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THE PINCHED-CUBE TOPOLOGY

Z. PIOTROWSKI, A. ROSLEANOWSKI AND B. M. ScoTT

McCoy introduced a topology intermediate between the Tikhonov
and box product topologies on the countably infinite power “X of a
topological space X. He used this topology to study Baire category in 2%,
the hyperspace of closed subsets of X in the Vietoris topology. In this
note we generalize this ‘pinched-cube’ topology to arbitrary infinite
powers, "X, of X and investigate the extent to which it inherits funda-
mental properties of X.

In §1 we introduce basic definitions and elementary facts. Separa-
tion axioms are considered in §2, compactness, connectedness, and
separability in §3. In §4 we consider some completeness properties, and
in §5 we explicate the connection with hyperspaces.

1. Definitions, notation, and elementary facts.

1.0. DEFINITION. Let X be a space, « a cardinal number. By S*X we
denote the set “X endowed with the pinched-cube topology, which is
defined as follows. For each finite set F C k and each function V: F - 17X
(= the topology on X) let B(F, V)= {x € "X: Va € F(x, € V) \ Va
€ k(x, € UranV)}. Let B be the collection of all such sets B(F, V).
Then % is a base for the desired topology. (Another way to describe % is
as follows. For @ # V € 7X let B(V') be the collection of all basic open
sets in the ordinary Tikhonov power *V; each member of B(V) can be
viewed as a subset of X, and % = U {R(V): @ # V € 7X}.)

Clearly S"X is homeomorphic to "X with the Tikhonov topology if
n < w, so we shall consider S*X only for k = w. It is also clear that

(1.1) (*X) C 7(S*X) C +(O"X),
where X denotes "X endowed with the box topology, which leads to
the following observation.

1.2. Fact. Let X = S*X, and for each a < « let A, C X. Then

cdy [[ 4, =11 cy4,. O

a<<k a<k
Four subspaces of S*X will also be of interest.

1.3. DEFINITION. (a) A*X = {x € “X: x is constant}.
b)o*X={(xe *X:Ip € X(|{a Ek: x, #p} |<w)}.
() F*X={x € "X: |ran x |< w}.
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(d) C*X = {x € “X: ran x is a closed set in X}.
Clearly A*X C "X C F*X, and F*X C C*X if X is T,.

1.4. Fact. As a subspace of S*“X, A*X = X, (where ‘=" denotes
homeomorphism).

1.5. Fact. ®*X is a dense subspace of S"X. If X is T}, ®“X is a dense
subspace of C*X.

1.6. Fact. For a < k let m,: S*X — X be the canonical projection map
to the ath factor: m(x) = x,. It follows from (1.1) that «, is continuous
and open, and it is easy to see that =t F*X and =, C*X are also
continuous and open, while 7} A*X is a homeomorphism.

2. Separation axioms. Our first result is to be expected; it follows
from (1.1).

2.0. PROPOSITION. If X is a Ti-space, i = 0,1, or 2, then so is S*X. [

However, S*X is never T, if X is an infinite, compact Hausdorff
space, for we have the following characterization.

2.1. DEFINITION. If A is an infinite cardinal number, we say that a
space X is A-pseudonormal iff whenever H C V, where V € 71X and
He[X]™ NoX, there is a W E X such that HC W CcdWCV.
(Here o X denotes the family of closed subsets of X. Clearly w,-pseudonor-
mality is just the usual notion of pseudonormality, and w-pseudonormal-
ity is equivalent to being T;.)

2.2. THEOREM. S*X is T, iff X is T, and x* -pseudonormal, and
[X]F* CoX.

Proof. We first prove necessity. That X is 7; is an immediate conse-
quence of 1.4. To prove that [X]=* C ¢X, let X = S*X, and suppose
that C € [X]=*\6X. Choose x € X so that ranx = C, and pick p €
(clyC)\C. Let V= X\{p}, and let V=*V. Then x € V € 7X, and X
is T;, so there is a basic open nbhd, B(F, W), of x such that cl g B(F, W)
- V. Let G = UWI[F]; clearly C C G, so p € clG. Choose yEX'
so that y, e W, if a € F, and y, =p if a €x\F. Then y €
(cl 3y B(F, W)\ V = &, a contradiction.

