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Let G, be a finite group of Lie type defined over a field of
characteristic/?. The results of this paper represent an attempt to achieve
a better understanding of the subgroup structure of G,. It is somewhat
surprising how limited our knowledge is, in this regard. For example,
while centralizers of semisimple elements (i.e. /?'-elements) of G, have
been studied in detail and are fairly well understood, very little has been
written about subgroups of G] generated by such centralizers. Even in
explicit examples the analysis of such subgroups can be very difficult, the
difficulty stemming from an inability to relate the generated group to the
Lie structure of Gλ. To deal with these situations and others we set up a
framework that allows us to effectively study a fairly large class of
subgroups of Gx (those containing a maximal torus), by studying sub-
groups of the corresponding algebraic group. Essential to the develop-
ment is a theory of root subgroups for arbitrary maximal tori of G,.

1. Introduction. The theorems we establish have as their origin

Lemma 3 of [22], which was later extended in [7] to show that if q > 5 and

if if is a Cartan subgoup of Gλ normalizing the />-group V9 then V is the

product of root subgroups of H. This result is quite useful and provided

the starting point for the result in [21] which showed that with further

field restrictions one could determine all //-invariant subgroups of Gx. For

example, if H < L < Gl9 then it was shown that L could be generated by

NL(H) together with certain of the root subgroups of H. Hence, L is

determined by a subset of the root system of Gx together with a subgroup

of the Weyl group of Gx. One wants to extend these results to cover the

case of an arbitrary maximal torus, not just a Cartan subgroup. Therefore,

one would like to develop a theory of root subgroups that makes sense for

an arbitrary maximal torus and then establish results like those above.

The present paper carries out this program.

The group Gλ satisfies Op(Gσ) < (?, < Gσ, where G is a connected

simple algebraic group over the closure of F^, and σ is an endomorphism

of G whose fixed point set, Gσ, is a finite group. Set G — Gσ and

Go = Op (Gσ). A maximal torus of Gλ is a group of the form T Π Gl9

where T = Tσ and T is a σ-invariant maximal torus of G. The group G has

a root system, Σ, and for each root a GΣ, there is a Γ-root subgroup Ua

of G. These root subgroups are permuted by σ. If Δ is a (σ)-orbit of such

root subgroups, let X— Op'((Δ)σ)9 a subgroup of G,. Such a group is
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154 GARY M. SEITZ

called a T-root subgroup of Gσ, and these groups are the groups we wish to

consider. The Γ-root subgroups of G are either /7-groups or themselves

groups of Lie type, and even when they are/?-groups their structure can be

complicated. Nevertheless, the situation is manageable, as we indicate in

the sample results below.

Write Gx — Gx(q), where q is a power oίp and fix a maximal torus T

oΐG= Gσ. Set To = T Π Go.

THEOREM (6.1). Suppose q>l, T is a maximal torus of Gσ and

To < Y < Gσ with Y solvable. Then Y = Op(Y)Nγ(T0) and Op(Y) is a

product of T-root subgroups of Gσ.

As a consequence of (6.1) we see that for q > 7 any Γ0-invariant

/^-subgroup is a product of Γ-root subgroups; the exact analogue of the

result in [7]. When one considers arbitrary subgroups invariant under (or

containing) a maximal torus, additional field restrictions must be made. In

addition our proofs depend on the classification of finite simple groups.

In each of the following results assume that p > 3 and q > 11.

THEOREM (12.1). The map X -^ Xσ is a bijection between the collection

of all closed, connected, σ-invariant subgroups of G containing a maximal

torus of G, and the collection of all subgroups of G generated by maximal tori

ofG.

The inverse of the map X -> Xσ is given in §12; it involves the Γ-root

groups described above. We remark that a group of the form Xσ has

known structure (see (2.5)), so by (12.1) we can describe the structure of

any subgroup of G generated by maximal tori.

The next result contains parts of (10.1) and (10.2), and concerns those

subgroups of G containing a maximal torus of Go. The result establishes

part of the conjecture in [24]; the full conjecture follows from (10.1).

THEOREM. Let To < Y < G. Then

(i) The normal closure, (Γ o

y ) , of T in Yo is generated by To and those

T-root subgroups of G that are contained in Y.

(ii) // Tx is any maximal torus of Go with Tx < Y, then (Γo

y> = ( 7 7 ) .

