Therefore, there is a choice of / for which ( l l^ l l r )
r ^( l lg l | r )

r Λ Γ ; for any
such t9 relations (3.3) and (3.5) yield that

contrary to inequality (3.4). Hence E contains no parallelepiped of dimen-
sion N\ it follows easily that E satisfies condition (tN).

We still have to verify that llg||Γ -> 1 as r -> 0. Now it is known [20,
Theorem 187] that, if II h \\ r < oc for some r > 0, then

the so-called geometric mean of h. On the other hand, the function g is the
restriction to T of the analytic function z H> 1 + z, which has no zeros in
the open unit disc U\ therefore the function z H> log | 1 + z | is harmonic in
U, and

^ - / 2 7 r l o g | g ( β ) | ^ = l o g | l + 0 | - 0 .

Hence the geometric mean of g is equal to 1, as required.
Suppose next that £ is a UC-subset of Z + , with t/C-constant κ(E).

Let M be the smallest integer for which log(M/2) > πκ(E). We claim
that E contains no difference arising from an alternating pair of size M.

To verify the claim, suppose to the contrary that E contains such a
difference Q — R, with Q and R enumerated as in the definition of
alternating pair. Consider the Hubert matrix (Am π)£f n = 1 given by

0

m — n
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Given θ in the interval [0,2π] let υ(θ) and w(θ) be the vectors in C M with
components vn(θ) = exp(iqnθ), and wn(θ) — exp(/>„#), respectively, and
let

M

= (v,Aw)= 2 Amnvm(θ)wn(θ).
m,n= 1

Then/is a (ζ? ~ i?)-polynomial, and hence an ^-polynomial; moreover,

because the operator on I2 with matrix A has norm at most π [20,
Theorem 294].

Let N = qx — rv and observe that

Therefore, since the pair (β, R) alternates, qm — rn > N if m > n, while
#m ~ rn < N if m < n; moreover qm — rn > 0 even in the second case,
because £ C Z + . Hence

sN(f)(θ) = 2

in particular, the nonzero Fourier coefficients of SN(f) are all negative,
and

1
\\sN(f)l

Since 11 / II x < TΓM, it follows that

M\og{M/2).

contrary to the definition of κ(E). Hence E contains no such difference of
an alternating pair of size M.

It follows easily from this property of E that E U Z~ satisfies condi-
tion FP3. This accounts for the part of Corollary 1 concerning t/C-sets,
because, in discussing properties of E U Z" one may assume that E C Z4".

Finally, to see that a ί/C-set is cannot contain parallelepipeds of
arbitrarily large dimension, observe first that every parallelepiped of
dimension 2 either contains at least 2 elements of Z + or contains at least 2
elements of Z~; it follows that if E contains a parallelepiped of dimension
4N, then either its positive part or its negative part contains a parallele-
piped of dimension N. It thus suffices to deal with the case where
£ C Z + , and in that case E cannot contain differences of arbitrarily large
alternating pairs. Any such set E, however, cannot contain parallelepipeds
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of arbitrarily large dimensions. Indeed every parallelepiped of dimension
2M — 2 contains a difference of alternating pairs of size M; to verify this,
let P = Px + P2 + +P2M-2 ^ such a parallelepiped, where for each
index /, Pέ = {ki9 m,}, with kt < mt. Let P[ = Pt - ki9 and let Pf =
Σf={~2PΪ Then P' is a translate of P, and it suffices to show that Pf

contains a difference of an alternating pair of size M. In other words, it
suffices to deal with the case where kt = 0 for all i. In that case, assume
without loss of generality that mi<mι+λ for all /. Then, for each index
n < M9 let qn — Σi<n nt2i_l9 and rn — Σ / < Λ m2i, with the usual convention
that sums over empty sets are 0, so that qx — rx — 0. Since 0 < mι < mι+x

for all i, the sets Q — {qn}%Lx and R — {rn}Jf=ι form an alternating pair.
Hence, so do the sets Q + Σ™=x rn and R, and, moreover (Q + Σ%=ι rn) —
R C P\ This completes the proof of the theorem.

The conclusions above about C/C-sets deserve further comment. Fix a
set H in Z+ that is the range of a strong Hadamard sequence. Then
H — H is a C/C-set [17]; this shows that general C/C-sets can contain
differences of arbitrarily large alternating pairs, although, by Theorem 4,
C/C-subsets of Z + or Z~ cannot. Also, for each positive integer TV, the sum
H + H-h'+H of N copies of H is a C/C-set [41]; this shows that,
although the class of sets of the form £ U Z " , where E is a C/C-set, is a
uniform family of sets of continuity, there is no integer Λf such that all
C/C-sets satisfy condition (tN). Hubert matrices can be used, as above, to
show that the union of two C/C-sets need not be a C/C-set [17]; this
answers, in the negative, the first four questions at the end of [41]. The
fifth question therein also has a negative answer, in view of the example
below.