We argue similarly to prove that X is k™ -pseudonormal. Suppose that
C E[XT™*, G € 1X, and C C G. Choose x € X with ran x = C, and let
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G =*G. Since X is T;, and x € G, x has a basic open nbhd, B(F, V),
whose closure is contained in G. But then if W= UV[F], clearly
CC WCclyWCG, as required.

We now show sufficiency. Fix x € X, and let B(F, V) be a basic open
nbhd of x. Let C = ran x, let W = UV[F]. Cis a closed, discrete subset
of X, |C|=«k, and C C W. Thus, there is an open G C X such that
ccaGeecd fv‘VC W. Choose B € k\ F arbitrarily, let F/ = F U {8}, and
choose U: F' - 7X so that foreacha € F,x, e U, CGNcl U CV,
and U; = G. Then x € B(F',U) C clgB(F',U) C B(F,V), so Xis Ty. O

(The condition that X be k™ -pseudonormal with [X]=* C oX is a
kind of strengthened T, separation axiom: X is w-pseudonormal iff X is
regular, and [ X]™“ C o X iff X is T}.)

Observe that if S*X is T;, then in fact S*X = C*X. In general, C*X
behaves better than S*X with respect to the higher separation axioms, as
the following result attests.

2.3. THEOREM. If X is T,, then C*X is Tikhonov.

Proof. Let X = C*X. Fix x € X, and let B(F,V) be a basic open
nbhd of x (in X: this ambiguity in the notation ‘B(F, V')’ should cause no
confusion). Let C =ran x, and let W= UV[F]; C is closed, and C C
W € 7X, so by normality of X there is a function f € C(X,[0, 1]) such
that f[C] = {0} and f[ X\ W] = {1}. Let F = {ay,...,a,_,}, and for i <
n let f; € C(X,[0,1]) be such that f(x,) =0 and f[X\V,]= {1}. Let
h=fA/M{f: i<n}, the minimum of the functions chosen. Then
h € C(X,[0,1]), A[C]={0}, A[X\W]= {1}, and Ah<f for i<n.
Finally define

h: X’—»[O,l]:yt—»sup({fi(ya'):i<n} U {h(,): @ € k\{F}).

Fix r €[0,1] and y € X. Then A(y) > r iff either h(y,) > r for some
a € k\F, or f(y,) >r for some i < n. Clearly, then, A Y[(r, 1]] is open
in X; in fact, it is even open in the Tikhonov topology on X as a subspace
of *X. Thus, A is lower semi-continuous.

Now A(y) <r iff g(y)= max{ f(y,): i<n}<r and k(y)=
sup{h(ya) a €Ex\F} <r. ForeachmeletG ={y € X: g(»), k(y)
<r—2""}; clearly A7 '[[0, r)] = U(G,: m Ew} For each i <n and
mE w let H’"—f_[[O r—2"™). Fix a, €Ex\F, let FF=FU {a,},
andletH'"—h [0, r — 27™)] for each m Ew Since each f, = h, H;' C
HY forz<n thus, B(F’, H™) is a basic open set for each m € w. And 1f
zEB(F’ H™), then clearly g(z) <r—2"" and k(z)<r—277",
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z € G, ,ie, B(F', H") C G, ,. On the other hand, G,, C B(F’, H™*').
Thus, A~ '[[0, r)] = U{G,: m € w} = U{B(F', H™): m € w} is open,
and k is continuous.

Obviously A(x) = 0. Suppose that y € X\ B(F, V). Ify, € X\ W for
some a € k\F, then h(y,)=1, so k(y)=1, and h(y)=1 also;
otherwise, y, € X\V, for some i <n, but then f(y,) =1, g(y) =1,
and h(y) = 1 again. That is, h separates x from X \B(F V), so X is
Tikhonov. O

2.4. EXAMPLE. A metric space, X, such that S°X = C“X, but S°X is
not normal. X is just a countably infinite discrete space. However, for
convenience we take X = ~“w with the discrete topology, where ~“w =
U {"w: n € w}. Let X = S“X. For each x €“w let X € X be defined by:
%,=xtn.Let D= {% € X: x €“w)}. Clearly | D|= 2.

If y € X\ D, then either y, &"w for some n € w, or y, | n #y, for
some m, n € w with n < m, and in either case y has an open nbhd disjoint
from D. (In fact, y has such a nbhd open in the Tikhonov topology on
“X.) Thus, D is closed.

