
Pacific Journal of
Mathematics

ESSENTIAL TORI IN 4-MANIFOLD BOUNDARIES

MARTIN SCHARLEMANN

Vol. 105, No. 2 October 1983



PACIFIC JOURNAL OF MATHEMATICS
Vol. 105, No. 2, 1983

ESSENTIAL TORI IN 4-MANIFOLD BOUNDARIES

MARTIN SCHARLEMANN

The central result is an analogue for four manifolds of the loop
theorem, in which, with suitable restrictions on ττ2, essential loops in the
boundary are replaced by essential tori.

A map /: T2 -> X of a torus into a space is called essential if the
induced map / # : ττ,(Γ2) -> irλ(X) is injective [Jo]. A map which is not
essential is called inessential If X is a 3-manifold and / is an essential
imbedding then f(T2) is incompressible in X. The question which we
examine here is the following: Suppose M is a 4-manifold and there is an
essential map /: T2 -> dM which is inessential in M. Is there an incom-
pressible torus in dM which is inessential in M ?

The question may be viewed as a 4-dimensional analogue of the loop
theorem of Papakyriakopoulos [Pa], which says that if there is an essential
map of a circle to the boundary of a 3-manifold which is inessential in the
3-manifold, then an imbedding with this property exists. There are,
however, two points to keep in mind about this comparison. In the
classical case, the usefulness of the theorem is greatly enhanced by
combining it with Dehn's lemma [St], for which no good 4-dimensional
analogue has yet been found. Secondly, a map/: Sι -> Xis called essential
if/#: π^S1) -> iτλ{X) is merely non-trivial, not necessarily injective. Thus
the meaning of the word "essential" has come to have slightly different
meanings, depending on whether the domain of the map is a circle or a
torus. However, in the former case, if the range X is a surface or an
orientable, sufficiently large 3-manifold the notions coincide, for πx(X)
has no torsion.

Before attempting to answer the question, consider two classes of
counterexamples. First, let T be any orientable surface with χ(T) < 0,
and /: S1 -* T be a map not homotopic to a multiple of any imbedded
loop. Then f = fX ids.: Sx X Sι -> T X Sι X 0 C T X Sι X / is an es-
sential torus in T X Sι X /. Let Q be the 4-manifold obtained by adding a
2-handle to T X Sι X / on an imbedded loop in T X Sι X 1 homotopic
to f(S]) X (point). Then/is essential in T X Sι X 0, inessential in β, yet
any incompressible torus in T X Sι X 0 remains essential in Q. Notice
that the addition of the 2-handle generates a non-trivial element of τr2, just
as adding a 2-disk across the meridian of a torus does.

A more subtle counterexample is the following: Let T be a closed
orientable surface with χ(T) < 0 and φ: T -> T be a periodic automor-
phism of period p which is free except at a finite collection of points
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xx,...9xn. The mapping torus Tφ= TX I/(x,0) = (φ(x), 1) is then a
closed 3-manifold whose/?-fold cover is T X Sι. Examples of such Tφ can
be obtained, for example, by doing 0-framed surgery on torus knots.

Using polar coordinates (r, θ) for the D2 factor, define φ: T X D2 -*
T X D2 by φ(x, r, θ) = (Φ(Λ ), r, θ + 2π/p). Then φ generates an effec-
tive Z^ action on TX D2. The only points on which φ is not free are
points of the form (jcf ,O) in T X D2. Remove an invariant open tubular
neighborhood of {(xi90)} from TXD2, and let M be the quotient
manifold. Then Tφ C 3M, and for any essential map /: Sι -> T, the
composition of fX idaz)2: Sι X 3D 2 -> Γ X 3D 2 with the projection to
3M will be a map which is essential in Tφ C 3M but not in M. Yet not
only may Tφ fail to have an incompressible torus which is inessential in Λf,
but may fail to have any incompressible torus. In particular, after 0-framed
surgery on a torus knot not of type (2,3) the resulting 3-manifold has no
incompressible tori. Note here that π2(M) — π2(T X D2) = 0.

Faced with such discouraging evidence, it is perhaps surprising that
these two situations exhaust the counterexamples, that is, by limiting the
size of π2(M4) and eliminating a small class of 3-manifolds from consider-
ation, our original question can be answered affirmatively. Explicitly, we
say that 9rf.(M), i ^ 2, is small, if there is a subgroup G C πx(M) such that
G is of infinite index in its normalizer in irx(M) and πi(M)/G is finitely
generated. Here G acts on π^M) by change of basepoint. A 3-manifold is
unexceptional if it is compact, orientable, irreducible, connected, suffi-
ciently large and not a Seifert fibered space over S2 with precisely 3
exceptional fibers. We then have:

THEOREM 0. Suppose N is an unexceptional 3-manifold lying in the
boundary of a 4-manifold M with π2(M) small. Then if there is an essential
map f: T2 -» N which is inessential in M, then there is an incompressible
torus in N which is inessential in M.