(in) Tx can be chosen so that Y = (Tx

Y)Nγ(Tx).

(iv) Op(Y) < (T0

Y) and Or\(TY))/Op{Y) = E(Y/Op(Y)) {the prod-

uct of all quasisimple subnormal subgroups of Y/Op(Y)).



ROOT SUBGROUPS FOR MAXIMAL TORI 155

In view of the above results it is clear that subgroups of G generated

by Γ-root subgroups are of particular importance. The next result indi-

cates such subgroups can be studied by studying G and subsets of Σ.

THEOREM (12.9). Let Tbe a maximal torus of G and Xl9...9Xk T-root

subgroups of G corresponding to (σ)-orbits Δ 1 ? . . . 9Δk of T-root subgroups of

G. Then (Xl9...9Xk)= O^«Δ 1 ? . . . ,Δ,>σ).

The following are applications of some of the above results. The

second theorem should be compared with the main results in [23].

THEOREM (12.10)(ii). Assume G is simply connected and let S be an

arbitrary set of pf-elements of G. Then Gx — (CGι(s): s E S) if and only if

THEOREM (12.12). Let Tx be a maximal torus of Gx and R<Tλ. Then

Gx = (E(CGi(Rx)): Rx < R and R/Rλ cyclic).

The paper is organized into three chapters, each containing several

sections. The first chapter is the basic development of Γ-root subgroups.

In the second chapter we begin the consideration of subgroups of G

invariant under a maximal torus, although the classification of finite

simple groups does not enter in. The last chapter contains the proofs of

several of the main results and it is here where we apply the classification

theorem.

The author would like to thank R. Steinberg for communicating a

proof of the main result in §5 much shorter than the original, and M.

Kaneda for several helpful comments.

NOTATION. Throughout the paper G will denote a connected simple

algebraic group over the algebraic closure, K, of the prime field F^. As

before, σ is a surjective endomorphism of G with Gσ finite. Then G =

Gσ = GΌ(q), where q is a power of p. If Γ is a maximal torus of G, let

Ua denote the Γ-root subgroup corresponding to the root a E Σ, the root

system of G. Let W = Ng(T)/T9 the Weyl group of G.

If X is a finite group, Fit( JSf) denotes the unique largest normal

nilpotent subgroup of X and F*(X) is the product of Fit(Jί) and E(X)9

where E(X) is the (commuting) product of all subnormal quasisimple

subgroups of X. Op{ X) denotes the largest normal /7-subgroup of X and

Op {X) is the normal subgroup of X generated by all j^-elements of X. If d
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is a positive integer, then let Φd(x) be the corresponding cyclotomic
polynomial of degree φ(d). Some additional notation is given at the
beginning of §§2, 3, 5, 9, and 10.

We label Dynkin diagrams as follows

n - 1 n

1 2 3 n - 1 n

1 2 3 n - 1 n

3 4 n- 1 n

• f
1 3 4[ 5 n - 1 n

1 2 3 4

1 2

= 6 , 7 , 8

I. Γ-ROOT SUBGROUPS

2. Preliminaries. In this section we establish a number of basic
results concerning maximal tori. In addition there are results on sub-
groups of algebraic groups generated by root subgroups and a somewhat
curious number theoretical result.

The group G is as in §1 with root system Σ and Weyl group W. We
assume that Σ is indecomposable, so that G can be regarded as a
Chevalley group over K. σ is a surjective endomorphism of G and G = Gσ

is finite. Then G is of Lie type and associated with a field F̂  of
characteristic p. The number q will be specified below; in nearly every
case it is the order of the center of a root subgroup of G for a long root.
Write G = G(q). Usually we will regard σ as an element of the semidirect
product G(σ); hence σ acts on G by conjugation.

By (10.10) of [26] we may choose a σ-stable maximal torus, H, of G
contained in a σ-stable Borel subgroup of G. Let T be a fixed σ-stable
maximal torus. Then f=H8 for some g 6 G . Therefore, /Fg σ = /f* so
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= H9 gσg~
ισ~ι G N^{H\ and we write gσ = nag for n G N. This

shows that the diagram

— nσ —

H -» #

commutes. Hence we will identify the action of σ on T and on the
character group X — X(T) with the action of nσ on H and on X(i/), the
identification being made via conjugation by g. Now, n induces an
element w E: W on X(H) and, except for the Ree and Suzuki groups, σ
induces qy on X(H), where γ is a graph automorphism of Σ. If G is a Ree
or Suzuki group, then setting qλ — {q,σ induces qxy on R ® X(H) and γ
is an isometry (which interchanges long and short roots). So σ induces qτ
or qxr on R ® X(H), where T = wγ is an isometry of R ® X(H) of finite
order. We now carry this over to T and X, regarding w G W ss N^T)/T
and w, γ acting on X We then have

