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In the present paper we construct compact spaces satisfying the
countable chain condition and not carrying a strictly positive measure.
Our spaces are completely different from already known examples, as it
follows from special chain conditions established for them. Spaces satis-
fying property () and not carrying strictly positive family of measures,
of given size, are also constructed.

The first example of a compact space X satisfying the countable chain
condition and not carrying a strictly positive measure was given by
Gaifman [5]. More precisely Gaifman’s space satisfies a stronger than
c.c.c. property, namely the property (x). Another example, given by
Galvin and Hajnal [6], separates property (*) from the existence of caliber
for all reasonable cardinals.

The present paper contains examples of compact spaces without
strictly positive measure and with or without some special properties.

So, in the first part of the paper we construct a sequence {X,:
2 = n < w} of compact Hausdorff spaces such that for each n < w the
space X, has property (*) and it does not have property (**) (or equiva-
lently it does not have a strictly positive measure).

The space X, has, also, property K,(a) for all cardinals a with
uncountable cofinality. Finally assuming Martin’s axiom we prove that
space X, fails property K, , (2°).

We notice that both examples of Gaifman and Galvin-Hajnal have
property K,(«) for all cardinals a with uncountable cofinality and for all
natural numbers 7.

The second part of the paper is devoted to the construction for each
cardinal « of a compact Hausdorff space X, satisfying property (*) but for
every family {u,: § <a} of regular positive Borel measures on X, there
exists a non empty open V subset of X, with u.(¥V) =0 for all £ <a.
Also, assuming the generalized continuum hypothesis we show that space
X, fails to have B-measure calibre for certain classes of regular cardinals
B.

0. Preliminaries.

0.1. DEFINITION. (a) A topological space X satisfies countable chain
conditions (c.c.c.) if and only if every family of non empty open, pairwise

disjoint subsets of X is countable.
257
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(b) For X topological space, @ uncountable cardinal and » natural
number, we say that X has property K,(a) if and only if every family {V}:
£ < a} of non empty open subsets of X contains a subfamily with the
same cardinality and with the property: every n elements of it have non
empty intersection. If « = w™, the first uncountable cardinal, then we
denote the K,(w") by K, and K,(w*) by K.

0.2. DErFINITION. Let X be a topological space and J* the set of all
open non empty subsets of X. We say that X has property () if and only if
there exists a decomposition of I * into a sequence ¥, such that for n < w
every pairwise disjoint subfamily of 9, is finite.

0.3. DErFINITION. Let X be a topological space and £ be a subfamily of
7 *. The Kelley number of the family £ is denoted by k(£) and it is defined
with the following way: We write £ as {V;: i € I} such that for each i € I
there are infinite many j € I with V, = V). Let J C I finite the cal(J) =
sup{|J'|: J"C I and M, ¥V, 0} then k(£) = inf{cal(J)/|J|: J CI
and 0 <|J [< w}.

0.4. DEFINITION. A topological space X has property (*x*) if and only
if there exists a decomposition of J* into a sequence {J,: n < w} such
that for each n < w, k(J,) > 0.

Property () implies property (*) and the mentioned example of
Gaifman shows that the inverse in general fails.

The following result is due to Kelley [7].

0.5. THEOREM. Let X be a compact Hausdorff space. Then X carries a
strictly positive measure (i.e. there exists p defined on X such that p(V') >0
for all non empty open sets (V') if and only if X has property (*x)).

0.6. REMARK. It is easy to see that the existence of a strictly positive
measure ¢ on a topological space X implies property (**). The inverse fails
for general completely regular spaces. However if Y is a completely
regular space with property (*x) then the Stone-Cech compactification BY
also has property (**) and on BY we have the equivalence. A detailed
exposition of the concrete relations between all of them is given in [4]
where one can also find the proof of the following result

0.7. PROPOSITION. If a topological space X has property (*) then it also
has property K.



COMPACT SPACES WITHOUT STRICTLY POSITIVE MEASURE 259

1. We give in detail the construction of the topological space X,
that is, the compact space with property K,(a) for cardinals a with
uncountable cofinality and under Martin’s axiom fails to have property
K;(2“). The general case follows by analogous arguments and we present
an outline of it in Theorem 1.9 at the end of this section.

