SUP-CHARACTERIZATION OF STRATIFIABLE SPACES

Carlos R. Borges and Gary Fred Gruenhage
SUP-CHARACTERIZATION OF
STRATIFIABLE SPACES
C. R. BORGES AND G. GRUENHAGE

We prove that a T_1-space (X, τ) is stratifiable if and only if, for each $U \in \tau$, one can find a continuous function $f_U : X \to I$ such that $f_U^{-1}(0) = X - U$ and, for each $\mathcal{U} \subset \tau$, $\sup_{U \in \mathcal{U}} f_U$ is continuous. This result is closely related to characterizations of metrizable and paracompact spaces, by J. Nagata, and J. Guthrie and M. Henry.

1. Introduction. J. Nagata [4, Theorem 5] and J. Guthrie and M. Henry [2, Theorem 2] have characterized metrizable spaces in terms of collections of real-valued functions with continuous “sups” and “infs”. Nagata’s theorem can be reformulated as follows:

Theorem (Nagata). A T_1-space X is metrizable if and only if there is a family \mathcal{F} of functions from X into $[0, 1]$ such that

(a) for each $\mathcal{F}' \subset \mathcal{F}$, $\sup \mathcal{F}'$ and $\inf \mathcal{F}'$ are continuous;

(b) $\{ f^{-1}([\epsilon, 1]) : \epsilon > 0, f \in \mathcal{F} \}$ is a base for X.

In the paper of Guthrie and Henry, it is shown that the Sorgenfrey line admits a collection \mathcal{F} of functions satisfying (b) such that “infs” from \mathcal{F} are continuous. One might, therefore, expect that nothing interesting happens if just sups are required to be continuous. In this paper we show instead that a characterization of stratifiable spaces is obtained. Our main result is the following:

Theorem 1. The following are equivalent for a T_1-space (X, τ):

(a) X is stratifiable;

(b) There exists a family $\mathcal{F} = \{ f_U : U \in \tau \}$ of functions from X into $[0, 1]$ such that

(i) for each $\mathcal{U} \subset \tau$, $\sup_{U \in \mathcal{U}} f_U$ is continuous;

(ii) for each open set U, $f_U^{-1}(0) = X - U$.

(c) There exists a collection $\mathcal{G} = \bigcup_{n \in \omega} \mathcal{G}_n$ such that

(i) for each $n \in \omega$ and $\mathcal{F}' \subset \mathcal{G}_n$, $\sup \mathcal{F}'$ is continuous;

(ii) $f^{-1}([\epsilon, 1]) : \epsilon > 0, f \in \mathcal{F}$ is a base for X.

Observe that the property that one obtains by just requiring sups to be continuous in Nagata’s theorem is formally weaker than (b) and stronger than (c). However, by this theorem all these properties are equivalent.

279
2. Preliminaries. It turns out not to be difficult to prove that a space satisfying (c) is stratifiable. Proving (a) \(\Rightarrow\) (b) is the hard part. It involves building a very strong type of "stratification", which is done in Lemma 2.3, the proof of which is the purpose of this section.

If \((X, \tau)\) is a stratifiable space, then for each \(U \in \tau\) and \(x \in U\), one can assign an open neighborhood \(U_x\) of \(x\) satisfying

\[U_x \cap V_y \neq \emptyset \Rightarrow x \in V \quad \text{or} \quad y \in U. \]

(cf. Lemma 4.2 of [1]). Let \(U_x^1 = U_x\) and \(U_x^n = (U_x^{n-1})_x\), for \(n = 2, 3, \ldots\).