(2.1)(i) If (j is not a Suzuki or Ree group, then σ induces qτ = #wγ on
X

(ii) If G is a Suzuki or Ree group, then σ acts on X and induces

9i τ = ίiwY on R ® X
(iii) f σ_-X/X(σ- 1).
(iv) I Γσ I = \f(q) I (!/(#!) I in the Suzuki or Ree groups), where/(x) is

the characteristic polynomial of wγ on R ® X

Proof. This follows from the above identification and (1.7) of [25].

The following lemma explains (2.1)(iv) and can be used to obtain the
structure of T = Tn in certain cases.

σ

(2.2) Let Y be a free Z-module and θ an endomorphism of 7. Suppose
that R ® Y is a Euclidean space and θ induces q{φ on R ® Y, where φ
is an isometry of finite order and | qx | > 1. If qλ = ± 1 , assume that

(i) rank z(Γ) = rankz(yo), where 70 = 7(0 - 1).
(ii) I Y/Y0\ = \f(qι)\ , where/(x) is the characteristic polynomial of

φ on R ® 7.
(iii) Suppose that qx is an integer, (7)φ = 7 and 7 has a free basis

in which the matrix of φ is in rational form. Then Y/Yo =
Z/i(<7i) X XZ/t((?i), where fx{x) \ - -\fk(x) are the invariant factors
of Von R ® 7.
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Proof. Let V=R® Y. If qx = ± 1 , then we are assuming that
Cγ(θ) = 0. If \qx |> 1, then use the fact that φ has finite order to
conclude Cv(θ) = 0. In either case Cv(θ) = 0 and θ — 1 is injective.
This proves (i).

For (ii), choose a basis {vl9... 9vn} of Y and positive integers zl9... 9zn

such that z, I — \zn and {zjt?,,... 9znυn) is a Z-basis of Yo = 7(0 — 1).
For / = l,...,tf let (£>,)(# — 1) = la^ZjOj. There is an integral matrix
(6/y ) such that

Then {b,j%atj) = 1, det(fc,7) = ± 1, and det(0 - 1) = ±z, zn. Passing
to F, we have z, zn = | det(^ — 1) | = | det(^!9 — 1) | . Since φ is an
isometry of V, φ and φ~' have the same eigenvalues with equal multi-
plicities, hence φ and φ~' have the same characteristic polynomial,
say /(x). Since det(φ) = det(φ~') = ± 1 , we have | det(^,φ — 1) | =
I det(4, - φ" 1 ) 1 = 1/(9,) I , proving (ii).

For (iii), suppose Y=YιΦ ΦYk, where Y, = (Yt)φ= (β,) and βt

is a Z-basis of Yt in which the matrix of φ is the companion matrix of
fi(x). Here, fx(x) | \fk(x) are the invariant factors of φ. Fix 1 < / < k
and let βt = {βλ,... ,J3/}. Write f,(x) - αx + α2x + • +α,x'~ι + x'.
Then Yt = (β,)Φ {qxβ, - ft_,>Θ ®{qλβ2 - βx). Also, qxβt - βt_x

= A - I ( 9 I Φ - l ) f o r ι = 1 , . . . , / - l.Thus,

Now,

-fi»

β/(<l\<P - 1) = -«i^iyβ, α,_xqxβ,_x ~{α,qx + \)β,

Therefore, YJY^q^ ~ 1) = <ft>/<g(ί,)ft>, where g(x) = fl,x'
+ +α,jc + 1. Now g(x) = x'/.(l/x). Since | φ | < oo, /-(x) is a prod-
uct of cyclotomic polynomials, hence the roots of ft(x) and g(x) are equal
and also α, = ± 1 . Thus, g(qx) = ±/(^,) and V ^ U i Φ ~ 1) =
From here (iii) is immediate.