Now fix x E“w, let ¥ = ran %, and let V =“V; clearly X € VerX.
Butif y €“w\ {x}, theny, # x, for some n € w, and therefore y,, & V for
allm>n,ie,j & V. Hence D is also discrete.

Finally, ®“X is a countable, dense subset of X, so X is separable, and
it follows immediately from Jones’s Lemma that X is not normal. O

Observe that the full strength of normality of X is not used in the
proof of 2.3 unless k =| X | : we use only the fact that if C € [ X]=" N oX,
and C C V € 7X, then there is an f € C(X) such that f[C] = {0} and
fIX\V]={1}. This observation paves the way for the following exam-
ple.

2.5. EXAMPLE. A non-normal space, X, such that C*X is Tikhonov. Let
X = w; X (w; + 1), where w; and w, + 1 are given their respective order
topologies. It is well known that X is not normal: e.g., w, X {w,;} and
{{a, a): @ € w,} are disjoint closed sets in X which cannot be separated
by disjoint open sets. However, it is easy to verify that if H and K are
disjoint closed subsets of X, and | H |< w, then there is a clopen set, C,
such that H C C C X\K. [Find a clopen subset, C,, of w, such that
HNTCGC X {w} CX\K, where T = w, X {w,}. For each a € C,
there is a B, € w, such that if y < w, and (a,y) € H U K, then y < 8,.
Let B8 = sup{B,: a € G}, and let C, = C; X (B, w,]; C, is clopen, and
HNTCC, CX\K. Moreover, there is a y <w, such that H\T C
(y + 1) X (B + 1), a clopen set disjoint from C,. (y + 1) X (B+ 1) isa
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countable, compact metric space, so it contains a clopen set C, such that
H\T C C,C X\K. Now let C= C, U C,.] The function f defined by
fIC] = {0} and f[X\C]= {1} is continuous, and it follows from the
observation immediately preceding this example that C“X is Tikhonov. [J

Let us call a space X functionally k-pseudonormal iff whenever H €
[XI™ NoX, KE€oX, and HN K = @, there is an f € C(X) such that
fIH] = {0} and f[K] = {1}.

2.6. Question. If C*X is Tikhonov, must X be functionally x* -pseudo-
normal?

3. Compactness, connectedness, and separatility. If X is a non-degen-
erate Hausdorff space, then 7(S*X) D 7(*X), so S*X cannot be compact:
its topology is too fine. However, we can say much more.

3.0. THEOREM. S*X is (countably) compact iff (1) X is (countably)
compact, and (ii) X does not contain two disjoint, non-empty closed sets (i.e.,
o X\{ @} is a filter-base).

Proof. We first prove necessity. If X were not (countably) compact
there would be a (countable) filter-base ¥ C 6 X\ { @} with NF =
But then {*F: F € %} would have the same properties in X = S"X
contradicting the (countable) compactness of X. This proves (i). To prove
(ii), suppose that F,, F, € 6X\{ Q) are disjoint, and let Y = {x € X:
Va €Ek\w(x, € F)}.Let V= X\Fj,and forn € wlet W(n) = {x € Y-
x, € V}. Let W(w) =[(X\F)]N Y. Then {W(a): a < w} is an open
cover of Y with no finite subcover, and Y is closed in X, so X is not
countably compact.

To prove sufficiency, observe that (i) and (ii) imply that c X\ { @} is a
countably complete filter-base on X. But then {cl z{x}: x € X} is easily
seen to be a base for a countably complete filter on X. In particular, for
each C € [X]“, N{clg{x}: x € C} # &, so C has an accumulation
point in X, and X is therefore countably compact. And if X is compact,
then clearly N{cly{x}: x € X} # &, so N{clg{x}: x € X} # &, and
X is therefore compact. O

Essentially the same argument can be carried out with S*X replaced
by ®“X or F*X, though not with C*X, since the sets W(a)(a < w) may
constitute a finite cover of Y N C*X: some of them may be empty. (In
fact, C*X may be empty: take X = w,; X 2, 71X = {J, 0w, X {0}, 0, X
{1}, X}, and k = w.) Thus we have the following corollary to the proof of
3.0.
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3.1. COROLLARY. The following are equivalent:
(a) S*X is countably compact;
(b) F*X is countably compact;
(c) ®*X is countably compact;
(d) s X\ { D} is a countably complete filter-base on X. O

We assume henceforth that X is T,. In particular, S*X, C*X, F*X, and
®*“X are never countably compact unless X is degenerate.