A neiborget \(R\) of a space \(X\) is a binary relation on \(X\) such that \(R[x] = \{y: x R y\}\) is a neighborhood of \(x\) for each \(x \in X\). If \(\mathcal{G}\) is a collection of subsets of \(X\), let \(\mathcal{G}_x = \{A \in \mathcal{G} | x \in A\}\). If \(\mathcal{V}\) is a cover of \(X\), let \(\mathcal{V}(x) = \bigcap \mathcal{V}_x\). For any point finite open cover \(\mathcal{V}\) of \(X\) and \(k = 2, 3, \ldots\), let \(N^k(\mathcal{V})\) be the neiborget defined by \(N^k(\mathcal{V})[x] = (\mathcal{V}(x))_{x}^k\). Let \(N(\mathcal{V})\) be the neiborget defined by \(N(\mathcal{V})[x] = \mathcal{V}(x)\). By Corollary 4.7 of [3], there exists a point-finite open cover \(\mathcal{V}'\) of \(X\) such that \(N(\mathcal{V}') \subseteq (N^3(\mathcal{V}))^3\) (recall that, for relations \(R \subseteq X \times X\), \(R^\prime = R^{-1} \circ R\)).

Lemma 1.1. \((N^3(\mathcal{V}))^3\) and \(N(\mathcal{V}')\) satisfy the following:

(a) \(y \in N(\mathcal{V}')[x] \Rightarrow N(\mathcal{V})[y] \subseteq N(\mathcal{V}')[x]\),

(b) each \(N(\mathcal{V}')[x] \subseteq \mathcal{V}(x)\),

(c) for each \(0 \in \tau\) and \(y \in 0\), \(O_{y,3} \cap N(\mathcal{V}')[x] \neq \emptyset \Rightarrow x \in 0\) or \(y \in \mathcal{V}(x)\).

Proof. Part (a). \(y \in N(\mathcal{V}')[x] = \mathcal{V}'(x)\) implies that \(N(\mathcal{V})[y] = \mathcal{V}'(y) \subseteq \mathcal{V}'(x) = N(\mathcal{V}')[x]\).

Part (b). Note that each \(N(\mathcal{V}')[x] \subseteq (N^3(\mathcal{V}))^3[x]\). So it suffices to show that \((N^3(\mathcal{V}))^3[x] \subseteq \mathcal{V}(x)\). Clearly \(N^3(\mathcal{V})[x] = (\mathcal{V}(x))_{x}^3 \subseteq \mathcal{V}(x)\). Therefore \(y \in N^3(\mathcal{V})[x] \Rightarrow y \in \mathcal{V}(x) \Rightarrow \mathcal{V}'(y) \subseteq \mathcal{V}(x) \Rightarrow N^3(\mathcal{V})[y] \subseteq \mathcal{V}(x) \subseteq \mathcal{V}(y) \in \mathcal{V}(x)\). Consequently, \((N^3(\mathcal{V}))^3[x] \subseteq \mathcal{V}(x)\). Similarly, \(z \in (N^3(\mathcal{V}))^2 \Rightarrow \mathcal{V}(z) \subseteq \mathcal{V}(x) \Rightarrow (N^3(\mathcal{V}))[z] \subseteq \mathcal{V}(z) \subseteq \mathcal{V}(x)\). Consequently, \((N^3(\mathcal{V}))^3[x] \subseteq \mathcal{V}(x)\), as desired.

Part (c). \(O_{y,3} \cap N(\mathcal{V}')[x] \neq \emptyset \Rightarrow O_{y,3} \cap (N^3(\mathcal{V}))^3[x] \neq \emptyset\). Thus there exists \(p, w \in X\) such that \(O_{y,3} \cap \mathcal{V}'(p)_{p} \neq \emptyset\), with \(p \in (\mathcal{V}(w))_w^3\), \(w \in (\mathcal{V}(x))_x^3\); hence, \(y \in (\mathcal{V}(p))_{p}^2\) or \(p \in O_{y,2}\). If \(y \in (\mathcal{V}(p))_{p}^2\) then \(y \in \mathcal{V}(p) \subseteq \mathcal{V}(w) \subseteq \mathcal{V}(x)\). If \(p \in O_{y,2}\) then \(O_{y,2} \cap (\mathcal{V}(w))_{w}^3 \neq \emptyset\); hence, \(y \in \mathcal{V}(w)_{w}^2 \subseteq \mathcal{V}(w) \subseteq \mathcal{V}(x)\) or \(w \in O_{y}\). But \(w \in O_{y}\) implies that \(O_{x} \cap (\mathcal{V}(x))_{x}^3 \neq \emptyset\) which implies that \(y \in (\mathcal{V}(x))_{x}^2 \subseteq \mathcal{V}(x)\) or \(x \in 0\). This completes the proof.
Lemma 1.2. To each \(x \in (X, \tau) \) one can assign a sequence \(\{h_n(x)\} \) of open neighborhoods of \(x \) such that