1.0. The space X,; will be the Stone-Cech compactification of a
topological space Y = ({0, 1}*, 9 ) where ¥ is a subbasis for the topology
on Y consisting of all clopen subsets of {0, 1}“, with the usual topology,
and of a family {V5: £ € X}, where X denotes the set of all branches of
an appropriate tree (7, <) which we define now.

1.1. Construction of the tree (T, <). We define and fix a tree (T =
U, T, <) consisting of elements of [w]* in the following way. We
choose

{Sn,j:n<w,1Sjs3"},

such that
3
S, elw]
and
S,, NSy, =2 for(n, j)#(n, ).
We set
3n R
T,= U1 [Sn,j]
J:

so that | 7, |= 3""! and let
T,={s;:1=<j=3""}

be an enumeration of T, for n < w.

The ordering < of the tree 7= Uy_, T, is defined so that the
immediate successors of T, are in 7, , and is completely determined by
the rule:

Ifs€ T,andt € T, then s < ¢ if and only if thereisaj 1 <j < 3"*!
such thats = s, and 7 € [S,,, ;]*.

(A branch of (T, <) is a totally ordered subset = of T such that the set
{t € T: t <s} is contained in X for all s € =. A branch may be of finite
or infinite length.)
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Denote by X the family of all branches of 7. We set 2(n) =2 N T,
and we define the following two sets

H,,= U Us

I=zn s€T,

H, =w\H,, forn<w.

n,

For s an element of T, let K, be the “anti-diagonal” of {0, 1}%; i.e. if
s = {k, I} then K, = {((k, 1),(/,0)),((k,0), (], 1)}

We remark, for later use, that if S C w with | S|=3 and [S]* =
{s1, 55, 53} then the family {K, X {0,1}*\*: i = 1,2,3} has empty inter-
section while any two subsets of the family have non empty intersection.

1.2. Definition of the space Y. As set Y is the Cantor set {0, 1}“. The
topology on Y is defined by a subbase that contains of

(a) all subsets of {0,1}* that are clopen in the usual (product)
topology of {0, 1}“; and

(b) the family {Vs: 2 € X} where

ve= I K, x (0,1)\
s€X

We note that (Y, ¥ ) has (a subbase and hence) a base consisting of sets
that are closed (and hence compact) in the usual topology. Thus, Y is a

completely regular Hausdorff space.
Every basic clopen set V of Y has the form

A

Jj=1

V=Uun

where U is clopen in the usual topology of {0,1}* and Z,,...,Z, are
branches of the tree (7, <); we say, in this case, that V is determined by
(U; 2,,...,Z;) and we say that V is separated at level n if

(@) Z,(ng) N Z,(ny) # @ for 1 =j, <j, <k; and

(b) If Fis a finite subset of w on which U depends, then FNs = &
forseT,ny<n<w.

If V 1s separated at level n, then there exists a clopen set W (in the
usual topology of the Cantor set) with W C {0, 1}#70_ such that

k HZ,"O\ U Ij(l)
v=wx | [ Ky ()% {0,1) =0

Jj=1 I=ng,
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1.3. LEMMA. Let {V,: i € I} be a family of clopen basic subsets of Y,
such that each V; is determined by (U; 2{°,...,2{),), V, is separated at
level n, and we set W, = my , (V).

Then the following are equivalent:

(a) {V;: i € I} has the finite intersection property;

(b) 1. {W,: i € I} has the finite intersection property; and
2. Of any three (distinct) elements of the set

A, = {EP(n):iel, 1 <j=<k(i)}

some two of them have empty intersection for all n = n,,.

Proof. (a) = (b). Condition (b)1 is clearly satisfied. For (b)2 suppose
that n =n, and B = {s,,5,, 55} C4, with |B|=3 and 5, Ns, % &,
s, Nsy#* D, s, N sy 7% J. Then there exists /, 1 </=<3""! such that
B=[S,,]%

Let i, iy,iyin I and 1 =j, <k;, 1 =), <k, , 1 =j;=k, be such
that s, = 2¢2(n), s, = Z¢)(n), s, = Z{3(n). Then

V, CK, X {01}

1

V., C K, X {0,1}\"

14

V, CK, X {01}

3

and K X {0, 1N N K, x {0, 1)\ N K, X {0, 1)\ % @ con-
tradicting the finite intersection property.