1. The exceptional 3-manifolds. Here we show the relation between
the counterexamples with boundary Tφ discussed above, and the require-
ment in Theorem 0 that N not be a Seifert fibered space with precisely 3
exceptional fibers.

Suppose N is an orientable, sufficiently large, compact 3-manifold
which is a Seifert fibered space with projection/?: N -> S.

LEMMA 1.1. If there is no incompressible torus in N containing a regular
fiber then S is a sphere and N has precisely 3 exceptional fibers.

Proof. If S is nonorientable, N contains an incompressible 1-sided
Klein bottle whose regular neighborhood has boundary the required torus.
If S is orientable the center of πλ(N) contains a free cyclic summand
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generated by a regular fiber [JS]. Suppose there is an imbedded loop /:
Sι «• S inducing an injection of fundamental groups. Homotope / so it
intersects no exceptional points (i.e., images of exceptional fibers) in S.
Thenp'\f(S1)) is a torus Γin N, and the following diagram commutes

πx(T) ^ vx(N) -» Z C center

I i

πx(Sι) -

Thus Ϊ # is injective and Γis incompressible.
Hence we may assume S = RP2 or S = S2. An easy calculation

shows that an orientable Seifert bundle over D2 with more than one
exceptional orbit has incompressible boundary. Suppose S — RP2, and
remove the one-sided Klein bottle in N covering a one-sided loop in RP2.
The fundamental group of the resulting Seifert bundle N' over D2 injects
into that of N, since the covering projection from the torus to the Klein
bottle is injective. Hence, if N has more than one exceptional orbit, N'9
hence N9 contains the required torus. If there is at most one exceptional
orbit M is a prism manifold [Or], with universal covering space S3, and
thus not sufficiently large.

If S = S2 and M has four or more exceptional orbits, then it can be
divided into two pieces, each a Seifert fibered space over a disk with two
or more exceptional orbits. Their common boundary is the required torus.
If there are two or fewer exceptional orbits, M is a Lens space [Or] hence
not sufficiently large. This proves 1.1.

LEMMA 1.2. Let p: N -» S2 be an orientable, sufficiently large Seifert
fibered space with 3 exceptional orbits. Then there is a surface T, a periodic
automorphism φ: T-> Tsuch that N - Tφ- TX I/(x,0) = (φ(x), 1).

Proof. Let T be an incompressible surface in N. T fails to separate N,
for, if it did, N could be written as the union along the boundary of two
Seifert fibered spaces over disks with incompressible common boundary T
[He, Theorem 12.8]. But each piece would then have at least two excep-
tional orbits, a contradiction.

Since T fails to separate N, Hλ(N) is infinite and iV = Tφ [He,
Theorem 12.6], for φ: T -* T homotopic, hence isotopic [Ni], to a periodic
automorphism. That the fibers of Tφ correspond to those of N follows
from the uniqueness of Seifert fibrations for these manifolds [Or].

REMARK. In the first section we showed that if N = Tφ9 for φ: T -> T
a periodic automorphism, then there is a 4-manifold M with N C 3M such
that ker(irx(N) -• irx(M)) is generated by the circle factor in the cover
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T X Sλ of Tφ = N. Now we have seen that the exceptional 3-manifolds of
1.1 can be written as Tφ9 but the circle factor in T X Sι is contained in no
incompressible torus. This explains why we must exclude such N from
consideration.

2. Manifolds with small m{. In this section we prove the one prop-
erty of manifolds with small ττi which is needed. Suppose M is a manifold,
with universal cover M, and suppose, for some i > 2, that πt(M) is small.
Let i C M b e a compact set which does not separate M.

PROPOSITION 2.1. Any map f: Sι -> M is homotopic to a map into
M- X.

Proof. By hypothesis there is a subgroup G C πx(M) of infinite index
in its normalizer such that πi(M)/G is finitely generated. Let MG denote
the cover of M corresponding to G, and/?^: M -> M the projection. There
are a finite collection of maps {βy. S' -> MG), 1 <y < n, generating
77-(MG) as a G-module.