(i) \(h_0(x) \supset h_1(x) \supset \ldots \),
(ii) \(y \in h_n(x) \Rightarrow h_n(y) \subset h_n(x) \),
(iii) \(y \in U \in \tau \Rightarrow \) there exists \(n \) such that \(y \notin (\bigcup \{h_n(x) \mid x \notin U\})^- \),
(iv) For \(n > 0 \) and \(y \in U \in \tau \), \(U \cap h_n(x) \neq \emptyset \Rightarrow x \in U \) or \(y \in h_{n-1}(x) \).

Proof. From Lemma 4.2 and Theorem 4.17 of [3], we can find a sequence \(\mathcal{U}_0 \subset \mathcal{U}_1 \subset \mathcal{U}_2 \subset \ldots \) of point finite open covers of \(X \) which satisfy the following condition:

(*) For each \(y \in U \in \tau \), there exists \(n \) such that

\[y \notin \left(\bigcup \{\mathcal{U}_n(x) \mid x \notin U\} \right)^- . \]

Let \(\mathcal{U}_0 = \mathcal{V}_1 \) and \(\mathcal{U}_n = (\mathcal{U}_{n-1} \cup \mathcal{V}_n)' \) for \(n = 1, 2, \ldots \) (Recall that \(N(\mathcal{U}_n) \subset (N^3(\mathcal{U}_{n-1} \cup \mathcal{V}_n))^3 \)). For each \(x \in X \) and \(n = 0, 1, 2, \ldots \), let \(h_n(x) = N(\mathcal{U}_n)[x] = \mathcal{U}_n(x) \). Let us check that the \(h_n(x) \) satisfy conditions (i)–(iv) above.

(i) \(h_n(x) = N(\mathcal{U}_n)[x] \subset (\mathcal{U}_{n-1} \cup \mathcal{V}_n)(x) \subset \mathcal{U}_{n-1}(x) = h_{n-1}(x) \), where the first containment follows from Lemma 1.1(b).

(ii) \(y \in h_n(x) \Rightarrow h_n(y) = \mathcal{U}_n(y) \subset \mathcal{U}_n(x) = h_n(x) \).

(iii) From (i) we get that \(h_n(x) \subset (\mathcal{U}_{n-1} \cup \mathcal{V}_n)(x) \subset \mathcal{V}_n(x) \). Since the \(\mathcal{V}_n(x) \) satisfy (*) then so do the \(h_n(x) \).

(iv) \(U \cap h_n(x) \neq \emptyset \Leftrightarrow U \cap N((\mathcal{U}_{n-1} \cup \mathcal{V}_n))[x] \neq \emptyset \Rightarrow x \in U \) or \(y \in (\mathcal{U}_{n-1} \cup \mathcal{V}_n)(x) \subset \mathcal{U}_{n-1}(x) = h_{n-1}(x) \). This completes the proof.

Let \(Q_0 \) denote the set of rational numbers in \([0, 1]\).

Lemma 1.3. To each \(U \in \tau \) and \(r \in Q_0 \), one can assign a closed \(U_r \subset X \) such that

(1) \(s < r \Rightarrow U_r \subset U_s^0 \),
(2) \(U = \bigcup \{U_r \mid r \in Q_0\} \),
(3) for each \(r \in Q_0 \), \(\{U_r \mid U \in \tau\} \) is closure-preserving.