(b) = (a). Leti,,...,i,,in I. By (b)1 it follows that

slm

WHn,no(V )N mﬂHl,no(Vtm) #* J.

I

So it is enough to show that

H,, \ U =7(1)
I=n,

m klp

1 s #* J.

(1) Q] O Koy x (0.1)
/ I=n, !

We note (from definition of the tree T) that if s,, 5, are in T and
s, N's, # & then there exists n < w such that s,, s, in 7,; and if s, 5,, 5,
arein T and s, N's, #* &, 5, N s; ¥ &, then s, N s; ¥ &. Hence, and
using (b)2 there is a sequence { B,: n < w} such that {Z¢7(/): n;, <1 < ,
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l<j<kp,1<sp=m}=U,_ B, 1=|B,|<2foraln<w, B,N B,
=g forn<n <wandifsE€B,,s" EB,,n<n"<wthensNs' = &.
We choose x,, elements of MN,_, K, X {0,1)*\* for n < w, and we choose
x in {0, 1}*2n such that '

7y, (x)= 7y, (x,) foralln <w.

SEB, SEB,

Then x is well defined, and is an element of the set given in relation (1).
1.4. Claim. Y has property (*) (and hence property (K)).

Proof. We define J, ,, a subset of I* with the following way.

Jp.m = {U: Uis open in Y, and there exists a basic clopen V in Y such
that V is contained in U, V is separated at level n, and w(W) = %}. (Where
W = @, (V) and p is the usual Haar measure on {0, 1}*1~.)

Let {V,,---,V,.,} be a subset of J,..m for given n and m. Then there

are iy, i, with1 <i <i, <m + 1 such that
T, (Vi) O 1, (V,,) # 2

hence, condition (b)! of Lemma 1.3 is satisfied. Since V, V., V, are
separated at level n, it follows that condition (b)2 of Lemma 1.3 is also
satisfied (since every branch of T that determines V, intersects at most
one of the branches of 7 that determines ¥, at a level greater than or

equal to n). Thus
Vv,.NnVv, # 2.

It clearly follows that Y has property (*).
1.5. Claim. Y does not have property (*x).

Proof. Suppose that Y has property (xx). Then there exists a sequence
{9,: n <w)} such that I%(Y) = U, _ 9, and &(F,) >0 for all n < w.

Without loss of generality we assume also that 3, C 9, | for all » < w and
if U, V are clopen in Y and U is a subset of V' then

min{n: U € 9,} =2min{n: V€9 }.

We claim that there is 7, < w and a finite branch =, = {5, <s, <
»++<s,} such that, if 2’ is a finite branch and 2, C 2’ then [ .5 K X
{0,1}\%=* € g _ (Indeed, otherwise there exists a sequence k, < k, <
v+ <k,<:-- (n<w) of natural numbers and a sequence =, C =, C
2,C---CZ,C- - (n<w) of finite branches (containing =), such
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that min{k: V5 € J,} =k, for all n <w. We set 2= U, _ =, then
Vs € 9, for some k. By our assumptions it follows that k >k, for all
n < w and we get a contradiction proving the claim.)

We choose k > 0 such that (2/3)* < k(gno), andweset{ = {Z:Zisa
finite branch of T, £, C 2 and the length of X is 5, + k}. It is easy to see
that

¢ C 9, (from the above claim)
|¢|=3* and
cal{Z: 2 € {} = 2*

a contradiction, proving that Y does not have (sx*).

1.6. PROPOSITION. For every cardinal a with cf(a) > w the space Y has
property K,(a).

Proof. Let {V,: £ < a} be a family of basic clopen subsets of Y. Since
cardinal a has uncountable cofinality there exists set I subset of a with
|7|=a,any,<wand W C {0, 1} clopen in the usual topology such that
forall {in 1

(1) V, is separated at level n,

(i)

. H,, \ U =41
I=n
VS‘_‘WX m H sze_(,)X{O,l} '

Jj=1 I=n,

(We use the terminology of Definition 1.2.) Now we easily verify that the
family {V;: £ € I} has the two-intersection property and the proof is
complete.