EXAMPLE 3. Let H be an infinite subset of Z, enumerated as {hk}™=l9

say. As in Example 1, we consider sums

(3.6) n = 1 ekhk9

k=\

where εk E (-1,0,1} for all k, but we do not require that h be a
Hadamard sequence. Recall [28, p. 19] that the set H is called dissociate if
two integers of the form (3.6) are equal only if their coefficients εk match.
Travaglini [41] has asked whether the sum H + H of two copies of a
dissociate subset H of Z + must be a C/C-set. We show that the answer is
" n o " .

Indeed, if n is odd and n > 3, let En — {4n]~k}kodά !<^<n, while if n is
even and n > 4, let En - {4(n~ιv~k}keven^k<n. Let

n odd
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Then H is dissociate [28, p. 25], but H + H is not a t/C-set, because it
contains translates of the differences En — En+λ for all odd n > 3. More-
over [1], H + H is a (4/3)-Sidon set, and a Λ(g) set for all q < oo.

It is surprising that the fact that Λ(l) sets cannot contain parallele-
pipeds of arbitrarily large dimensions was not discovered much earlier.
For instance, Rudin asked [38, p. 216] whether every Λ(l) set must have
upper density 0. The answer is now known to be "yes", because of
Szemeredi's result [40, ] that subsets of Z with positive upper density must
contain arbitrarily long arithmetic progressions. The latter fact is not easy
to prove; in contrast, it is easy, by the method of [42], to prove that every
set with positive upper density contains parallelepipeds of arbitrarily large
dimensions, and this is enough to answer Rudin's question.

Finally, as promised, we give examples of sets satisfying conditions
(9H) but not (£), etc.

EXAMPLE 4. For each positive integer N, let

PN=(N\)\0N{\,2,...,N).

Then let Fo = U />„,
λzodd

let F, = U (1 +P2J,
«odd

let F — I I (-1 4- P \
noάά

let F 2 = U (2 + />8B),etc,
ttodd

finally, let i 7 = UΛ Γ G Z i7^. Then i 7 satisfies the Faber gap condition, and
hence condition (£), but Fis dense in bZ.

To see this, first note that the sets PN occupy widely separated
intervals in Z + , and that the increments within each arithmetic progres-
sion PN grow rapidly as N -> oo; it follows that U* = 1 PN satisfies the
Faber gap condition. Now the given set F is obtained from U™=]PN by
such small perturbations that F also satisfies the Faber gap condition.

The fact that F is dense in bZ follows from the fact that n is a Bohr
accumulation point of Fn for each n. To show that 0 is an accumulation
point of Fo, for instance, one must show, for each ε > 0 and each finite
subset S of [0,2ττ), that there is an integer m in Fo so that | eίmθ - 1 |< ε
for all θ in S. Adopt temporarily the notation, from Diophantine ap-
proximation, that || A; || denotes the distance from a given real number x to
the set Z; then it suffices to show, for each such pair (ε, S), that there is
an integer m in FQ for which \\mθ/2π\\ < ε for all θ in S. To verify this
property of Fo use the fact that Fo contains arbitrarily long arithmetic
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progressions of the form K{ 1,2,...,/:}. Let / be the number of elements
in S; choose an integer Q > 1/ε, and an arithmetic progressions in Fo, as
above, so that k > QJ. Then, by the Dirichlet box principle [21, p. 170],
there is a positive integer j < k for which || j(KΘ/2π)\\ < \/Q for all θ in
S; in other words, the integer m =jK has the desired properties.

On the other hand, let

\jFn),andG2= (J

Then Gx satisfies condition (911) but not condition (&), while G2 satisfies
condition (2,), but not condition (911). To verify this, show that (Gλ)

α Π
Z = {0} U Fo, and (G2)

α ΠZ = -Fo; the details are omitted.
Finally, note that the set FQ satisfies all the arithmetic conditions (£),

(91L), and (£), but it is not a Λ(l)-set, a/?-Sidon set for some/? < 2, or a
C/C-set, because it contains arbitrary long arithmetic progressions.