Proof. Let \(\{0 = r_0, r_1, \ldots \} \) be an enumeration of the rationals in \([0, 1]\). Let \(U_0 = U \). Suppose \(U_n \) has been defined for \(k < n \). Define \(U_n \) as follows: Choose \(k(n) \leq n \) such that \(r_{k(n)} < r_n \) and \(r_{k(n)} = \max\{r_j \mid j < n \text{ and } r_j < r_n\} \). Let \(U_n = X - \bigcup \{h_n(x) \mid x \notin U_0^k\} \) and let us verify that the \(U_r \) satisfy all requirements.

(3) From Lemma 2.2(ii) we get that, for each \(n \), \(\{h_n(x) \mid x \in X\} \) is an interior-preserving open cover of \(X \). Therefore \(\{\bigcup_{x \in A} h_n(x) \mid A \subset X\} \) is
also interior-preserving or, equivalently, \(\{X - \bigcup_{x \in A} h_n(x) \mid A \subset X \} \) is closure-preserving. This shows that, for each \(r \), \(\{U_r \mid U \in \tau \} \) is closure-preserving.

(2) Let \(y \in U \in \tau \). From Lemma 1.2(iii), there exists \(n \) such that \(y \notin (\bigcup \{h_n(x) \mid x \notin U\})^- \). From Lemma 1.2(i),

\[
y \nabla \left(\bigcup \left\{ h_j(x) \mid x \notin U \right\} \right)^-, \n\]

for \(j \geq n \). Find \(r_m \) with \(m \geq n \) such that \(r_m < r_k \) for each \(0 < k < m \) (if no such \(r_m \) exists, then \(r_m \geq \min\{r_1, \ldots, r_n\} \neq 0 \), for \(m \geq n \), a contradiction). Then \(y \in U_{r_m} = X - \bigcup \{h_m(x) \mid x \notin U\} \).

(1) Suppose \(r_m < r_n \) and let us show that \(U_{r_m} \subset U_{r_m}^0 \). We consider two cases.

Case 1. \(m < n \). Then

\[
U_{r_m} = X - \bigcup \{h_n(x) \mid x \notin U_{r_k(n)}^0 \} \subset X - \bigcup \{h_n(x) \mid x \notin U_{r_m}^0 \},
\]

because \(r_m \leq r_{k(n)} \). So \(y \notin U_{r_m}^0 \) implies that \(h_n(y) \cap U_{r_m} = \emptyset \) which implies that \(y \notin U_{r_m} \). Hence \(U_{r_m} \subset U_{r_m}^0 \).

Case 2. \(m > n \). By induction, let us assume that \(U_r \subset U_r^0 \) for \(r_k < r_j \) and \(k + j < m + n \). Let \(r_t = \min\{r_j \mid r_j > r_m \text{ and } j < m\} \). Then \(r_m < r_t \leq r_n \) and it suffices to show that \(U_{r_t} \subset U_{r_t}^0 \): Suppose not. Then there exists \(y \in U_{r_t} - U_{r_m}^0 \). Let \(k^0(m) = m \) and \(k^j(m) = k(k^{j-1}(m)) \) for \(j = 1, 2, \ldots \). We will prove that \(y \in U_{r_t} - U_{r_m}^0 \) implies the following:

(\ **) For each \(j \geq 0 \), \(k^j(m) > t \) and \(y \in h_{k^j(m)}(x_j) \) for some \(x_j \in U_{r_{k^j+l(m)}} - U_{r_{k^j+l(m)}}^0 \).