We have not investigated the circumstances under which S*X, say, is
Lindelof, except to note the following non-trivial example. Take X to be
the discrete two-point space. Then S®X is Lindelof, because it is homeo-
morphic to the space obtained from the (middle-thirds) Cantor Space by
isolating the points 0 and 1.

We now consider connectedness.

3.2. THEOREM. The following are equivalent:
(a) X is connected,
(b) ®“X is connected,
(c) F*X is connected,
(d) C*X is connected,
(e) S*X is connected.

Proof. (e) — (a). If H is a non-empty, proper clopen subset of X, then
“H is a non-empty, proper clopen subset of S*X.

(a) » (b). For each FE€[k]™ let Ap={x € ®“X; Ip € XVa €
k\F(x, = p)}; clearly ®*X = U{A: F € [«]~“}. Moreover, Ay is ho-
meomorphic to 11X X X endowed with a topology slightly coarser than
the usual product topology, so — since "1 X and X are connected — so is
Ap. Finally, N{Ag: F € [k]™*} = A*X(= A,) is connected, so ®"X is
connected.

(b) — (¢) = (d) - (e). Each space is dense in the next. (Recall that X
is T).) O

It is well known that [J“R is not connected. Thus, in respect of
connectedness S*X resembles “X more than it does [1*X. The situation is
similar when we consider separability (or, more generally, density): [“w
is a discrete space of power 2, but S®w, like “w, is separable. In fact, we
have the following result.

3.3. THEOREM. Let A = d(X), the density of X. (le., d(X)
w-min{|D|: D is a dense subset of X}.) For any x <2*, d(S*X)
d(C*X) = d(F*X) = d(F*X) = d(X) = d("X).
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Proof. 1t is well known (e.g., [3, 4.5]) that d(X) = d(*X) if x < 2™
Close examination of the proof given in {Ju] shows, however, that d( X) =
d(F*X) as well: only obvious minor modifications are required. The
remaining two equalities are obvious. O

We may also consider the cellularity of S“X. (Recall that ¢(X), the
cellularity of X, is w-sup{|V|: VC7X\{@} and Vis disjoint}.) We
shall restrict our attention to ccc spaces, however, i.e., spaces X for which
o(X) = w.

Clearly 0“X is never ccc if X has two disjoint, non-empty open sets.
On the other hand, if "X is ccc for each n € w, then “X is ccc for all « [7,
I1(8)]. In particular, “X is always ccc if X is separable. It is also known [7,
I11(7)] that Martin’s Axiom together with the negation of the Continuum
Hypothesis (MA + —CH) implies that every (finite) product of ccc spaces
is ccc. On the other hand, it is consistent with the usual axioms of set
theory that there be a Suslin Line [7, VI(4)], which is inter alia a ccc space
whose square is not ccc. Thus, we cannot hope to show outright that, say,
S“X is ccc if X is. We consider, instead, a slightly stronger property.

3.4. DEFINITION. A space X is said to have Property K iff every
uncountable family of non-empty open subsets of X has an uncountable
linked subfamily. (A collection of sets is linked iff no two of its members
are disjoint.) A space with Property K is obviously ccc.

Property K is (in the usual sense) productive, but [J*X has Property
K iff TX\{@} is a filter-base. Here again the pinched-cube topology
follows the Tikhonov topology rather than the box topology.

3.5. THEOREM. If X has Property K, so do S*X, C*X, F*X, and ®*X.

Proof. 1t suffices to prove that ®*X has Property K, since ®*X is
dense in each of the other spaces. Let X = ®*X, and let U = (U,
a<w) CTX\{@); we must extract from 9 an uncountable, linked
sub-family.

There is no harm in assuming that each U, is a basic open set.
However, it will be convenient to modify slightly our notation for such
sets: we write U, = B(V,, o,, W, ), where

(i) V, € rX;

(i1) dom o, = dom W, = n_ for some n, € w;

(i) 0,: n, - kand is 1-1;

@) Wien,-»1X\{2};
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(v) W (i) C V, foreachi<n, and
B(V,, 0, W,) = {x € X 0V,: Vi <n,(x, ) € Wi(0))}.