(2.3) Let w: G -> G be the natural surjection, where G is the universal
covering group of G, and let f be the preimage of T. Then σ can be
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viewed as an endomorphism of G. Also,

(ϊ)(Gσ

(ii) Tσ

Proof. The first fact is standard (see (12.6) of [26]). The second

assertion is proved as in (2.12) of [23] (or see 5.10.1 in [10]).

(2.4) Let G be as in (2.3), | Z(Gσ) | = d and | Z(Op'(Gσ)) | = dv Then

(ii) If T0=TΠOP\Gσ\ then | To | = {dx/d) \f(q) \ {f{qλ) in the
Suzuki and Ree groups), where f(x) is as in (2.1)(iv).

(iii) If G has Lie rank r, then

((qι — \)r <\f(qx) | < (qx + l ) r for Suzuki and Ree groups).

Proof With notation as in (2.3), (Z(Gσ))ττ = Z(Op\Ga)). By (2.1)(iv)

\fσ\ = \Tσ\9 so | / ( ί ) | = | Γ j = ( r f / r f O | ( Γ > | = ( r f / r f 1 ) | Γ 0 | (similar

equations in the Suzuki and Ree cases). Then (i) and (ii) follow. For (iii)

use the triangle inequality and the fact that the roots of f(x) are roots of

unity.

(2.5) Let D = Dσ be a closed connected subgroup of G with f < D.

(i) D = RU{D)L, where L = Lσ is reductive and f < L.

(ii) L = L T a n d L r = [L, L] is semisimple.

(iii) RU(D) is a product of Γ-root subgroups of G and L' is generated

by Γ-root subgroups, corresponding to a subsystem of Σ.

(iv) Dσ =_O?'(Dσ)Tσ = Ru(D)σO''(L'σ)Tσ.

(v) Op(L'σ) is a commuting product of groups of Lie type and T

contains a maximal torus of each factor.

Proof. Set Q — RU{D) and let A be a Borel subgroup of Z) with

4̂ > Γ. Embedding A in a Borel subgroup of G we see that RU(A) and ζ)

are both products of 7"-root subgroups of G (one can modify the argument

of Lemma 3 of [22] to establish this). Let Δj be those roots α G ϋ with

Ua<Q and let Δ be all roots a E Σ such that t7α < Z and_ Ϊ L ^ < D. We

then have β = Π α G Δ i ί7 α and ( Z y g ) ' = ( ί L j α G Δ > ρ / ρ (from the

structure theory of reductive groups).

Let ^ ^ ( ί y ^ ^ l α E Δ ) . From the Bruhat decomposition and the fact

that Δ is a subsystem of Σ we conclude that L — ET is reductive, and then

E is semisimple. Then L' — E, and since D/Q — ETQ/Q, we have

established (i), (ii), and (iii).
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Since Q is connected, Lang's theorem implies that (D/Q)σ — DσQ/Q.

As D is the semidirect product of Q and L, (iv) will be proved once we

know that Lσ = Op'(L'σ)Tσ. We first note that Lo = EσTσ. To see this let

J' — E Π Γ, a maximal torus of £ , normalized by σ. Suppose e E £ , ί 6 Γ

and (eί) σ — βΛ Since £ and T are both σ-stable, we have eσ — ej and

t° = ( Γ 1 for somey G /. From Lang's theorem ((10.1) of [26]) there is an

element j \ E / w i t h y * =j\j~ι. Then e — (ej\)(j^ιj) represents e as an

element in EσTσ. The proof of (iv) has now been reduced to the semisim-

ple group E, where the result follows from (2.12) of [23] (that result

concerned a simple adjoint group, but these conditions were never used).

For (v), apply (11.7) of [26] to get the structure of Op'(L'σ). The

remaining part of (v) is obtained by considering orbits of (σ) on the

simple factors of ZΛ

(2.6) Let To = T Π OP\G) and assume q > 4. Then Q(Γ 0 ) ° = f.

Proof. From the Bruhat decomposition of G (with respect to a Borel

subgroup B > T) we see that the result holds unless To < C(Ua) for some

root subgroup Όa of G. Let Δ = {a E Σ | [Γo, Ly = 1}. Then Δ is closed

under taking negatives and we set D — (Ua | a E Δ).