1.7. Claim. Assume Martin’s axiom. Then the density character of Y
is equal to the cardinal 2.

Proof. Assume the contrary. Then there exists a cardinal « less than
2 and a family 9 = {x,: £ < a} of elements of {0, 1}* dense in the space
Y. We construct a partial ordered set (?, <) with the following way. &, a
set, contains elements of the form (F, £) where F is a finite subset of )
and 2 is a finite branch of the tree 7, such that for each x, in F, x, does
not belong to the set V. The order is defined on ¢ with the natural way
namely (F,, 2,) <(F,, 2,)ifand only if F; C F,, &, C Z,.
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Fact 1. (9, <) satisfies c.c.c. Indeed, for {(F, Zp): €< w™ ) there are
2, =2, = 2. Then the pair (F; U F,,2) is an eclement of (P, <)
extending (£}, 2, ) fori = 1,2.

Fact 2. Let x, in 9 and (F, Z) in & be given. Then there is =, finite
branch with I C X, and (F U {x.}, 2)) bein (¥, <). Indeed, let {s,, s,, 55}
be the set of the immediate successors of I; then there exists i element of
{1,2,3} such that (F U {x,}, I U {s,}) is an element of (¥, <).

We set D, be the set of all (F, Z) such that x, € F. The previous
argument shows that D; is a dense subset of (%, <) for all £ < a.

Martin’s axiom implies the existence of a filter & of elements of
(P, <)with¥ N D, # & forall { <a.

Now setting £ = U (Z: there is (F, Z) in F} we remark that 2 is a
branch (maybe infinite) of the tree T and for all x, in %, x, does not
belong to the open non empty set V3 a contradiction, and the proof is
complete.

1.8. Claim. Assume Martin’s axiom. The space Y does not have
property K,(2¢).

Proof. Martin’s axiom implies that cardinal 2¢ is regular and from the
Proposition 1.7 we have that | Y |=d(Y) = 2. Let {x. §<2“} be a
well-ordering of X. For every £ < 2¢ we choose a basic clopen set V; in Y
such that

VN {x:{=¢ = 2.

We claim that for each I subset of 2° with |I|= 2% the family {V:
¢ < 2“} does not have the finite intersection property. (Indeed, if it does,
for some such /, then since V; is a closed (and hence compact) subset of
{0, 1} with the usual topology we would have

xEﬂVg#Q.

(el

Butx = x; for some §, <2“andifé € 1,£> &, then x & V,.)
Since 2¢ is regular cardinal there exists / C 2, n, < w and W such
that

1] = 2°,

Vi 1s separated at the level n, for £ € I, W depends on a finite subset of
H,  andm, (V) = Wforall{in I
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Since {V,: £ € I} does not have the finite intersection property, and
condition (b)l of Lemma 1.3 is satisfied, it follows that there is n, > n,
and B subset of 4, (in the notation of Lemma 1.3) such that

B = {s,,5,,5;} |B|=3 and
B has the two-intersection property.

Choose £, §,, &; in I such that ¥, is determined by (U , 2}‘51), 1<j=<K,
fori =1,2,3) and

$) = 25’5')(’11)
5, = Z32(ny)
§3 = 25‘53)(”1)

forsome 1 <j, < k£.’ i=123.
1t is clear that V;l N V;z N V£3 =g.

1.9. THEOREM. For each n = 2 there exists a compact Hausdorff space
X, satisfying the following properties

(a) X, does not carry a strictly positive measure

(b) X, satisfies property ()

(c) X, satisfies property K () for all cardinals a with cf(a) > w

(d) Assuming Martin’s axiom X, does not have property K, . (2°).

Proof. We construct the space X, following similar steps as in the
construction of the space X,. For the sake of completeness we give here
the main steps for the general case.