4. The iterates of a contraction and its adjoint. Shortly after the
paper by de Leeuw and Katznelson appeared, J. A. R. Holbrook [22]
pointed out that their main result is equivalent to a seemingly more
general assertion about powers of contractions on a Hubert space, and he
gave a direct proof of the latter assertion. Similarly, Theorems 1 and 2 are
equivalent to certain statements about contractions. In this section, we
show that these assertions have direct proofs because versions of Lemma 1
and 2 can be proved directly in the Hubert space context.

We first state Holbrook's theorem. Call a bounded operator on a
Banach space a contraction if its norm is at most 1.

THEOREM 0'. For each ε > 0 there is a 8 > 0 with the following property.
Let S be a contraction on a Hubert space %9 and let g and f be elements of
the unit ball of%\ then the condition that

limsup |((5f*)"g, / ) | < δ implies that limsup \(Sng, f)\ < ε.

To obtain Theorem 0 as a special case of this result, factor the given
measure μ as (sgn μ) | μ | , let % = L2(d\ μ |), let g = sgn μ, let / = 1, and
let S be the unitary operator on % that multiplies each function by e~ιθ.
Conversely, to derive Theorem 0' from Theorem 0, apply the spectral
theorem to a strong unitary dilation of the given contraction S; see [22]
for more details. As noted above, these observations of Holbrook can also
be used to transfer Theorems 1 and 2 to this Hubert space setting. We will
state a transferred version of these theorems at the end of this section;
here is the transferred version of Lemma 1.
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LEMMA Γ. For each ε > 0 there is a 8 > 0 with the following property.
Let T be a contraction on a Hubert space %, and let g and f be elements of
the unit ball'%. If

then

\(Tg,f)\<ε.

Proof. We show, by an elementary method, that the lemma holds with
δ = (2/e)εe~λ//ε. Using the spectral theorem and the method of [29] one
can prove this result with δ = ε(l + \/2 )"1~1/ε; it is pointed out in [29] that
this form of the relation between ε and δ is optimal in the sense that the
conclusions of Lemma 1 and Theorem 0 are false when δ = e2~ι/2ε.

Let a > 0, and consider the sequences (Rk)k=ι and (Sk)%=ι given by
letting RQ — aT and So = /, and

Rk+x = Rk + aTSk and Sk+ί = Sk-aT*Rk.

This variant of the familiar construction due to Shapiro and Rudin was
introduced, in the scalar case, by Clunie [4]; it is shown in [14, pp. 60-61]
that the key estimates also hold for bounded operators on a Hubert space.
First, Hϋ^H < (1 + a2)*/2. Next,

M

Rκ= 2 cma2m+iT\T\2m,
m = 0

where M is the largest integer for which 2M + 1 < K, and cm is the
coefficient of a2m+ι in the expansion of [(1 + a)κ - (1 - ά)κ]/2\ in
particular c0 = K.

Suppose that | (7g, /) | < ε and that | (Γ | Γ|2mg, /) | < δ for all in-
tegers m > 1. Then, on the one hand,

while, on the other hand,
M

\(Rκg,f)\>aKε- 2 δ\cm\a2m+ι.
m=\

Combine these inequalities to get that
M

aKε<ea2κ/2 + δ 2 \cm\a2m+ι

m-\

-fθ+-)'=ί
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Now let K -* oo, choosing a so that aK — 1 4- 1/ε; the outcome is that

that is that δ > (2/e)εe~ι/% as required.
In Theorems 3 and 4, we also need versions of Lemma 1 in which it is

only assumed that \(T\ T\2mg, f) |< δ for all m > N, where JV is a fixed
positive integer. The easiest way to prove such results is to iterate
Lemma 1 we illustrate the idea in the case where N = 1. Given ε > 0, let
st(ε) = (2/e)εe~ι/\ and let δ = st(st(ε)). Suppose that | (T\ T\2mg, f) |<
δ for all m>2. Then, by Lemma 1, applied with the operator T\ T\2 in
place of T, we have that \(T\T\2g/f)\< st(ε); whence, by Lemma 1
again, |(Γg, / ) | < ε .

This method leads, however, to unduly small values for δ; one way to
get better values for δ here is to proceed as in [25, Chap. 5]. Specifically
[29], for each integer N > 1, there is a measure σ^ on the interval (0,1],
with || σ^ || < 1, and so that

CtdσN(t) = n J, , and Ct2m+xdσN{t) = 0 when 1 < m < iV.

