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EXPECTATIONS IN SEMIFINITE ALGEBRAS

S. K. BERBERIAN

Every semifinite von Neumann algebra A possesses an expectation
k: A - W, where W is a commutative von Neumann subalgebra of 4
containing the center of 4, and where 4| extends the trace of a ‘‘large”
finite subalgebra of 4. An 4 W*-algebraic proof yields applications to the
embedding of semifinite 4 W *-algebras in algebras of type L.

1. Uniform algebras. An algebra of type I may be studied by
decomposing it into homogeneous algebras. In an analogous way, we
propose to study semifinite algebras via their decompositions into uniform
algebras.

DEFINITION [2, p. 242, Exer. 5]. An A W*-algebra is said to be uniform
if it contains an orthogonal family of equivalent finite projections with
supremum 1. (The definition of homogeneous algebra is obtained by
replacing “finite” by “abelian”.)

LEMMA 1. Every semifinite AW*-algebra is the C*-sum of a family of
uniform algebras.

Proof. Since finite algebras are trivially uniform, one can suppose the
given algebra A4 to be properly infinite. Let (¢;),-, be a maximal orthogo-
nal family of pairwise equivalent finite projections; since A4 is infinite, one
can suppose the index set I to be infinite. Then there exist a nonzero
central projection h of A and an orthogonal family of projections ( f;),c,
such that & = sup f, and f, ~ he, for all i € I [1, p. 102, Prop. 2]. This
shows that the algebra 44 is uniform, and an exhaustion by Zorn’s lemma
completes the proof. U

2. Matrix units. A uniform von Neumann algebra 4 may be re-
garded as a tensor product A = D ® L(H) with D finite and L(H) the
algebra of all bounded operators on a Hilbert space H [2, p. 25, Prop. 5].
There is no analogous theory of tensor product for 4 W*-algebras, but an
effective substitute is to pursue the discussion of “matrix units” in [4, §5].

Let A be an A W*-algebra, with center Z, containing an orthogonal
family (e,),c, of pairwise equivalent projections with sup e; = 1. As in [4,
§5] construct a family of elements e;, € e,Ae; (i,j € I) such thate, = e,
e, =e, ee, =e, and e e, =0 for j # m. In particular, e, e’ = e
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* —_
and efe, =e

» thus e, is a partial isometry effecting the equivalence
e, ~e;. Let

S={e,:i,jel}, T={e:i€l}
and let

D=§, W=T

be the commutant and bicommutant, respectively, of these sets in A4; D
and W are A W*-subalgebras of 4 with D = D", W = W” [1, p. 23, Prop.
8]. Since T is a commutative set, W is a commutative algebra; from
W C W’ we see that W’ has center W, thus the e, are orthogonal central
projections in W’ with supremum 1, consequently W’ = @e W’ [1, p. 53,
Prop. 2]. If x;, € ;W for all i € I and supllx;|| < oo, we write @ x; for
the unique element x € W’ such that e,x = x; for all i. Since T C §, one
has

D:S’CTI:TI/I: W/’
thus Z C W C D’. The center of D is D N D’ = Z [4, Lemma 14].

For each i € I, the mapping d > de, is a *-isomorphism D — e, Ae, [4,
Lemma 12], consequently llde; |l = lld|l for alld € D and i € 1 [3, 1.3.8
and 1.8.1]. Moreover [4, Lemma 13],

e de;=De,;  (i,jEI);

the mapping d +-> de;; is an isomorphism of Banach spaces D — ¢;Ae,
since

lide;; 1> = |I(de;;)(de;,)*Il = lldd*e; |l = Ildd*|l = lld|I>.

In particular, for each element a € A there exists a unique family (a,;) of
elements of D determined by the relations

(1) eae; =a;e,; (i,jEI);

one calls (a,;) the “matrix” of a relative to the matrix units ¢; ;. One has
) ha, i =llall  (i,j€T)

because lla,; |l = lla e, ; |l = lle;ae,ll.