We choose a positive number A in such a way that there exists a
family

A={A,.. A}
of subsets of {0, 1}* satisfying the property: N/*' A, = & while for each

l<sj=n+1N_A + 2.
Now for k = 0,1,2,... we define a family

{Sj":jz L...,(n+ l)k}

where S¥ C w, | Sf|=A, S} N Sf2 = @ for (ky, jy) # (kys Jo)-

Let (k, j) be given with j < (n + 1)*. We choose A% = {(A))f: i =
1,...,n + 1} family of subsets of {0, l}ka satisfying the properties of the
family A.
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We produce a tree (7, <) such that for each k <

(n+1)*
— k
T.= U AL
j=1
We enumerate 7, as {A%,...,Af, .} and we consider this enumeration

fixed for the rest. Now the immediate successors of A in T, belong to 7, , |
and they are defined by the following rule, if A = A’; then A < A for all
A, elements of A’j‘.“. Using the tree (7, <) we define a family {Vy:
2 € X} of subsets of {0, 1}“ such that X is the set of all branches of the
tree T and
Vs= [I A X {0,1}\"=
NS

where W5 is the subset of w on which the family {V5: £ € X} depends.
Now we can prove that Y, has property (*), and property K,(«) for all
cardinals a with cf(a) > w. Also Y, fails property (**) and if in addition
we assume Martin’s axiom it fails property K, ,(2¢). To get space X, we
simply take the Stone-Cech compactification of the space Y,.

1.10. REMARK. It is proved in [3] that every compact space X carrying
a strictly positive measure has property K,(a) for all » < w and cardinals
a with cf(a) > w. Our example (Theorem 1.9) shows that the above result
fails if we consider instead of strictly positive measure the weaker assump-
tion namely X has property (*).

1.11. REMARK. In [8] it is given another example, under C.H. of a
space X, with K (»*) and without K, ;(w™).

2.

2.1. DEFINITION. A topological space X carries a strictly positive family
of measures of cardinality o if and only if there exists a family {p,: { < a}
of positive measures on X such that for each non empty open V subset of
X there is §, < a with p, (V') > 0.

2.2. DEFINITION. (i) A topological space X has property (*(a)) if and
only if there exists a decomposition of the family 9* into a family {6}:
£ < a} such that for each £ < « every pairwise disjoint subfamily of J, is
finite.

(i) The space X has property (**(a)) if and only if there exists a
decomposition of J* into a family {J,: £ <a} such that for each { <«
the Kelley number k(ﬂ;) be strictly positive.
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2.3. REMARK. Kelley’s characterization of the existence of strictly
positive measures implies actually that, a compact space X carries a
strictly positive family of measures of cardinality « if and only if it has

property (+*(a)).

2.4. THEOREM. Let B be a strong limit cardinal with cf(f) = w. Then
there exists a compact space X, with property () and without property

(++(B)).

Proof. The construction of the space Xj is, essentially, given in [1]. For
the sake of completeness we give here the main steps of this construction.

We start by choosing a sequence { 8,: » < w} of cardinals such that

@) Z,<.8,= B,

(ii) B, is infinite regular cardinal for all n < w,

(iii) 25 < B, -

We define a tree T= U, __ T, consisting of elements of [8]* in the
following way: for every n < w welet {B,, ;i < B,} be such that

(@) B,y 1 C By \B,and B, ;|= B, foralli <B,.

(b)B, ;N B,,, ;= @ fori<j<p, Weset

T, = U ([Bn+l,i]2) and 7"0:[’30]2_
i<pB,

For every n < w let T, = {S{: i < B,} be a one-to-one well-ordering of
T, fixed for the rest. Furthermore, if s € 7T, and ¢t € T,,, | then s < ¢ if and
only if there exists i <, such that s =s{" and t €[B,,,,]°>. The
definition of T is, now, complete. Let X be the set of all branches of T.
For 2 in X, we set 2(n) = 2 N T,. For s in T let K, be the “anti-diago-
nal” of {0, 1} ie.if s = {k, [}

K, = {((k,1),(1,0)),((k,0), (1, 1))}

We next define the topological space Y;. As a set Y; is the set {0, 1}£.
The topology J on Y; is defined by a subbasis that contains of

(a) all subsets of {0,1}# that are clopen in the usual topology of
{0, 1}A.