(Proof by induction.) Since \(y \in U_{r_t} \) and \(r_{k(m)} < r_t \), we get that \(y \in U_{r_{k(m)}}^0 \) (note that \(k(m) + t < m + n \); so \(U_{r_t} \subset U_{r_{k(m)}}^0 \)). Letting \(x_0 = y \) we get that (\ **) is valid for \(j = 0 \).

Suppose (\ **) is valid for \(j \leq i \) and let us show its validity for \(i + 1 \). Since

\[
x_i \in U_{r_{k^i+l(m)}}^0 - U_{r_{k^i+l(m)}}^0 \quad \text{and} \quad U_{r_{k^i+l(m)}}^0 = X - \left(\bigcup \left\{ h_{k^i(m)}(x) \mid x \notin U_{r_{k^i+l(m)}}^0 \right\} \right)^- \,
\]

then \((U_{r_k+l(m)})_x \cap h_k(m)(x_{i+1}) \neq \emptyset\), for some \(x_{i+1} \in U_{r_k+l(m)}^0\). Therefore, by Lemma 1.2(iv), \(x_i \in h_k(m)-1(x_{i+1}) \subset h_{k+1}(m)(x_{i+1})\) which implies that \(y \in h_k(m)(x_i) \subset h_{k+1}(m)(x_i) \subset h_k(m)(x_{i+1})\), because of Lemma 1.2(ii).

Also \(x_{i+1} \in U_{r_k+l(m)}^0\): Suppose not. Since

\[
U_{r_k+l(m)}^0 = X - \bigcup \{ h_{k+1}(m)(x) \mid x \notin U_{r_k+l(m)}^0 \},
\]

we get that \(h_{k+1}(m)(x_{i+1}) \cap U_{r_k+l(m)} = \emptyset\). So \(y \notin U_{r_k+l(m)}^0\) (because \(y \in h_{k+1}(m)(x_{i+1})\)) which contradicts \(y \in U_{r_k+l(m)}\) (note that \(k^1+1(m) + t < m + n\)).

Finally \(k^{i+1}(m) > t\): Suppose \(k^{i+1}(m) \leq t\). Then \(r_{k+1}(m) \leq r_{k(t)}\). Since \(x_{i+1} \notin U_{r_k+l(m)}^0\) then \(x_{i+1} \notin U_{r_k(t)}^0\) (again \(k^{i+1}(m) + k(t) < m + n\)). Since \(x_i \in h_k(m)-1(x_{i+1})\) and \(y \in h_k(m)(x_i)\), by Lemma 1.2 (ii; i), we get that \(y \notin U_{r_k+l(m)}\) (because \(k^i(m) > t\), by induction hypothesis). Since \(h_k(x_{i+1}) \cap U_{r_k} = \emptyset\) (because \(x_{i+1} \notin U_{r_k(t)}^0\)) and \(y \notin U_{r_k}\), we get a contradiction. This completes the proof of (**).

Since \(m > k(m) > k^2(m) > \cdots\), (** yields a contradiction (a strictly decreasing sequence of positive integers!). Consequently, \(U_{r_k} \subset U_{r_m}^0\), which completes the proof.

3. Proof of main result. That (b) ⇒ (c) is clear. To get (c) ⇒ (a), we prove that any space satisfying (c) has a σ-cushioned pair-base. To this end, let \(\{(q_n, r_n) : n \in \omega\}\) enumerate all pairs \((q, r)\) of rationals in \([0, 1]\) such that \(q < r\). Let \(\mathcal{U}_{n,m} = \{f^{-1}([r_n, 1]), f^{-1}([q_n, 1]) : f \in \overline{\mathcal{F}}_m\}\), where \(\mathcal{F} = \bigcup_{m \in \omega} \mathcal{F}_m\) satisfies (c). Then \(\mathcal{U} = \bigcup_{n,m \in \omega} \mathcal{U}_{n,m}\) is easily seen to be a pair-base. To see that \(\mathcal{U}_{n,m}\) is cushioned, first note that any subset of \(\mathcal{U}_{n,m}\) has the form

\[
\{ f^{-1}([r_n, 1]), f^{-1}([q_n, 1]) : f \in \overline{\mathcal{F}}_m' \} \quad \text{where} \quad \overline{\mathcal{F}}_m' \subset \overline{\mathcal{F}}_m.
\]