Since X is compact, there are only a finite number of covering
translations T: MG -> MG for which, for somey, T(XG) Π ̂ .(S1') ^ 0 .
Then, since G is of infinite index in its normalizer, there is a T: MG -» MG

such that for all 1 <jf < «, 7>G(^) Π jβ/S"') = 0 .
Now TpGf: Sι -» M c is homotopic to a map into a set consisting of

U^βyίS") and (by compactness of S"') a finite collection of arcs running
from a base point of MG to the βjiS*). In fact, there is a simply connected
space y consisting of a finite collection of /-spheres together with arcs
joining basepoints to a common point, such that TpGf is homotopic to a
map which factors through Y and the images of the /-spheres of Y in_MG

are disjoint from TpG(X). Applying T~x and lifting, the map/: Sx -» M is
homotopic to a map factoring through a map /': Y -> M which maps the
/-spheres of y into M — X. Since M — X is connected and M is 1-con-
nected, / ' is homotopic to a map into M — X. Then so is /.

3. A special case. In this section we consider a special case of
Theorem 0 in which the relation between the problem at hand and the
loop theorem is crystallized. Let N be the product of an orientable surface
S and the circle S\ and assume that an essential torus, inessential in M, is
given by the product of an essential map a: S] -» S and the identity on
the Sι factor. We further assume that the kernel of (α X id 5 i) # :
πx(Sι X Sι) -> πx(M) is generated by α: Sι -> S X q, q in Sι.

Notice that if χ(S) > 0 there is an incompressible torus in N = S X S]

which is inessential in M. Indeed, since S is the torus or annulus, a itself is
homotopic to a multiple of an imbedded circle.
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Suppose now χ(S) < 0 and L is any non-empty normal subgroup of
77,(5 X q) not containing a. Then we have

PROPOSITION 3.1. Under the above assumptions, there is an imbedding
a: Sι -» S X q such that, for some i > 0, a1 is null-homotopic in M, but does
not represent an element of L.

The proof will use two lemmas on surfaces appearing, for example, in
[Th]. Suppose S is a geodesically complete compact surface of constant
negative curvature.

LEMMA 3.2. Any map a: S] -» S is homotopic to a geodesic map.

Proof. Let S denote the universal cover of *S, imbedded in the
hyperbolic plane regarded as the interior of D2. Corresponding to a is a
covering translation T: S -» S. Let a be defined so that

R

I

sι

a
—»

a
—»

s
i

s

commutes. Then T maps &(R) to itself. Define a_ and a+ in 3D2 by
<x± = lim,^±ooα(/). Let ά0: R -» 5 be the unique geodesic connecting α_
and α + . Clearly, T(a_) = α_, Γ(α + ) = α + , so Γαo(JR) = άo(R). The
quotient of αo(Λ) by the action of Γis then the required map α0: S

ι -> S.

LEMMA 3.3. For any I E R, there are only a finite number of geodesic
maps Sι -> S of length less than I.

Proof. By compactness, it suffices to show there are only finitely
many which pass through a given coordinate chart U C S. In 5, the
universal cover of S in the hyperbolic plane, there are only a finite number
of lifts of U within a distance / of a given lift UQ of U. Hence it suffices to
show that there are only a finite number of geodesies in S which intersect
two given lifts ϋo, Uλ and are invariant under the covering translation T:
S -» S carrying Uo to Uv In fact there is exactly one such geodesic. For
suppose x09 y0 E Uo and there are distinct geodesies in S running from x0

to Γ(JC0), y0 to T(y0). Connect x0 to y0 by another geodesic in ϋθ9 and
T(x0) to T(y0) by its translate under T. This produces a quadrilateral in S
with geodesic sides and interior angles summing to 2ττ, contradicting the
Gauss-Bonnet theorem. This proves the lemma.
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To prove 3.1, choose a geodesically complete metric on S of constant
negative curvature. Let § denote the collection of all geodesic maps
Sι -» S X q which are null-homo topic in M, do not represent an element
of L C πx(S) and are of minimal length /. Lemmas 3.2, 3.3 and the
hypothesis of 3.1 assure that § is non-empty. Lemma 3.3 assures that § is
finite. We intend to show that, under the hypotheses of 3.1, § consists
solely of multiples of imbedded loops. This is equivalent to showing that
any element of § contains no transverse self-intersections.

Let/?: M -» M denote the universal cover of M, N denotep ' \N) and
S denote p'\S) respectively. Note, that by hypothesis S φ S, for any
element of § lifts to an essential loop in S. Let a: Sι ^ S X qbeinξ), and
ά a lift of a to S.