From D C W’ we see that ¢,D C e W = e,W’e, C e,Ae; = e, D, thus
e,W’ = e, D; therefore W = @e,D = De,Ae,.
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LEMMA 2. With the preceding notations,
(3) D' = {a € A: e,ae; € Ze,, for all i, j},

(4) W=QeW=0eD=Dede,

={a€4: e;ae; = 0 whenever i #j},

(5) W= @eiZ,
(6) W=D nw,
(7) Z=DNW.

The algebra D' is homogeneous, with center Z.
Proof. Let a € A and write e,ae, = a, e, ; as in (1).

(3) If d € D = S’ then d commutes with every e, , therefore

iy
e(ad — da)e, = (a,,d — da,;)e,;.

This expression is 0 if and only if a,;d — da;; = 0; thus a € D’ if and
only ifa, € DN D =Zfor all i, j.

(4) The formulas W’ = @e, W’ = @e,D = De,Ae, are noted above.
For all i, j, k one has

ei(aek - eka)ej = Sjkalkeik - 8ikakjekj

= ajkazjeij - atkaijeij = (8jk - aik)aijeij’
which is 0 whenever i =j. One has a € W’ = T” if and only if this
expression is 0 for all i, j, k. If a € W’ and i # then q,, = 0 (take

k = j); on the other hand if a,; = 0 whenever i # j, then the expression is
0 for all 7, j, k, so a € W'. Thus W’ = {a € A4: e,ae;, = 0 for i # j}.

(5), (6) From (3) we have e,Z =e,D’e;; since e, € W C D’, this
shows that e, Z is an A W*-algebra, and Z C W yields @e,Z C Qe W =
W. Obviously W C D' N W.If a € D’ N W’ then a = De,a by (4), and
e,a = e,ae; = e;a; with a,; € Z by (3), thus a € De,Z. Summarizing, we
have @e,Z C W C D' N W' C De,Z, whence equality throughout.

(7) Citing 6), DN W=DND NW =ZN W = Z.

Finally, e;; € S C §” = D’ for all i, j; this shows that the projections
e; are equivalent in D’. By (3), e,D’e, = Ze, is commutative, so the e, are
abelian projections in D’. Thus D’ is homogeneous, with center D’ N D"'=
D'ND="Z O
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3. Semifinite algebras. The foregoing results on matrix units yield
a structure theorem for semifinite algebras; we first review some defini-
tions needed for its statement.

Let A be an AW*-algebra, 4, its projection lattice, 4, the ordered
linear space of hermitian elements of A with the set of elements x*x as
positive cone; A is said to be normal [15] if 4, is monotonely embedded in
A, that is, whenever ( f,) is an increasingly directed family of projections
with supremum fin 4, then f is also the supremum of the family in 4,
(briefly, f, 1f in A, implies f, 1 f in A4,). Every finite 4AW*-algebra is
normal [15, Th. 4], as is every 4 W*-algebra that acts faithfully on a
separable Hilbert space [16, Cor. 3.4]. (It is not known if there exists a
non-normal 4 W*-algebra.) Every von Neumann algebra is normal, hence
so is every W*-algebra. A positive linear mapping ¢: 4 - B between
AW#*-algebras is said to be normal if a, 1 a in A, implies ¢(a,) 1 ¢(a) in
By, and completely additive on projections (CAP) if f, 1 f in A, implies
o(f) to(f)in B,. If A is a normal algebra and ¢ is a normal mapping,
then ¢ is CAP.

LemMma 3 [10]. If A is a normal AW*-algebra, then for every element
x € A the positive linear mapping a + xax* on A is CAP.