We have Dσ = D and by (2.5) D = Dx - — Dl9 a, commuting product

of quasisiitiple groups Z>7, where each Di is generated by certain of the root

subgroups, ί/α, for α E Δ. Each Dt is a Chevalley group with indecom-

posable root system. Reorder so that {D{9...9Dk} is a (σ)-orbit. Then σfc

normalizes each Z),, 1 < / < A:, and (/),-)„* = Di(qk), a, group of Lie type

associated with fy (see (11.6) of [26] and the proof of (2.6) of [23]). Also,

(Dλ Dk)σ is obtained as a diagonal copy of Dλ{qk) (except for

amalgamation of centers). Let Tx = TΓιOp'((Dι Dk)σ). Then Tλ < To

< C(Uα) for each α E Δ, and projecting to D,, we see that T2 =

TCλOpX(Dλ)σk)<:Z(OpX(Dλ)σk)).

By (2.4)(ϋ) and (2.4)(iii) | T2 | = ( e , A ) | / ( 9

Λ ) | > (^/Oίtf* ~ l ) r (re-

place q by #j if (Z>!)σΛ is a Suzuki or Ree group), where eλ =

I Z(Op\(Dλ)σk)) I , e is the order of the center of the universal covering

group of (Dλ)σk, and r is the Lie rank of Dλ. But | Γ2 | < βj (which is 1 in

the Suzuki and Ree cases), whereas qk — 1 > 3 (\/J in the Suzuki and Ree

cases). Then 3 r < e (or (]/3)r < 1), a contradiction.

An immediate consequence of (2.6) is

(2.7) Let q > 4 and set Γ0 = Γ Π O ^ G ) . ThenNG(T 0) <

For ^ > 5, we also have control over CG(T0).

(2.8) Let q > 5 and set Go = ( ^ ( G ) , To = T Π Go. Assume that G is

adjoint. Then
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(i) CG(T0) = T.
(ϋ) If Go Φ PSL(2,9), Sz(8), or 2F4(8), then CAut(Go)(Γo) - T.

Proof, G is adjoint, so Z(G) = Z(G0) = I. Let a G Aut(G0) and
suppose a G C(T0) — Γ. Replacing a by a power of # we may assume that
as E: T for some prime 5. Extend a to an endomorphism of G commuting
with σ. By (2.6) Γis α-invariant, so a acts on X Cχ(a) is (/-invariant and
both Cx(a) and X — X/C^α) are free Z-modules.

Let Xo denote the annihilator in X of Γo. Since Γo < Cf(σ) Π
Cf(α) we have [Jf,fl] < Xo > [X, σ]. Also \X0:[X,σ]\ = \T:T0\= d,
where rf=|G!:G!

0| (see (2.3)ϋ). Both [X, α]/([X, α] ΓΊ [X, σ]) and
[X, a]/([X, a] Π [X, σ]) are isomorphic to sections of X0/[X, σ]. In par-
ticular, each has order a divisor of d and exponent dividing that of
X0/[X,σ].

Write A = Aut(G) and let Ao be the subgroup of 4̂ generated by all
inner, diagonal, and graph automorphisms of Go. The elements of Ao are
precisely the automorphisms of Go that can be extended to automor-
phisms of the algebraic group G (elements of A — Ao can be extended to
suqective endomorphisms of G).

Let Y be the subgroup of Aut(G) normalizing T and let F be the
Frobenius morphism with respect to T. Then σ and F commute in their
action on X, so oF and Fσ differ in their action on G by an inner
automorphism induced from an element of Γ. Using Lang's theorem, we
modify F so that it commutes with σ. For convenience we postpone
discussion of the cases where G has type C2, G2, F4 and p — 2, 3, 2,
respectively. Then there is a power n such that σ G YFW. Consequently,
q— pn and σ induces tpn on X, where t is an isometry of R ® X. Similarly,
there is an isometry ε and power pm, m > 0, such that 0 induces ε/?m on X
Let f(x)9 f(x) be the characteristic polynomials of ί on R ® X, R ® X,
respectively. Similarly, let g(x), g(jc) be the corresponding polynomials
of ε.

Assume a & Ao. The group A/Aoi$ cyclic of order n and generated
by γA0> where γ = F\G . Replacing α by a suitable power, we may assume
that a G A0-yn/s. That is, α G F - F ^ and so α induces εpn/s on X By
(2.2)(ϋ) \f(pn)\ = \X:[X,σ]\ which divides | X: [X, σ] Π [X, a] | .
Another application of (2.2)(ii) and previous remarks show that the latter
number divides d \ g(pn/s) | . So (2.4)(ϋi) yields the inequahty (pn - \)r <
d(pn/s + iy. Using this together with the inequality d < r + 1 we calcu-
late and obtain r = 1, pn = 9, 5 = 2. But then Go s PSL(2,9), which is
excluded in (ii). So Λ G A O and α induces ε on X
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One checks that Cχ(a) — 0, so by (2.2)(ii) we argue as above that
\f(q) |< d0 I g(l) | < d\ g(l) I , where d0 is the order of

,a] n[X,σ]) = D.