Notation. For/: S] -> M, θ0 φ θx in S\ let/[0 o , θx] denote the image
of the segment in Sλ running counterclockwise from θ0 to θx a n d / " 1 ^ , θx]
denote the image of the segment from θ0 to θx running counterclockwise.
Products of segments are composed from left to right, i.e.,

θ θ θ

LEMMA 3.4. ά is an imbedding.

Proof. If not, there are θ0 Φ θx in Sλ such that ά(θo) = ά(θλ). Then
a I [ΘQ, θx] and ά j [θx, ΘQ] factor through maps ax: Sx -> M, a2: Sx -> M
respectively such that ax α 2 — ά. Since ττx{M) — 0, p(ax) and p(a2)

 a r e

null-homotopic in M and are clearly both of length less than /, the length
of a. Furthermore, since a is not in L, somep^a) is not in L. By 3.2, there
is a geodesic homotopic to (and of shorter length than) p^a). This
contradicts the definition of S.

LEMMA 3.5. If άQ9 άx: Sι -> M are lifts of a such that ao{Sλ) Φ ax{Sλ)
then the άt intersect transυersally in S with algebraic intersection zero.

Proof. If άo(5'1) and ά^S*1) intersect non transversally then, since they
are geodesies, ά ^ S 1 ) = ά^S 1 ) . This verifies the first claim.

By hypothesis, a X id^: Sλ X Sι -> N lifts to a map β: Sι X R -> N
which restricts to ά 0 on Sι X (0). Since ά 0 is null-homotopic in M, it
extends to a map ά0: D2 -> M. A translate of άQ provides a map άx:
D2 -* M extending άx.

Let Q denote the complement in D2 X R of small open balls about
{(0,(2/ + l)/2) I 0 E Z)2, i e Z}. Then θ β = 5 1 X R together with a
countable collection of 2-spheres. Translates of ά 0 also produce a proper
map β: Q -> M extendingj8. By 2.1, we may homotope the 2-sphere
components of dQ so that 8̂ maps them to M — άx(D2). Put ̂ S and άx in
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general position by a small homotopy. Then β(Q) Π ax(D2) provides a
null homology of άoί^1) Π ά^S1), proving 3.5.

Suppose now that a has transverse self-intersections. According to 3.4
and 3.5 there are, in S C ΘM, two distinct lifts ά0: Sι -> S and άx: Sι -> S
which intersect transversally at least once but algebraically intersect
trivially. Thus there are at least two pairs of points θ0 φ θl9 φ0 Φ φx in S1

such that άo(θo) = άx(θx)9 άo(φo) - άx(φι).
Let /,, /2, /3, /4 denote the length of the arcs α[0o, φ0], α[φ0, θ0],

a[θ\> ΦiL «[φi> ^i] respectively. Since α G §, lx + l2 = /3 + /4 = /. Then
one of each pair {/, + /3, /2 + /4} {/, + /4, /2 + /3} is no greater than /.
With no loss of generality, assume /t + /3 < /.

Let

Yi =

Let γz denote a geodesic homotopic to yi9 0 < / < 2. Since ά0 and ά,
intersect transversally the length of each γ, is less than that of γ,.
Furthermore, since the length of γ2 is /, + /3 < / and the lengths of γ0 and
Yj are l2 + l3 and lx + /4 respectively, we know the lengths of γ2 and one
of yi9 i — 0,1, are less than /. By definition of /, γ2 and γf. project to
elements of L. But γ2 γ0 and yx γ2 are homotopic to ά0 and άj respec-
tively, which do not project to elements of L. The contradiction completes
the proof.

4. The general case. Our strategy here is to reduce the proof of
Theorem 0 to the special case of §3. The torus theorem of Jaco-Shalen,
Johannson, and Waldhausen [JS], [Jo], [Wa] states that any essential map
/: T2 -» N9 for N connected, orientable, irreducible and sufficiently large,
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is homotopic to a map into a Seifert fibered space, with incompressible
boundary components, contained in N. We may, therefore, assume that N
is a Seifert fibered space.

Let F be the fiber of N, q: N -* N/F = S be the projection, and β in
ir,(JV) be the class represented by F. By hypothesis, N is not a Seifert
fibered space over S2 with 3 exceptional fibers, so, by 1.1, there is an
incompressible torus in TV containing a fiber F. Then if, for some / Φ 0, βι

is trivial in M, we are finished. We henceforth assume, therefore:

(*) β generates a free cyclic subgroup ofπx(M).