(b) the family {Vy: Z € X} where

= II K, x {0, 1}z,
sEZ
Since, each Vs is closed subset of {0, 1}# with the usual topology and the
topology ¥ is finer than the usual, it follows that Vs is clopen subset of Y.
So Y} is completely regular and we set X, be the Stone- Cech compat1f1ca-
tion of Ys.
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2.4. LEMMA. The space Y, (and hence space Xg) has property (*).

The proof of the lemma goes along the same steps as the proof of
Claim 1.4,

2.6. LEMMA. Space Y, (and hence space Xy) does not have property

(+(8)).

Proof. We prove it by contradiction. So we assume that the conclusion
fails for some cardinal B. Let {J,: £ < B} be a (x*(8)) decomposition of
open non empty subsets of Y;. Then we assert the following.

Claim 1. There is a finite branch 2 and £ ordinal such that for every
finite branch 2 that contains 2, (2, C Z) there exists ¢ < £, such that Vs
belongs to the family F,.

The proof of this claim as well as the proof of the next one is
analogous to the proof of Claim 1.5.

Claim 2. For every 0 < n < w we set

I,={§<&: k(F,) >1}

and we assert that there exists an 2, finite branch and n, natural number
such that 2, C 2, and for every X finite branch with =, C = there is
§e1l, withs € 7,

We choose 2, finite branch with =, C =, such that if A is the
cardinality of the immediate successors of =, then

}\ - (3)i2'fo| *

(Le. if we define a decomposition {A,: 6 <|£,|} of the set [A]? then there
is an § subset of A with | §'|= 3 such that [S]* C 4, for some o, <|&,|.)
For a finite branch = we set

Ay = {£: £=3 U {5} wheres €[ By}

(That is, the set of all immediate successors of 3.)

So the set Ay coincides with the set [ B]* and we will use the set [ Bs]>
instead of As.

Every finite branch = with 3, C S has the form = = 2, U {s,,...,s,)
and in the following we denote by | = | the number r. With this notation
we have that | 2, |= 0.
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Let kK < w be such that (2/3)* <1/n,. For every £ finite branch
extending the branch X, (2, C Z) and | 2 |= k — 1 we define a decom-
position of the set [By]® into a family {(77),: ¢ <£,} by the rule
s € (TZ), iff Vs € Ty

We note that from our assumption on the cardinality A of [32212 it
follows that there is a three-point set D7 and a {,<§&, such that
[DE]? C (TE),,

Let 1 <p <k and we assume that for every finite branch 2 with
Z,C2and k — p<|Z|=k — 1 we have already defined a decomposi-
tion of B3, into a family {(T3);: { <&} and let = be a finite branch with
2, C 2 and | Z|= k — p. Then we define a decomposition of [BZ_, ]’
into a family (72, ,);: ¢ <&} by the rule s € (T2, ) if and only if
there exists DZ_,,, with | DF_ ., |= 3 and

[Dkiv—;ﬁ-2]2 C (Tki—u+2 )fo

where £ = S U (s).

The inductive definition of the families {(Té| w0 §<§) for Z a
finite branch with 2, C 2 and | 2, |<| 2 |< k — 1 is now complete.

Since the cardinal A =| By_| satisfies the relation

A = (3)i
it follows that there exists a D7 subset of By_and a {, < £, such that
2
[Dlzz] C (lez)fo'

Now using the definition of the families {(7}3.,);: { < £,} we choose a
finite tree T, = UX_, T, where T, = [ D}>]%.

The level T, is defined in conjunction with the elements of the level T
by the next rule: for every s in T}, s € (T122)§0 means that there exists a
D5 C By, U {s} such that [ D§)* C (T5%), and | D; |= 3.

We set T, = UsET‘ [D5]2. In the same way we produce level T, +1
from level 7, for l=p<k — |, and so the inductive definition of the
finite tree T, is now complete.

Now it is easily verified that if we consider the family
L= {szuz where 2 is a branch of T, with |Z|= k}
then

(i) | £]= 3¢
(i) cal(R) = 2%
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(ii)) each element of £ belongs to G.T{O. Comparing the above three
conclusions we get a contradiction and this finishes the proof of the
lemmas.