Then

\[
\bigcup_{f \in \overline{\mathcal{F}}_m} f^{-1}([r_n, 1]) \subset (\sup \overline{\mathcal{F}}_m')^{-1}([r_n, 1])
\]

\[
\subset (\sup \overline{\mathcal{F}}_m')^{-1}[r_n, 1] \subset \bigcup_{f \in \overline{\mathcal{F}}_m} f^{-1}([q_n, 1]).
\]

It remains to prove (a) ⇒ (b). By Lemma 2.3, for each \(U \in \tau\), define \(f_U : X \to I\) by

\[
f_U(x) = \begin{cases} 1, & \text{if } x \in U, \\ \inf \{ r \in D \mid x \notin U_r \}, & \text{otherwise.} \end{cases}
\]
Clearly \(f_U^{-1}(0) = X - U \). Also each \(f_U \) is continuous (note that
\[\left(f_U^{-1}([t, 1]) \right) = \cap \left\{ U_s \mid s < t, s \in D \right\} \) and \(f_U^{-1}(\{t, 1\}) = \cup \left\{ U_s \mid s > t, s \in D \right\} = \cup \left\{ U_s^0 \mid s > t, s \in D \right\} \) for each \(t \in D \), and \(\{t, 1\} \mid t \in D \} \cup \{[0, t[\mid t \in D \} \) is a subbasis for \(I \).

Now let \(\mathcal{U} \subset \tau \) and let us show that \(\sup_{U \in \mathcal{U}} f_U \) is continuous: First, note that, for each \(r \in D \),
\[\left(\sup_{U \in \mathcal{U}} f_U \right)^{-1}([r, 1]) = \bigcup_{U \in \mathcal{U}} f_U^{-1}(r, 1]. \]

To complete the proof, we need to show that \(\left(\sup_{U \in \mathcal{U}} f_U \right)^{-1}([r, 1]) \) is closed. Suppose there exists
\[p \in \left(\left(\sup_{U \in \mathcal{U}} f_U \right)^{-1}([r, 1]) \right)^c. \]
Then, for \(\delta < s < t < r, s, t \in D \),
\[p \notin \bigcup_{U \in \mathcal{U}} f_U^{-1}([s, 1]) \cup \bigcup_{U \in \mathcal{U}} U_s = \left(\bigcup_{U \in \mathcal{U}} U_s \right)^c \supset \left(\bigcup_{U \in \mathcal{U}} f_U^{-1}([t, 1]) \right)^c, \]
by Lemma 1.3(3). So there exists a neighborhood \(0 \) of \(p \) such that
\[0 \cap \left(\bigcup_{U \in \mathcal{U}} f_U^{-1}([t, 1]) \right) = \emptyset, \]
which implies that \(f_U(0) \subset [0, t[\) for each \(U \in \mathcal{U} \); therefore, \(\left(\sup_{U \in \mathcal{U}} f_U \right)^{-1}([r, 1]) \cap 0 = \emptyset \), a contradiction.

From the proof of the "if part of Theorem 1 and Proposition 2 of [4], one easily glans the following result.

Theorem 2. A \(T_1 \)-space \(Y \) is paracompact if and only if, for each open cover \(\mathcal{V} \) of \(Y \), there exists a family \(\{ f_\alpha \mid f_\alpha : Y \rightarrow I \} \) of continuous functions such that

(i) \(\sup_{\alpha \in \Lambda} f_\alpha \) is continuous, for each \(\Gamma \subset \Lambda \),
(ii) \(\{ f_\alpha^{-1}(0, 1) \} \) refines \(\mathcal{V} \).