Although N is assumed orientable, S may not be, for a one-sided
circle C in S might be covered by a one-sided Klein bottle K in N. But
suppose/: T2 -> TV is essential in JV, and α: S1 -* N represents a non-triv-
ial element of

Clearly, the centralizer of a in irγ(N) contains f#{τrλ(T2)) and so is not
cyclic. By [JS], q(a) is an orientation preserving loop in S9 and, therefore,
may be homotoped off C. It follows that α may be homotoped off K. It
suffices to assume, therefore, that S is orientable. Now homotope a so
that q{a) is in general position and disjoint from the exceptional points of
S (i.e., the images of the exceptional fibers in N). Remove from S small
open disks around each exceptional point and also around two ordinary
points pl9 p2, chosen so that some are between pλ and p2 intersects q(a)
transversally exactly No = q~\S0).

The removal of all these orbits reduces iV0 to a trivial bundle over So.
Moreover, our choice of px and/?2 ensures that there is a bundle trivializa-
tion A: iV0 -> So X Sι such that h(ά) is homotopic to q(a) X /?, for some
pointp in Sι.

Let L C 77,(50 X p) denote the normal subgroup generated by loops
around pλ and p2 in 5 0 X p. Since each such loop is homotopic in N to
some power of β, and, by assumption (*), a is not homotopic to any
power of /?, it follows that q(a) Xp is not in L. By 3.1 there exist
ά G irx(S0) and i > 0 such that a is representable by an imbedding a:
Sι -» 50, h~#(a!) is trivial in πx(M) and a1 is disjoint from L. The proof of
Theorem 0 is completed by verifying the following

Claim. h~\ά X id5i): Sι X Sι -+ No C N is incompressible in TV.

Proof of claim. As in the proof of 1.1, if qh~ιά is essential in 5, then
the torus is essential, hence incompressible, in N.

If qh~xa is inessential in S it bounds a disk containing points which
were deleted in constructing So. Such a disk contains at least one image of
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an exceptional fiber, for otherwise a would be in L. If each such disk
contains the image of more than one exceptional fiber then, again as in
1.1, the torus is incompressible.

So suppose qh~ιά contains the image p0 of exactly one exceptional
fiber. Let γ denote a loop around p0 in a cross-section of N near q~\p0)
given by the standard description of N as a Seifert fibered space (see e.g.,
[Or]). Then h'\ά) = yβr for some r, determined by the trivialization h
chosen above. Let (s9t) be the Seifert invariants of the fiber over /?0,
0 < t < s. Then yψ = 1 in πx(N) so h'ι(άsi) = ysiβrsi = /?<™~'>< is trivial
in πx(M), contradicting (*) and thus proving the theorem.

REFERENCES

[He] J. Hempel, 3-Manifolds, Ann. Math. Study no. 86, Princeton Univ. Press, 1976.

[JS] W. Jaco and P. Shalen, Seifert fibered spaces in 3-manifolds, Rice University, 1977.
[Jo] K. Johannson, Equivalences dΊiomotopie des varietes de dimension 3, C. R. Acad.

Sci. Paris, 66 (1975), 1009-1010.
[Ni] J. Nielsen, Abbildungsklassen endlicher Ordnung, Acta Math., 75 (1942), 23-115.
[Or] P. Orlik, Seifert manifolds, Lecture notes in mathematics no. 291, Springer, 1972.
[Pa] C. D. Papakyriakopoulos, On solid tori, Proc. London Math. Soα, 7 (1957),

281-299.
[St] J. R. Stallings, On the loop theorem, Ann. Math., 72 (1960), 12-19.
[Th] W. Thurston, Geometric topology seminar notes, Princeton Univ. 1975.
[Wa] F. Waldhausen, On the determination of some bounded 3-manifolds by their fundamen-

tal groups alone, Proceedings of the International Symposium on Topology and its
applications, Herceg-Novi, Yugoslavia, 1968: Beograd (1969), 331-332.

Received March 28, 1979. Supported in part by an NSF grant.