Proof. Suppose f, 1 fin 4, and xf,x* <b € A, for all a; we are to
show that xfx* < b. Lete > 0 and let ¢ = (b + €)~'/2. Then

exfx*c<cbe=b(b+¢) ' =1,

thus (cxf,)(exf,)* = 1; this means that |lexf,ll = 1, so (exf,)*(cxf,) =1,
whence f(1 — x*c?x)f, =0 for all a. It follows from normality that
f(1 — x*¢?x)f =0 [10, Lemma 3], whence fx*c’xf<f=<1, llexfll <1,
cxfx*c <1, xfx* < ¢ 2 =b + e Thus xfx* — b < ¢ for all ¢ >0, there-
fore xfx* — b < 0. O

THEOREM 1. Let A be a semifinite AW*-algebra with center Z. There

exist AW*-subalgebras D and W of A with the following properties:
() D=D"and W= W"inA;

(1) D is finite, its center is Z, and D’ is of type 1 with center Z; D is
x-isomorphic to eAe, with e a faithful finite projection of A;

(1) W is commutative, W = D' N W and Z = D N W;

(iv) there is a mapping §: A - W’ that is left and right W'-linear,
positive, faithful, and leaves fixed the elements of W’'; when A is a normal
algebra, the mapping % is CAP.

(v) If Z is a W*-algebra then so are D' and W if D is a W*-algebra,
then so is W',

(vi) If A is normal and D is a W*-algebra, then A is a W*-algebra.
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Proof. By Lemma 1 we are reduced to the case that 4 is uniform; we
adopt the notations of Lemma 2, with the e, finite projections of 4. In
particular, D is *-isomorphic to e, Ae,, hence is finite; the rest of (1)—(iii) is
clear from Lemma 2.

(v) The formula W = D’ N W’ means that W coincides with its
commutant in D’ (thus is a maximal abelian subalgebra of D’); if Z is a
W*-algebra (that is, *-isomorphic to a von Neumann algebra) then so is
the type I algebra D’ with center Z [4, Th. 2], hence so is W. On the other
hand, if D is a W*-algebra, then so are the isomorphic algebras e, D, hence
so is W’ by formula (4) of Lemma 2; in this case, the center Z of D is also
a W*-algebra, hence so are D’ and W.

(iv), (vi) If a € A4 then |le;ae; || < llall for all i, so by (4) of Lemma 2
we can define a* = De,ae; € W’. It is clear that a > a* is a positive
linear mapping 4 — W', leaving fixed the elements of W’ hence having
range W’. If a = 0 and a* = 0, then (e,a'/?)(e;a'/?)* = e,ae; = 0 for all
i, whence a = 0; thus # is faithful.

If cE W =T and a € 4, then ¢ commutes with every e;, thus
e;cae; = (e ce;)(e,ae;) for all i; therefore (ca)* = c*a* = ca¥, similarly
(ac) = d¥c.

Finally, suppose 4 is a normal algebra and f, 1 fin 4,. By Lemma 3
for each i one has e,f,e; 1 e;fe; in 4,, hence in (e; Ae;),; therefore De,fe,
Defe, in (De,Ade,),, that is, f¥ 1% in (W),. Thus t is CAP. If, in
addition, D is a W*-algebra, then by (v) so is W’, therefore W’ has a
separating family of normal positive linear forms; since # is CAP, it
follows that A has a separating family of positive linear forms that are
CAP, therefore A4 is a W*-algebra by a theorem of G. K. Pedersen [7]. [J

4. Trace and expectations. Our next objective is to show that, in
the notations of Theorem 1, a center-valued trace §: D — Z on the finite
algebra D is extendible to a trace-like mapping §: 4 — W (more precisely,
in the terminology of [6], an expectation of 4 onto W). If, in addition, the
algebra A is normal, then the resulting expectation of 4 is a normal
mapping. All of these hypotheses are fulfilled when A4 is a semifinite
W*-algebra. First, we review a result implicit in [12]:

LEMMA 4. Let A be a finite AW*-aigebra with center Z, possessing a
trace i: A — Z. Then A is monotone complete and the mapping b is normal.

Proof. The hypothesis is that 4 is a positive Z-linear mapping such
that 1° = 1 and (ab)* = (ba)"® for all a, b in A. It follows that z* = z for
all z € Z. Moreover, § is faithful: if a = 0 and ¢" = 0 then @ = 0 (because
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every nonzero positive element of 4 majorizes a positive scalar multiple of
a simple projection [1, §26)).