Then (2.4)(iii) yields (q - 1) '< do2
r < dl\ Since d < q + 1, we are led

to f = l,/(x) = JC ± 1, g(χ) = x + 1, and 6 < # - 1 < 2d0 < 2έ/.
If G = Dr, then Γ/Ύo is a subgroup of Z 2 X Z2,* so D is isomorphic

to a cyclic (as f = 1) subgroup of X0/[X, σ] = T/To. Hence dQ < 2,
against the above inequality. Suppose tf is an inner automorphism. Then #
centralizes T/To and hence tf centralizes D. However, a inverts X (since
g(x) = x + 1) and X is cyclic. We conclude | D | < 2, so again d0 < 2,
giving a contradiction. At this point we have a in the coset of an
involutory graph automorphism of G, and the inequality of the previous
paragraph shows that G is either of type E6 (and q = 7) or of type Ar.
Also, (i) has been proved (except for the excluded possibilities of G).

Write W- N/f and consider the action of a on W. Then N(a) =
N(b)9 where N(b)/f= WX(bT), bs^nds each root to its negative and
inverts X. a acts as wλb for wx E W, and the eigenspace of H^ for
eigenvalue -1 has codimension 1 in R ® X. If W = Sr+l9 use the cycle
decomposition of wλ to see that no such involution exists for r > 3. If
r = 2, then GO = PSL(3,7), while if r = 3, then G0 = PSL(4,9) or
PSU(4,7). If Go = PSL(3,7) or PSL(4,9) we can take wx to be saχ, sasa^
respectively. If Go = PSU(4,7), take wλ to be sxs39 (^.Sj^)2' O Γ ^ ^ I ^ ^ ^n

all cases we can explicitly compute [X9 a]9 [X9σ]9 and contradict the
earlier observation that [X, a]/[X, a] Π [X, σ] has order dividing d.

Suppose W = E6. Then Wj has determinant - 1 . Now W =
Aut(PSU(4,2)) and by (19.5) of [1] W -W has two classes of involutions,
represented in W by reflections and the product of 3 commuting reflec-
tions. This contradicts the condition on eigenvalues.

At this point we have proved the lemma for all cases except G of type
C2, G2, F4 and p — 2, 3, 2, respectively. We indicate the necessary
adjustments in the previous arguments. First note that d — 1 in all cases.
As in (2.1) σ acts on R ® X as tq, with t an isometry and q — qoXyfq.ll
a G ̂ 40, proceed as before to get the inequality |/(<?) | ̂  d | g(l) | = | g(l) | .
By (2.4) we then obtain (q — \)r < 2r, a contradiction. So a & Ao.

Let F be the endomorphism of G such that F2 — F is the Frobenius
map (with respect to Γ). If ^ = yjq — /? / + 1 / 2, then v4//40 is cyclic of order
2/+ 1, with quotient generated by a field automorphism. Since F\G

induces a field automorphism of order 2/ + 1, we argue as before that a

* Added in proof. If r is odd, T/To could be Z4 with q = 7,9. In this case multiplying a by
an element of T one can assume a E PO ± (2r, q) and argue within the linear group.
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can be taken in YFn/s. Now argue as before to get a contradiction (recall

that Go φ Sz(8), 2-F4(8)). Finally, assume q = q= pn. Here y = F\GQ has

order In and A/Ao — (Aoy). We may then assume that a induces εpn/2s

on X, for ε an isometry (n/2s need not be an integer). The usual

inequalities give a contradiction and complete the proof of (2.8).

(2.9) Let x E T. Then CG(x) contains normal subgroups YQ and Y

such that

(i)Y=Y0T.

(ii) Yo — Dλ DkX, a commuting product, where for each i =

1,...,/: there exists a power, qlt, of q such that Di = Dt(q1') is a quasisim-

ple group of Lie type defined over F^. Also Z(Y0) > X < Γ.