Denote the operator JR^ used above by Rκ(a), and let

Sκ(a) = [lRκ(at)dμN(t);[
then proceed as above with Sκ in place of Rκ. The outcome is that if
| ( Γ | Γ | 2 w g , / ) | < δ for all m > N, where 8 = 2εe-(2N+ι^{l + ι^\ then

Before stating the analogue of Lemma 2, we transfer some of the
notation of §3 to the present context. Let {h(k)}f=ι be an injective
sequence of positive integers, and let a be a standard multi-index of length
/ > 1; let S be a bounded operator on a Hubert space %9 and let g and/
be elements of %. If α, = + 1 , define limsup(α h) \ (Sahg, f) | to be the
iterated limit

kx-+oo I k2-*oo I

notice that for all sufficiently large values of ks we have a positive power
of S above, because α7 = + 1 . If a3 — - 1 , define limsup(ft h) \ (Sa hg, f) \
to be the iterated limit obtained, as above, when the power of S is
replaced by
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LEMMA 2'. For each ε > 0 there is a 8 > 0 with the following property.
Let S be a contraction on a Hubert space %, and let h be an injectiυe
sequence of positive integers. Suppose that for each integer J > 1 there is a
standard multi-index a of length J for which lim sup(α h) \ (Sa' hg, / ) | < δ;

We remark first that Theorem 0' follows from this lemma as in §3,
that is, via multi-indices a with oίj — - 1 . We now show how the lemma
above follows from Lemma Γ. Suppose to this end, that the hypotheses of
Lemma 2' hold. Let β = l i m s u p ^ ^ | (Sh(k)g, f) | , and pass to a subse-
quence of h for which the sequence {| (Sh(k)g, f) |}£=1 converges to β. By
restricting our attention to the closed subspace of % generated by g and /
and their images under monomials in S and S*, we can assume that % is
separable. This done, we can pass to a further subsequence of h for which
the sequence of operations Sh{k) converges in the weak-operator topology
to some contraction T.

Then I (7g, / ) | = /?, and we just have to verify that | (T\ T\2mg, f) | <
δ for all integers m > 1. For simplicity, we only do this in the special, but
typical, case where m—\. Since T is the weak-operator limit of the
sequence {Sh(k)}™=ι, there is a sequence of operators Tk, each in the
convex hull of {Sh(j)}J^k so that Tk -> T in the strong operator topology.
Then

( Γ | Γ | 2 g , / ) = lim lim lim ( j ; T*Tk& / ) ,
k\->oo k2-*oo k3^>oo

and the value of this iterated limit is in fact independent of the order in
which the &,. -» oo, provided that the order of the possibly noncommuting
operators Tk, T£9 and Tk is not changed.

Let a be the standard multi-index of length 3 given by hypothesis.
Exactly one of the indices α|. is equal to - 1 ; we suppose that a3 = - 1 , the
proof in the other cases being similar. It is enough to show that

(4.1) lim lim lim \{Tk T£Tkjg, f)\ <
* , - o o /c3-oo k2->cc

notice the change in the order of iteration of the left-hand limit. By
convexity, inequality (4.1) follows from the inequality

(4.2) lim sup lim sup limsup\(Sh(k')(S*)h(k2)Sh^)g, f)\

<limsup|(Sα hg,f) .
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In fact, by Lemma 1 of [22], this relation holds with equality. For
completeness we include the simple proof of this assertion. First note [13]
that for all elements a of %9 and all positive integers k,

Ks /W- β - S(S*)hWa( <\\(S*)Hk)-'a( -\\(S*)h(k)a\\2,

because S is a contraction. Now the sequence (IKS*)"** ll2}^ is nonnega-
tive and decreasing; hence the left side of the inequality above converges
to 0 as k -> oo. It follows that

| | K ^ , b
k-^oo k-*oo

for all elements a and b of %, and, by iteration and transposition, that

lim sup I( s h ^(S*) h ( k 2 V ( A % /) I
k

Therefore, relation (4.2) holds with equality.
The following theorem includes Theorems 1 and 2 as special cases. It

follows easily from the latter theorems by Holbrook's transference argu-
ment, but it can also be deduced directly from variants of Lemma 2'.

THEOREM 2'. Let E be a subset of Z that satisfies condition (£N) for
some N, or one of the conditions (Θ), (911), or ( £ ) . Then for each ε > 0
there is a 8 > 0 with the property that, if S is a contraction on a Hilbert
space %9 and if g and fare elements of the unit ball of%9 then the condition
that

limsup|((S*Γg,/)|<δ
«GZ+\£

implies that l imsup r t G £ | ((5*)ng, / ) | < ε, and l i m s u p ^ ^ | (Sng9 f) \< ε.
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