References

Received August 19, 1981.
The Supporting Institutions listed above contribute to the cost of publication of this Journal, but they are not owners or publishers and have no responsibility for its content or policies.

Mathematical papers intended for publication in the Pacific Journal of Mathematics should be in typed form or offset-reproduced (not dittoed), double spaced with large margins. Please do not use built up fractions in the text of the manuscript. However, you may use them in the displayed equations. Underline Greek letters in red, German in green, and script in blue. The first paragraph must be capable of being used separately as a synopsis of the entire paper. In particular it should contain no bibliographic references. Please propose a heading for the odd numbered pages of less than 35 characters. Manuscripts, in triplicate, may be sent to any one of the editors. Please classify according to the scheme of Math. Reviews, Index to Vol. 39. Supply name and address of author to whom proofs should be sent. All other communications should be addressed to the managing editor, or Elaine Barth, University of California, Los Angeles, California 90024.

There are page-charges associated with articles appearing in the Pacific Journal of Mathematics. These charges are expected to be paid by the author's University, Government Agency or Company. If the author or authors do not have access to such Institutional support these charges are waived. Single authors will receive 50 free reprints; joint authors will receive a total of 100 free reprints. Additional copies may be obtained at cost in multiples of 50.

The Pacific Journal of Mathematics is issued monthly as of January 1966. Regular subscription rate: $132.00 a year (6 Vol., 12 issues). Special rate: $66.00 a year to individual members of supporting institutions.

Subscriptions, orders for numbers issued in the last three calendar years, and changes of address should be sent to Pacific Journal of Mathematics, P.O. Box 969, Carmel Valley, CA 93924, U.S.A. Old back numbers obtainable from Kraus Periodicals Co., Route 100, Millwood, NY 10546.

The Pacific Journal of Mathematics ISSN 0030-8730 is published monthly by the Pacific Journal of Mathematics at P.O. Box 969, Carmel Valley, CA 93924. Application to mail at Second-class postage rates is pending at Carmel Valley, California, and additional mailing offices. Postmaster: Send address changes to Pacific Journal of Mathematics, P. O. Box 969, Carmel Valley, CA 93924.

PUBLISHED BY PACIFIC JOURNAL OF MATHEMATICS, A NON-PROFIT CORPORATION

Copyright © 1983 by Pacific Journal of Mathematics
Spiros Argyros, On compact spaces without strictly positive measure 257
Steven Robert Bell, Regularity of the Bergman projection in certain nonpseudoconvex domains ... 273
Carlos R. Borges and Gary Fred Gruenhage, Sup-characterization of stratifiable spaces ... 279
Giuseppe Ceresa and Alberto Collino, Some remarks on algebraic equivalence of cycles ... 285
Charles Kam-Tai Chui and Maurice Hasson, Degree of uniform approximation on disjoint intervals .. 291
Gary Gundersen, Meromorphic functions that share two finite values with their derivative ... 299
Richard I. Hartley, Lifting group homomorphisms ... 311
Gerald William Johnson and David Lee Skoug, Notes on the Feynman integral. III. The Schrödinger equation .. 321
John Cronan Kieffer, Some topologies on the set of discrete stationary channels ... 359
Harald Luschgy and Wolfgang Thomsen, Extreme points in the Hahn-Banach-Kantorovič setting .. 387
Zbigniew Piotrowski, A. Rosłanowski and Brian M. Scott, The pinched-cube topology ... 399
Elias Saab and Paulette Saab, A dual geometric characterization of Banach spaces not containing l_1 .. 415
Walter Schachermayer, Norm attaining operators on some classical Banach spaces ... 427
Martin Scharlemann, Essential tori in 4-manifold boundaries 439
Jacques C. H. Simon, Nonlinear representations of Poincaré group and global solutions of relativistic wave equations ... 449
Adrian R. Wadsworth, p-Henselian field: K-theory, Galois cohomology, and graded Witt rings .. 473