(iii) If each qι> > 4, then Dl9... ,D^ are the components of £(CG(.x))

and X = Cγ(E(CG(x))) < Γ.

(iv) C G (x)/y is isomoφhic to a subgroup of the center of the

universal covering group of Go.

Proof, Since x G T < Γ, C^(x) can be computed from the Bruhat

decomposition of G (with respect to the root subgroups of T). We have

f < C^(x)0 and C^(x)° = Yi Γ/Z, where the product is a commuting

product, each Yt is a Chevalley group defined with respect to an indecom-

posable subsystem of Σ, and Z < T. Let Y = (C^(x)0)σ. Since

Y*! y7 is connected, Lang's theorem (see (10.1) of [26]) implies that

y = (y1-.-r/)σfσ.
Let i? = ^ Y7. The argument in (2.13) of [23] shows that Rσ -

Op\Rσ)(f ΠR)σ. Moreover, the proof of (2.6)(ii) of [23] shows that

Op(Rσ) — Dλ - - Dk has the required structure. So setting Yo =

Op\Rσ)Zσ, we have (i), (ii), and (iii) holding. For (iv) see (4.4) of

Springer-Steinberg [25].

The following number theoretical result will be needed in §7.

(2.10) Let p>3 be prime, x = n?=ιΦdι(p), and y = U?=ιΦfj(p).
Suppose that

(a)x|j>;
(b) dx < < dm\ and

Then m — n and {dt | 1 < / < w} = {f]\ 1 <y < n). In particular, x—y.

Proof, Suppose false. Factoring out common factors we may assume

d{ φfj for each 1 < / < m and 1 <y < «. Suppose it is not the case that

ί/z = 2 and /? a Mersenne prime. Then by Zsigmondy [28], for each

1 < i < m there is a prime ry such that ri\pd> — 1, but j -\pd — 1 for

d < dr We call these primes primitive divisors. In the exceptional case,
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= /* + 1 is a power of 2 and we set η = 2. If this case occurs and

dv = 1 for some z', then dv — dλ and Φd.{p) is divisible by some odd

prime, which we may take to be rx. Therefore, η φ rv for i Φ V. Choose

rλ φ 2, if possible.

In the primitive divisor situation, dt is the order of p modulo η. So

dt 1^—1 and φ{dt) < dt < η — 1. Fix 1 < i < m. There exists j E

{1 , . . . ,Λ} such that η\Φfj(p). Then </,|£. Set g(t) = (/< - l ) / ( / * - 1)

and expand g(/)in powers of tdι. Letting t—p and using the congruence

pd' Ξ 1 (mod r,) we have r, | (£/</,) |/y.

We estimate Σ φ( jζ ) as follows. If 1 <j < m is fixed and rh,...,rik are

the primes satisfying r̂ J Φ/(/?), then, by the above, φ(jΓ.) is divisible by

(rf — 1) (rf. — 1). If c > 1 and d> 1 are integers, then cd> c + d.

Suppose that no η = 2. Using these facts we have 2(r, — 1) < Σφ(jζ )

This inequality combined with our hypothesis and the remarks of the

previous paragraph yield

Therefore all inequalities are equalities. In particular, φ(^ 7) = dt for

/ = 1,...,m. But this forces dt = 1, and so 1 = dt — η — 1, against our

supposition. Therefore, either dx = 1 and η = 2 (/> a Fermat prime) or

dt = 2 — ri9 for / = 1 or 2 (/? a Mersenne prime).

To deal with these cases we slightly modify the above argument. Say

dt = 2 = η. Choosey with η \ Φf(p) and/; φ 1. Then rt\fj/di9 so 4 \f.. If
rZi,... ,r/Λ are the other primes among rl9... ,rw that are factors of j ^ , then

φ(fj) ^ 2(rf. — 1) (η — 1). So we again have the inequality Σ(η — 1)

^ Σ φ ( ^ ) So we will again obtain (*) provided Σ dt < Σ(η — 1). Suppose

this fails and let 1 < k < m, A: T^ I. Since ^ = (r, - 1) + 1 and dk\rk- 1

we necessarily have dk — rk — 1. So dk is even and φ(dk) <^dk. On the

other hand, if we add 1 to each of the last two terms in (*), the resulting

inequalities hold. Thus φ(dk) >: dk — 1, which is impossible. We conclude

that no such k exists, m—\, dt — du and Σφ(fj) ^ Σφ(ί/, ) = 1. So

n — \,fj; = 1, andj^ + 1 \p — 1 (as x divides y). This is absurd. Therefore

(*) holds and Σ φ(d y) = Σ dr This is a contradiction.