UNIVERSITY OF CALIFORNIA

SANTA BARBARA, CA 93106





PACIFIC JOURNAL OF MATHEMATICS
EDITORS

DONALD BABBITT (Managing Editor)

University of California
Los Angeles, CA 90024

HUGO ROSSI

University of Utah
Salt Lake City, UT 84112

C. C. MOORE and ARTHUR OGUS

University of California
Berkeley, CA 94720

J. DUGUNDJI

Department of Mathematics
University of Southern California
Los Angeles, CA 90089-1113

R. FINN and H. SAMELSON

Stanford University
Stanford, CA 94305

ASSOCIATE EDITORS
R. ARENS E. F. BECKENBACH B. H. NEUMANN F. WOLF K. YOSHIDA

(1906-1982)

SUPPORTING INSTITUTIONS
UNIVERSITY OF ARIZONA
UNIVERSITY OF BRITISH COLUMBIA
CALIFORNIA INSTITUTE OF TECHNOLOGY
UNIVERSITY OF CALIFORNIA
MONTANA STATE UNIVERSITY
UNIVERSITY OF NEVADA, RENO
NEW MEXICO STATE UNIVERSITY
OREGON STATE UNIVERSITY

UNIVERSITY OF OREGON
UNIVERSITY OF SOUTHERN CALIFORNIA
STANFORD UNIVERSITY
UNIVERSITY OF HAWAII
UNIVERSITY OF TOKYO
UNIVERSITY OF UTAH
WASHINGTON STATE UNIVERSITY
UNIVERSITY OF WASHINGTON

The Supporting Institutions listed above contribute to the cost of publication of this Journal, but they are
not owners or publishers and have no responsibility for its content or policies.

Mathematical papers intended for publication in the Pacific Journal of Mathematics should be in typed form
or offset-reproduced (not dittoed), double spaced with large margins. Please do not use built up fractions in the
text of the manuscript. However, you may use them in the displayed equations. Underline Greek letters in red,
German in green, and script in blue. The first paragraph must be capable of being used separately as a synopsis
of the entire paper. In particular it should contain no bibliographic references. Please propose a heading for the
odd numbered pages of less than 35 characters. Manuscripts, in triplicate, may be sent to any one of the editors.
Please classify according to the scheme of Math. Reviews, Index to Vol. 39. Supply name and address of author
to whom proofs should be sent. All other communications should be addressed to the managing editor, or
Elaine Barth, University of California, Los Angeles, California 90024.

There are page-charges associated with articles appearing in the Pacific Journal of Mathematics. These
charges are expected to be paid by the author's University, Government Agency or Company. If the author or
authors do not have access to such Institutional support these charges are waived. Single authors will receive 50
free reprints; joint authors will receive a total of 100 free reprints. Additional copies may be obtained at cost in
multiples of 50.

The Pacific Journal of Mathematics is issued monthly as of January 1966. Regular subscription rate: $132.00
a year (6 Vol., 12 issues). Special rate: $66.00 a year to individual members of supporting institutions.

Subscriptions, orders for numbers issued in the last three calendar years, and changes of address should be
sent to Pacific Journal of Mathematics, P.O. Box 969, Carmel Valley, CA 93924, U.S.A. Old back numbers
obtainable from Kraus Periodicals Co., Route 100, Millwood, NY 10546.

The Pacific Journal of Mathematics ISSN 0030-8730 is published monthly by the Pacific Journal of Mathe-
matics at P.O. Box 969, Carmel Valley, CA 93924. Application to mail at Second-class postage rates is pend-
ing at Carmel Valley, California, and additional mailing offices. Postmaster: Send address changes to Pacific
Journal of Mathematics, P. O. Box 969, Carmel Valley, CA 93924.

PUBLISHED BY PACIFIC JOURNAL OF MATHEMATICS, A NON-PROFIT CORPORATION

Copyright © 1983 by Pacific Journal of Mathematics



Pacific Journal of Mathematics
Vol. 105, No. 2 October, 1983

Spiros Argyros, On compact spaces without strictly positive measure . . . . . . . 257
Steven Robert Bell, Regularity of the Bergman projection in certain

nonpseudoconvex domains . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .273
Carlos R. Borges and Gary Fred Gruenhage, Sup-characterization of

stratifiable spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 279
Giuseppe Ceresa and Alberto Collino, Some remarks on algebraic

equivalence of cycles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 285
Charles Kam-Tai Chui and Maurice Hasson, Degree of uniform

approximation on disjoint intervals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 291
Gary Gundersen, Meromorphic functions that share two finite values with

their derivative . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 299
Richard I. Hartley, Lifting group homomorphisms . . . . . . . . . . . . . . . . . . . . . . . 311
Gerald William Johnson and David Lee Skoug, Notes on the Feynman

integral. III. The Schroedinger equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 321
John Cronan Kieffer, Some topologies on the set of discrete stationary

channels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 359
Harald Luschgy and Wolfgang Thomsen, Extreme points in the
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