By the A-System Lemma [3, A2.2] there are sets F € [k]~“ and
Iy € [w,]“' such that ran e, N rano, = F whenever a, B € I, with a # B.
Clearly there are n €E w and I, € [IO']“’l such that n, = n for each a €1,
For each a €I, let F, = (rano )\ F. By composing 6, and W, (a € Il)
with a permutation of n if necessary — this does not change U, — we may
assume that for some m < n and ¢: n\m — F we have o,[m] = F, and
o,t n\xm = ¢ for each a € I,. Finally, we apply Property K to find an
I, € [1,]*" such that {V . a« € I,} and each {W,(i): « € I,} (i <n) are
linked families.

Now suppose that a, 8 € I, with a # B. For each i <n fix p, €
W, (i) N Wp(i), and choose also a point p € V, N V. Define x € X by

_|p, ifE¢E€\(FUF,UF),
YT pi, if&=o0,(i)or ¢ = ay(i).

To see that x is well-defined, note that if £ € F, then there is a unique
i € n\m such that § = 0,(i) = 0(i) = ¢(i), and that F, F,, and F; are
disjoint. Clearly x € U, N U, so {U,: a € I,} is linked. a

3.6. COROLLARY. [MA + —CH] If X is ccc, so are ®"X, F*X, C"X,
and S*X.

Proof. MA + —CH implies that ccc and Property K are equivalent
[3, 5.3]. O

4. Completeness properties. The fundamental completeness prop-
erty is probably that of being a Baire space. Unfortunately, there are Baire
spaces whose squares are not Baire [2], so we shall consider instead some
stronger properties which are productive. We begin by recalling some
definitions.

4.0. DerINITION (1). Let X be a topological space. A function ®:
TX\{@} > 7X\{@} is called a winning strategy iff (1) ®(V') C V for
each V€ 1 X\{@}, and 2) N{V,: n € w} ¥ & whenever (V,: n € w) is
a sequence in 7X \ { @} satisfying V, ., C ®(V,) for each n € w. X is said
to be a-favorable iff X has a winning strategy.

4.1. DerINITION (1). Let X be a topological space, P = {(x, V)€
XX 1X: x €V}. A function ®: @ - 7X\{@} is called a strong win-
ning strategy iff (1) x € ®((x,V)) C V for each (x,V)€E P, and (2)
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N{V,: n € w} # @ whenever ((x,,V,): n € w) is a sequence in P
satisfying V., C ®(x,,V,) for each n € w. X is said to be strongly
a-favorable iff X has a strong winning strategy.

4.2. DErFINITION (8). Let X be a topological space. A weak strategy on
X is a sequence, (®,: n = 1), of functions such that
(a)®,: (tX\{D}) > 17X\ {@)} foreachn =1, and
(b) whenever (V;,...,V,_,> € dom®,, then ®,((V,,...,V,_|)) C
Vot
A sequence (V,: n < a) (where 0 < a < w) is compatible (with the weak
strategy) iff V, C ®,((V;,...,V,—;)) whenever 1<k <a. The weak
strategy is a weak winning strategy iff M\ {V,: n € w} # & whenever (V,:
n € w) is compatible. X is said to be weakly a-favorable iff X has a weak

winning strategy.

4.3. DEFINITION. X is w-regular (called quasi-regular in [6]) iff the
regularly closed subsets of X form a =-base for C, i.e., iff for each
VerX\{Jd} thereisa W e X \{d} with cl W C V. X is pseudo-com-
plete (6) iff (1) X is w-regular, and (2) X has a sequence, (B,: n € w), of
open w-bases such that N {V,: n € w} # & wheneverclV, , CV, P,
for each n € w.

Combining results of [6], [1], and [8], we see that:

strongly a-favorable — a-favorable — weakly a-favorable — Baire

7
pseudo-complete

Moreover, each of these four completeness properties is preserved by
arbitrary Tikhonov or box products, and the a-favorability properties are
preserved by open, continuous surjections.

We find it useful in this section to extend our notation concerning
basic open sets in S*X. If B is such a set, and « € k, we let B, = w,[B];
we denote by U(B) the ‘uniform part’ of B, i.e., U {B,: a € k}; and we
let supp(B) = {a € k: B, # U(B)}, the support of B. B denotes the
family of non-empty basic open sets in S*X.