2.7. DEFINITION. If @ = w is a cardinal and X is a compact Hausdorff
space, then X has a-measure calibre if for every family {V;: £ < a} of open
non empty subsets of X there is a measure g in p* (X) and [ subset of «
with | 7|= a such that p(¥;) >0 for all {£in 1.

2.8. REMARK. The above definition, that extends the definition of
a-calibre is due to N. Kalamidas.

2.9. REMARK. If a compact space X carries a strictly positive measure
then it has a-measure calibre for all infinite cardinals a. Tsaralias and the
author in [2] have proved that, under G.C.H., every cardinal a with a does
not have the form B* for some B with cf(B8) = w is a calibre for every
compact space satisfying the c.c.c.

In the same paper for each cardinal of the form B* with cf(B8) = w
we construct a compact space Z, carrying a strictly positive measure and
not having 87 calibre.

In the sequel we will prove under G.C.H. that for every such cardinal
a (ie. « = BT and cf(B) = w) space Xj, defined before, does not have
a-measure calibre.

2.10. PROPOSITION. Assume the G.C.H. and let B be a cardinal with
cf(B) = w. Then the space X, does not have B+ -measure calibre.

Proof. We first note the following two facts:

(a) Since every subbasic open set in Y; = ({0, 1}4,9) is either clopen
in the usual topology of {0, 1}# or it has the form
Vs= [ K, X {0,1}7
SEZ
it follows that there exists a basis for the topology 9 consisting of elements

V satisfying the property: each V is the countable intersection of clopen
subsets of {0, 1}# in the usual product topology.

(b) From the proof of Kelley’s theorem [7] follows the proof of the
next statement. Let A = {A,: i € I} be a family of clopen subsets of a
compact space X and d >0 be a real number. Then the following are
equivalent.
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(i) The Kelley number k(A ) is greater or equal to 9.

(ii) There is a probability measure p on X with p(A;) =0 foralli € I.

We, now, pass in the proof of the proposition.

The Banach space M({0, 1}#) of all regular Borel measures on {0, 1}#
is the conjugate of the Banach space C({0, 1}#) of the continuous func-
tions on {0, 1}# and density character of C({0, 1}#) is equal to .

Therefore density character of M{0, 1}# is 28 = B* and | M({0, 1}#)|
= B+.

Let {p,: £ <B*} be a well-ordering of M({0, 1}#). Since Y, fails to
carry a strictly positive family of measures of cardinality 8 it follows that
for each £ < B* there is a basic clopen subset of Yz, say V; such that for
every { < £ (V) = 0.

For £ < 8 we denote by Vg the closure of V; into the space Xz, the
Stone-Cech compatification of Y, and we notice that Vg is a clopen subset
of Xg.

Claim. For every p.in M* ( Xp)
[{e<p*:u(%) >0)|<p".

Assume the contrary. Then there exist p in M (Xj), an I subset of 8+
and 0 > 0 such thatu(Vg) >9foralléinfand|I|=B".

For each § in I let {U;": n < w} be a decreasing sequence of clopen
subsets of {0,1}# with N, _ U = V,.

Our assumption implies that the Kelley number of the family {V;:
¢ € I} is at least 8 and therefore the same is true for the Kelley number of
the family {U": £ € I, n < w}, which means that there exists a measure p
in M({0,1}#) such that u(U;") =9 for all £ in I and n < w. This is a
contradiction since p = p, and if  is in I with § > £, then p(V;) = 0,
and so lim, _, , p¢ (U;") = 0. The proof is now complete.

2.11. REMARK. As Professor Negrepontis established extending the
methods of the first paragraph in higher cardinal, one can prove the
following result that extends Theorem 1.9.

2.12. THEOREM. For every infinite cardinal o and every n >1 there
exists a compact space X, (a) with property K,(a*) but, under G.C.H.,
X, (a) fails property K, (a™).

2.13. REMARK. Professor Galvin informed me that from a variation of
the Galvin-Hajnal example follows the existence of a space X, for each
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cardinal a with S-calibre for all cardinals 8 with cf(8) > w and without
property (+(a)).
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sor Negrepontis for the useful conversations on the material of the paper
(among others he posed as a 7stion the statement of Theorem 2.4) and his
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