Let D: A, — Z be the dimension function 4 [1, p. 181, Th. 1]. By the
uniqueness of D, e* = D(e) for all projections e; since D is completely
additive, § is CAP [1, p. 184, Exer. 4]. It follows that for every x € 4, the
Z-linear mapping a > (xax*)" is also CAP (cf. the Appendix), thus b is
continuous in the sense of [12, p. 316]. Since § is faithful, it follows that
there exists an 4 W*-algebra B of type I, with center Z, such that 4 is an
AW#*-subalgebra of B [12, Th. 3.1], indeed 4 = A” in B [12, Th. 4.4]. Since
B is monotone complete [12, Lemma 1.4] and 4 = 4” in B, it follows that
A is monotone complete. (An AW*-algebra A is said to be monotone
complete if every increasingly directed family in A4,, majorized by an
element of 4,, has a supremum in 4,,.)

Suppose a, 1 a in A4,; we are to show that a* 1 a" in Z,. Passing to a
cofinal set of indices, we can suppose that || a,_|l is bounded. Viewing B as
the algebra of bounded operators on an A W*-module over Z [S, Th. 8], a,
is strongly convergent to a [12, Lemma 1.4}, therefore a" = liminf 4% in Z,
[12, Lemma 4.3]; since the family (a%) is increasing, liminf a® = sup a?,
thus a® 1 a"in Z,. O

In Theorem 2 it will be assumed that the finite algebra D of Theorem
1 has a trace, equivalently, that the isomorphic algebra ede has a trace;
the next two lemmas free this hypothesis from its reference to a particular
faithful finite projection e.

LEMMA 5. If the finite AW*-algebra A has a trace, then so does every
corner ede of A and every matrix algebra M, ( A) over A.

Proof. If 4: A — Z is the trace of 4 (Z the center of A) and if r is the
relative inverse of e in the regular ring of 4 [1, p. 235], then the trace
eAe — eZ of eAe is given by the formula x > erx®. Identifying the center
of M, (A) with Z, the trace of a matrix is defined to be the average of the
traces of its diagonal elements. 0

LEMMA 6. Let A be a semifinite AW*-algebra containing a faithful finite
projection f such that fAf has a trace. Then for every finite projection e of A,
eAe has a trace.

Proof. The first step of the proof is to find a nonzero central
projection h of A such that (he)A(he) = hede has a trace. We can
suppose e # 0; then eAf # 0 (because f is faithful), so there exist nonzero
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subprojections e, < e, f; =< f with e, ~ f,. Passing to a subprojection of e,,
we can suppose that e, is a simple projection in ede [1, §26]. The central
cover of e, in ede has the form he with h a central projection of 4 [1, p.
37, Prop. 4], thus hede = M, (e, Ae,) for a suitable integer n (the “order”
of e, in ede). Since fAf has a trace, so does its corner f,Af, (Lemma 5),
hence so does the isomorphic algebra e, Ae,;, hence so does the matrix
algebra hede (Lemma 5).

Let (4,) be a maximal orthogonal family of nonzero central projec-
tions of A such that every h_ede has a trace. Necessarily sup s, = 1
(otherwise the preceding argument could be used to contradict maximal-
ity); thus ede = ©h ede, eZ = Dh eZ (Z the center of 4), and the
traces of the & ede may be combined to give a trace for ede. U

THEOREM 2. Let A be a semifinite AW*-algebra with center Z, and
adopt the notations of Theorem 1. Suppose, in addition, that the finite
algebra D has a trace §: D — Z (as is the case when A is a W*-algebra).
Then the trace of D is extendible to a positive linear mapping §: A — W with
the following properties:

@) w* =wforallw € W,
(i) (wa)® = wa® = a*w = (aw) foralla € A,w € W,

(iii) @ = 0 and a* = 0 imply a = 0;

(iv) (ad)® = (da)"® for all a € A, d € D; equivalently, (uau*)* = a* for
all a € A and all unitary u € D;

(v) if A is a normal algebra, then the mapping b: A — W is normal and
there exists a type 1 AW*-algebra B with center Z such that A = A" in B.