4.4. THEOREM. Let X be a strongly a-favorable T,-space; then so is S*X.
Proof. Let X=8"X, ?={(x,V)EXX1X: vE V), and P =

({(x,VYE XX 1X: x € V}. Let ®: @ > 7X\{0} be a strong winning
strategy on X. For each B € % let I(B) = {a € supp(B): B, N By = &
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for some B € supp(B)}, and note that if B D W€ B, then I(B) C
supp(W). We now construct a strong winning strategy, @, in X.

First, for each (x,V) € % choose B(x, V) € B so that x € B(x, V)
C V. Now fix (x, V)€ ®, and let B = B(x, V). We shall define a set
B € B by defining B, for each a € x; ®((x, V)) will then be B.

If x € AX, let W= N{B,: a €«}; clearly (x, W) E P, so we may
put B, = = ®((x, W)) for each a € «.

If x € X\ A*X there is a finite set J C « such that supp(B) C J and
x 1 J is not constant. Choose sets G, (a € J) such that

(3.) <xa’ Ga> € G‘P;

(b) G, C B,; and

(c) G, N Gy = @ for some B €J
for each a € J. (Getting (c) is possible because X is 7,.) Then let

. o((x,,GY), a€J
B =
* B, a € x\J.
Clearly x € B € 9. Moreover, if BD W & b, then supp(W) D I(B) =
supp(B) 2 J D supp(B).

Now fix a sequence ((x”, ¥"): n € w) in 9 such that for each n € w,
vyt c &((x", V")). For each n € wlet B"= B(x",V"), and let B" =
O(x",V")). Let C= N{F": nE€w} = N{B" n € w}, and let C, =
7,[C] for a € k. (Clearly C = [[{C,: « € k}.) We must show that C # @.

Let N = {n € w: x" € A°X}. If |[N|= o, then C = N{B™ n € N},
so C,= N{B}: n € N} for each a € k. But for any n € N and «a € «,
B =®(x:,UB") N N {Bg: B € k})), so it follows from the choice of
® that C, # 9, and hence that C #* &.

Otherwise |N|<w, and we may assume that N = &. Let K=
U {supp(B"):n € w} = U{I(B"):n € @} = U {supp(B"): n € w}. Fix
a € K. There is a k € w such that « € supp(B”) for all n = k. Thus, if
n =k, then B" = ®((x", G")) for some G" C B” with x” € G”, and it
follows as before that C,= N{B* n=k) # . And if a € k\K, then
obviously C, D G for any B € K (since B” ) B" for each n € w),
so C,# @ in th1s case as well. Thus, C #* &, and X is strongly a-favor-
able. d

4.5. Question. Is the restriction to Hausdorff spaces in 4.4 necessary?

Essentially the same proof yields a better result for a-favorability.
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4.6. THEOREM. If X is a-favorable, so is S*X.

Proof. Let X = S*X, and let ® be a winning strategy on X. Suppose
that BE B. If N{B,: a €k} * B, let B* =(MN{B,: a € k}). Other-
wise we can find a k = 2 and a partition, {/,,...,I,_}, of supp(B) such
that if we set G, = N {B,: a € I} foreachz<k then each G, #* @, and
GNG =0 wheneverz <j < k. We then define B* € % by lettmg

G;, ifa € I for somei <k
B =1 UG, ifa€x\supp(B).
i<k

Clearly BD B* €% for each B € B. For each V€ X\ {2} fix a
B(V) € % such that B(V)=(B(V))*CV.

Now fix V € 7 X\ {2}, and let B = B(V). As before we define
B = ®&(V) by defining B for each a € k. If thereisa G € TX\ {3} such
that B, = G for each a € k, we let B = ®(G) for each a € k. Otherwise,
there is a partition, {I,,...,1,_,}, of supp(B), and there are disjoint sets
G, eETX\{@} for i<k, such that k =2, B, = G, if a € I, for some
i <k,and B, = U{G;: i < k} otherwise. In this case we simply let

i ®(G,), ifa € I, for some i < k
B, =1 U ®(G,), otherwise,
i<k

noting that supp(B) = supp(B) in both cases.

