Vol. 106, No. 1, 1983

Recent Issues
Vol. 332: 1  2
Vol. 331: 1  2
Vol. 330: 1  2
Vol. 329: 1  2
Vol. 328: 1  2
Vol. 327: 1  2
Vol. 326: 1  2
Vol. 325: 1  2
Online Archive
Volume:
Issue:
     
The Journal
About the journal
Ethics and policies
Peer-review process
 
Submission guidelines
Submission form
Editorial board
Officers
 
Subscriptions
 
ISSN 1945-5844 (electronic)
ISSN 0030-8730 (print)
 
Special Issues
Author index
To appear
 
Other MSP journals
Renorming and the theory of phi-accretive set-valued mappings

David Downing and William O. Ray

Vol. 106 (1983), No. 1, 73–85
Abstract

Let X and Y be Banach spaces, ϕ : X Y and P : X 2Y ; P is said to be strongly ϕ-accretive if there exists c > 0 so that (w v,ϕ(x y)) cx y2 whenever x,y X and w Px, v Py. Such mappings constitute a simultaneous generalization of monotone mappings (when Y = X) and accretive mappings (when Y = X). By applying a fixed point theorem of J. Caristi, it is shown that if P is strongly ϕ-accretive in a localized sense and if Y can be appropriately renormed, then, under suitable continuity and range restrictions, P is an open mapping. The results generalize a number of known theorems and indicate a firm connection between the theory of ϕ-accretive mappings and the renorming characteristics of the space Y .

Mathematical Subject Classification 2000
Primary: 47H05
Secondary: 47H06
Milestones
Received: 23 September 1981
Published: 1 May 1983
Authors
David Downing
William O. Ray