Proof. By Lemma 6 and the proof of Theorem 1, we can suppose 4 to
be uniform; we adopt the notations of Lemma 2, with the e, finite
projections, and we write $: A — W’ for the mapping defined in the proof
of Theorem 1.

Suppose, more generally, that ¢: D — Z is any positive linear map-
ping. For each i € I let @,: e,Ae; » e,Z be the unique (positive, linear)
mapping such that ¢,(e;d) = e;p(d) (recall that d > e,d is a *-isomor-
phism D — e, Ae;); then

o (ed)ll < llp(d)l < llolllldll = llolllledll,

so llg, Il < ll@ll for all i. Define a mapping @: W’ — W as follows. By (4)
of Lemma 2, every x € W’ has the form x = @x; with x; € e, 4e; and
Il x, Il bounded; then |l ¢,(x,)ll is bounded and we can define

?(x)=Po(x)ePez=w
by (5) of Lemma 2. (So to speak, g = Do,.)
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Composing the positive linear mappings : 4 - W and ¢: W’ - W,
we obtain a positive linear mapping ®: 4 - W, where ®(a) = D ¢,(e,ae;)

fora € 4; thus if e;ae; = a, e, as in (1), we have

(8) ®(a) = @ ei(p(aii .

® extends @. { Proof: If a € D then e,ae; = ae; shows that a;; = a for
all i, whence ®(a) = De,;p(a) = p(a).}

If @ is faithful then so is ®. { Proof: If ¢ is faithful then so is every ¢,,
therefore so is @; since 4 is also faithful, sois ® = @ o §.}

If ¢ is Z-linear, then each of the mappings a + ¢(a,;) is Z-linear and
® is both left and right W-linear. { Proof: Clearly every ¢; is e;Z-linear,
therefore @ is both left and right & e, Z-linear, that is, W-linear. If z € Z
then za has matrix (za;;), whence the Z-linearity of the mappings a >
®(a;).}

If @ is normal then so is @; if, moreover, 4 is a normal algebra, then
the mappings ® and a - ¢(a;;) on A are CAP. { Proof: If ¢ is normal then
so is every ¢;, hence so is § = @ ¢,. Suppose in addition that 4 is normal.
If f,1fin A,, then f¥1f* in (W), by (iv) of Theorem 1, therefore
?(fH 1 9( f‘*) in W,, that is, ®( f,) 1 ®(f); thus ® is CAP. Also, for each
i the mapping a > e,ae; = e;a; is CAP (Lemma 3); by virtue of the
*-isomorphism e;D — D and the normality of ¢, it follows that the
mapping a - ¢(a;;) is also CAP.}

Assume now that there exists a trace §: D — Z and let § play the role
of ¢. By the foregoing remarks, the mapping §: A — W defined by the
formula

@el Il

is left and right W-linear, positive, faithful, and extends the trace of D;
thus the properties (ii), (iii) are verified, hence so is (i) (because 1* = 1). If
a € A has matrix (a,;) and if u € D is unitary, then uau* has matrix
(ua,;u*), therefore

(uau*)' = P e (ua, u*)h D e,at, = a".

This is equivalent to the identity (ad)® = (da)* since every d € D is a
linear combination of unitary elements of D [2, p. 4, Prop. 3].