Now suppose that (V": n € w) is a sequence in 7X\ { @} such that
V! C ®(V") for each n € w. For each n € w let B”" = B(V"), and let
B"=®(V"). As before, let C= N{¥": n€w} = N{B" n€w}=
N{B™" n € w} ={C,: « € «}. Finally, let N = {n € w: supp(B") =
Z}; either N = w, or | N|< w. If N = , the choice of ® clearly ensures
that C # &. If N is finite, we may argue just as in the proof of 4.4 that
again C # J. O

4.7. THEOREM. If X is weakly a-favorable, so is S*X.

Proof. Either follow the pattern of 4.6, or (even easier) define the
functions & (n = 1) as follows. 3

As before, it suffices to define & on "%. Suppose that
(B°,...,B""'Y€ " is compatible. For 1 <i=<n — 1 let

I, = {a € supp(B’): Wu[q’i((Bo’--wBi“l))] = ‘Di(<BB""’B;_1>)}’
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and suppose that each I, is finite and contains U {supp(B-’): j <i}. Let
I=U{I:1<i<n— 1} Usupp(B" "), let

®,((BY,....B"™YY), ifa€El

B.=1 U Bg, otherwise,
Ber

and put & ((B,...,B""')) = B. O

All the a-favorability properties are inherited by dense Gg-subspaces.
(1, 8]

4.8. Question. When is C*X (or F*X or ®"X) a Gg-set in S*X? More
generally, when can S“X in 4.4, 4.6, and 4.7 be replaced by one of these
dense subspaces? (Clearly we can replace S*X by C*X whenever 0 X D
[ X]°, as may be seen by examining the proofs.)

4.9. THEOREM. Suppose that X is pseudo-complete. Then S*X is pseudo-
complete; moreover, C*X is pseudo-complete if x =| X | .

Proof. Let X = S*X; clearly X is n-regular. Let (B : n € w) be a
sequence of 7-bases witnessing the pseudo-completeness of X. For each
n € wlet® be the family of all B € P such that either

(a) supp(B) =g and B, ER, or

(b) (i) B, € B, for every a € supp( B);

(i) for any a, ,B € supp(B), either B, = By, or B, N By = &; and
(i) B, N By = & for some a, B € supp(B)
(Compare (b) w1th the construction in the proof of 4.6.) Each % is then a
ar-base for X. ~

Now suppose that { B": n € w) is such that ¢l ; B"*' C B" € ®, for
eachn Ew,andlet C= N{B"n€w} = N{clyB" n € w}. Fora €«
let C,=x[C]= N{B): n € w}; we must show that each C, is non-
empty. If supp(B”) = @ for all n this is obvious: for each a €k,
C,=C,= N{B: n € w} #* I by the pseudo-completeness of X. Other-
wise let / = U {supp(B”): n € w} # &, and note that conditons (b)(ii)
and (b)(iil) ensure that supp(B") C supp(B"*') for each n. For each
a € I there is therefore a k, € w such that a € supp(B”) for each
n = k,; but then B! € B, for each n = k_,, whence C, = N {B}: n = k,}
#* . And if a €\, then B; D B} for each n€ w and vy €1, so
C,2 U{C,:y €I} +# &. Thus, C# Q and X is pseudo-complete.

Now assume that k =| X | ; to prove that C*X is pseudo-complete, it
suffices to show that C N C*X # &, where C is as in the preceding
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paragraph. For each a €I choose p, € C, arbitrarily, and let K =
cly{p,: a € I}; if, now, y € k\1, then K C C,, since C, is a closed set
containing each p, (a € I). Assume for the moment that

|k\I|=|K\{p,;a ET}].

Then there is a surjection f: k\I - K\{p,: a €I}, and the point x
defined by

a

[ Pas fael
Ya ™ fla), ifaex\I

isin C N C*X.

The remaining possibility is that |k\I|<|k\{p, « €I} |, which
can occur only when k = w. Then | X|< w. Now, a countable space
containing a dense-in-itself, open subset is easily seen not to be pseudo-
complete: a decreasing sequence of m-basic open sets can be found that
‘squeezes out’ each point of X. Thus, in this case X must have a dense set,
D, of isolated points, and we may assume that %, = {{x}: x € D} for
each n € w. We then modify the definition of %3, slightly by adding a
fourth condition to clause (b).

(b) (iv) B, € B, for each i < n.

