Vol. 106, No. 1, 1983

Recent Issues
Vol. 332: 1  2
Vol. 331: 1  2
Vol. 330: 1  2
Vol. 329: 1  2
Vol. 328: 1  2
Vol. 327: 1  2
Vol. 326: 1  2
Vol. 325: 1  2
Online Archive
Volume:
Issue:
     
The Journal
About the journal
Ethics and policies
Peer-review process
 
Submission guidelines
Submission form
Editorial board
Officers
 
Subscriptions
 
ISSN 1945-5844 (electronic)
ISSN 0030-8730 (print)
 
Special Issues
Author index
To appear
 
Other MSP journals
On the computations of the Nielsen number

Boju Jiang

Vol. 106 (1983), No. 1, 105–113
Abstract

The aim of this note is to show the following

Main Theorem. Let X be a compact connected ANR, f : X X be a map. Suppose there is an integer n such that fπn(π1(X)) J(fn). Then any two fixed point classes of f have the same index. Hence

L(f) = 0 implies N(f) = 0, while
L(f)0 implies N(f) = Coker(H1(X)1−−f→∗H1(X)).
Here L(f) and N(f) are the Lefschetz number and Nielsen number of f respectively, and J(F) π1(X) stands for the Jiang subgroup of f.

Mathematical Subject Classification 2000
Primary: 55M20
Milestones
Received: 29 September 1981
Published: 1 May 1983
Authors
Boju Jiang