The trace of D is normal (Lemma 4); if, moreover, A is a normal
algebra, the above remarks show that the mappings §: 4 - W and a - 4,
on A are CAP; in particular, A has a family of Z-linear mappings A — Z
that are CAP and separating (for, if @ =0 and 4% = 0 for all i, then
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a® = 0, therefore a = 0). It then follows from K. Saitd’s embedding
theorem [9, Th. 2] that there exists a type I 4 W*-algebra B with center Z,
such that 4 = A” in B. By the arguments in the proof of Lemma 4, A4 is
monotone complete and the above-mentioned Z-linear mappings 4 — Z
are normal, therefore so is the mapping §: 4 - W. O

The following corollary is due in essence to H. Widom [11, Th. 6.3]:

COROLLARY 1. If A is a normal, semifinite AW*-algebra containing a
faithful finite projection f such that fAf has a trace, then A may be embedded
as a bicommutant in a type 1 algebra with the same center.

Proof. With notation as in Theorem 1, it follows from Lemma 6 that
eAe has a trace, hence so does the isomorphic algebra D; thus all of the
hypotheses of Theorem 2 are fulfilled. O

{We remark that the result in [11, Th. 6.3] is stated without assuming
normality, but normality figures in the proof [11, p. 55, line 4] via an
appeal to the property in Lemma 3 above. The countability hypothesis in
[11, Th. 6.3] can be omitted by virtue of Saitd’s embedding theory [9, Th.

11)

COROLLARY 2. If, under the hypotheses of Corollary 1, the center of A is
a W*-algebra, then A is also a W*-algebra.

Proof. The type I algebra given by Corollary 1 is also W* [4, Th. 2],
hence so is its subalgebra A. O

It is an open question whether every A W*-factor of type II, has a
trace; if the answer is yes, then Corollary 2 would imply that every normal
AW*-factor of type I is a W*-algebra.

COROLLARY 3 [13, p. 445, Cor.l. Let A be a normal, semifinite
AW?*-algebra whose center Z is a W*-algebra. If A has a faithful positive
linear form then it is a W*-algebra.

Proof. With notations as in Theorem 1, the finite algebra D also has
center Z and has a faithful positive linear form, hence is a W*-algebra [14,
p. 437, Cor. 7]; therefore D has a trace and Corollary 2 applies. ]

S. Appendix. The following proposition (stated without proof in
[8]) is implicit in the proof of Saitd’s embedding theorem [9, Th. 2]; the
brief proof given here was communicated to me by Professor Saito.
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PROPOSITION (8, 1.1.2]. If A is an AW*-algebra, B is a commutative
AW*-algebra, and @: A — B is a positive linear mapping that is CAP, then
for every x € A the mapping a — @(xax*) is also CAP.

Proof. Assuming f, 10 in 4, it will suffice to show that ¢(xf,x*)|0 in
B,,. This is clear if x is unitary, for then xf,x*10 in 4,,. In general, x is a
linear combination of four unitaries, say x = 2?_, A,u,. Then

‘P(xfaX*) = 2 )\iqu’(”ifa“f)-

i,Jj

Writing | b |= (b*b)'/? for b € B, the Cauchy-Schwarz inequality [cf. 5, p.
840] yields

|‘P(“ifa“f)lz :lq)(ui(ujfa)*)lz
= ‘P(uiu;k)‘P(ujfauf) = ‘P(l)‘P(ujfauf);

writing M = max | A, A, |, we thus have

4
p(xf,x*) < aMp(1)* Y @(u, fur)"?,
=1

j=

where @(u, f,u*)'/? 10 in B, for each j, therefore also (xf,x*) 0. O

We remark that for the CAP mappings occurring in Lemmas 3 and 4
(hence in Theorems 1 and 2), the conclusion of the Proposition can be
seen directly: in the case of Lemma 3, one notes that y(xf,x*)y* =
(yx)f.(yx)*; in the case of Lemma 4, (xf,x*)" = ( f,x*xf,)" < Ilx|I*f}.

PROBLEMS. 1. Is every semifinite 4 W*-algebra normal?

2. In the notations of Lemma 2, does every *-automorphism of D
extend to a *-automorphism of 4?7

3. If 4 is an A W*-algebra containing a faithful projection e such that
ede is a W*-algebra, does it follow that 4 is a W*-algebra? (The answer is
yes if A is normal.)
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