It then follows that either 7 is finite, in which case clearly ®“X N C # @,
or I = w and C = {x} for some x € F*X. In either case C N C*X # &,
so C* X is pseudo-compact. O

4.10. REMARK. The condition that k be at least | X| is clearly stronger
than necessary: the proof of the last part of 4.9 requires only that k be at
least sup{| Y|: Y C X and Y is separable}, except possibly when this
number is w (i.e., when X is N -bounded) and | X |> w.

The last part of the proof of 4.9 yields the following corollary.

4.11. COROLLARY. If X has a dense set of isolated points, then C“X is
pseudo-complete. O

5. Hyperspaces. If x =|X|, the hyperspace of X, 2% may be
thought of as a sort of ‘unordered’ version of C*X. (See [5] for back-
ground information on 2%.) In a sense, 2% is to C*X as [ X]?is to 2X. Let
us make this more precise.

5.0 DerINITION. Let X be a topological space. The hyperspace of X,
denoted by 2%, is the set 0 X\ {@} of non-empty closed subsets of X
endowed with the Vietoris topology, i.e., that given by the base J((X)
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consisting of all sets of the form ((V,...,¥,_,)), where n=1, V, €
rX\{@} for i <n, and ((V,,...,V,_ ) ={CE€2X. CC U{V;: i<n}
and Vi<n(C NV, # @)}

5.1. THEOREM. Let P: C*X — [X]=* N 2*:. x > ran x. Then P is an
open, continuous surjection.

Proof. P is clearly a surjection. For ((Vj,...,V,_,)) € J(X), let

=K

(Vore - Vo))" = (Voo -, V) NIXTTY

the collection of all such sets is a base for 2% N [ X]=".

Let B(F, V') be a basic open set in C*X. If F = {a,,...,a,_,}, say, let
W,=1V, for i<n. Then it is easy to see that P[B(F,V)] =
((Wy,.... W,_ ), so P is open.

Now let ((Vy,...,V,_,))" be a basic open set in 2¥ N [ X]=*. For each
¢ €" let W, = B(ran¢,V o ¢~ "), where V: n—=1X: i V,. Clearly
W= U{W,: ¢ €'} is open in C"X; and since obviously P[W,]=
(Vys---, V,— )" for each ¢ €™k, P[W] = ((V,,...,V,_,))* as well. On the
other hand, if x € C*X\ W, then either ¥, N ran x = @& for some i <n,
or ranx ¢ U{V;: i<n}. In either case P(x) & ((Vy,...,V,_))", so
W =P '[((Vys---,V,~,))*], and P is continuous. O

5.2. COROLLARY. For any k = w, if C*X has one of the following
properties, 2% has the same property.
(i) Baireness
(i1) weak a-favorability
(iii) a-favorability

Proof. Properties (i)—(iii) are preserved by open, continuous surjec-
tions. (For (i) this is well known. For (ii) it is proved in [8]; the proof for
(iii) 1s even easier.) It is easy to see that if a space Y has a dense subspace
with one of these properties, then Y has that property as well. Thus, the
result follows immediately from 5.1 and the observation that [ X]=* N 2%
is dense in 2%, 0O

We do not know whether there are corresponding results for pseudo-
completeness or strong a-favorability. Although a space with a dense
pseudo-complete subspace is pseudo-complete, pseudo-completeness is
not known to be preserved by open, continuous surjections. Strong
a-favorability, on the other hand, does not transfer up from dense
subspaces. [Let Q be the usual space of rational numbers. Let X denote
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the space Q X Q with the finer topology obtained by isolating each point
(p,q) with ¢ # 0. Then X has a dense set of isolated points, which is
obviously a strongly a-favorable subspace, but it is not hard to show that
X itself is not strongly a-favorable. Just enumerate Q as {g,: n € w}, and
suppose that ® is a strong winning strategy on X. Let x, = (q,,0),
Vo={y € X: lly — xoll <1}, where {{- || is the Euclidean norm. Given
®(x,, V,) for some n € w, let

k=min{i € w:i>nand (g;,0) € ®(x,,V,)},
let x,,., = (4,,0), and let

Vi1 = {y € ®(x,,V,): Iy — x,all <27 } \{{g;,0):i <n}.
Clearly N{V,: n € w} = ]

However, McCoy has shown (4) that 2% is pseudo-complete if X is.

5.3. COROLLARY. If X is pseudo-complete, and k =| X | , then both C*X
and 2% are pseudo-complete. O
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