Finally, suppose dx = 1 and rj = 2. Then d, | r. — 1 for each / =

l , . . . ,m. If (*) holds, then m — 1 and Σ φ ( ^ ) ^ 1. Therefore, n = 1,

/j = 2, and /? — 1 |/> + 1, a contradiction. So we suppose (*) to be false.

Then the inequality Σ(r — 1) < Σ ψ(fj) must fail to hold. Let notation be

as in the previous paragraph. Then 2riχ rik is a factor of fj and φ(fj) is

divisible by (riχ - 1) (rίft - 1). S o ' φ ί / , ) ^ ( ^ - 1) + + ( ^ - 1).

Combining this with the other values, φ(fγ),.. .,<p(/J, we do have
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Σ(η — 1) < Σ ψ(fj) + 1, where the 1 corresponds to η — 1. In view of our

assumption, equality must hold. The previously used inequality, cd > c +

d, is strict unlesss c — d—2, and this forces fj — 2rt for some ri9 while for

k Φj, fk = rnk) °Γ 2ri(k) with ri(k) G {r2,... , r j . However, we have seen

that r l W I (fk/di(k)). So the only possibilities are w = 1 or m = 2 = d2-

That is Λ: = /? — 1 or x = (/? — 1)(/? + 1). Considering the possibilities

for j , we have a contradiction.

The next several lemmas concern subgroups of G generated by Γ-root

subgroups.

(2.11) Let S C Σ, X= (Ua \ a G_S>, and Δ - {δ G Σ | Uδ < X). Sup-

pose Δ Π - A = 0 . Then X = Π δ ( Ξ Δ f/δ and A" is unipotent.

Proof. Let 5, X, Δ be as in the statement. It will be convenient to

exclude the case Σ of type G2. This case can be handled by a direct check.

For a fixed ordering on Σ ^ let Δ + = Δ Π Σ + , Δ~ =_Δ Π Σ ~ , X+_=

( ί / J α G Δ + ), and X~ = (Ua \ a G Δ~ ). Then X+ < U and χ-<ΪΓ,

where U~ is opposite to U. We then have X^ = Πδ G Δ+ t^ and Z~ —

5
If Σ has two root lengths, let Σ o be the subsystem of long roots. Then

Go — (Ua I a G Σ o ) is proper in G, so by induction (on | Σ |) we have

Xo = (Ua\ a (Ξ Δ Π ΣQ) unipotent. So, in this case, we may use a differ-

ent ordering, if necessary, so that Δ Π Σ o C Σ " . That is, Xo < X~ .

We claim that X = X+ X~ = XT X + . It will suffice to show * ~ X + C

X + X~ . Let α G Δ + and β E Δ~ . The Chevalley commutator relations

give [ί^, ί/α] < Π^y>0 Uia+jβ- K ^ f t 4 -^ is contained in the commutator,

then ia +jβ E Δ. Suppose this occurs. If i > 1, then since Σ is not of type

G2, α is short and ia + yβ long. By our convention this gives ia + jβ G Δ"

and ^ α + 7 ) β < J Γ . If i = 1, either Uia+Jβ < X~ oτ a + jβ = ia + jβ G Δ^,

but ht(/α +7)8) < ht(α). From these remarks we conclude that for ua G Ua

and uβ G LJg, uβua G uauβX" or uauβUyX~, with γ G Δ + and ht(α) >

ht(γ). To prove the claim, let a G Δ4" and show J T t^ C X+ X~ by

induction on ht(α). Therefore, X = X+ X~ .

Let T be a field automorphism of G with respect to Σ, Γ, 17, and such

that Gτ=
:G(qQ), where # 0 > 4. Repeat the above to show that Y —

((^4)τ I α Ξ Δ) = Π δ G Δ(ί7 δ) τ. Therefore, Y is a /7-subgroup of GT normal-

ized by the split torus H — Tτ. By (3.12) of [4] we embed YH in a proper

parabolic subgroup P of Gτ such that y < Op(P). Embedding YH in a

Borel subgroup of P, we see that in some new ordering of Σ, each root

δ G Δ is positive. In particular, X is unipotent, proving the result.
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(2.12) Let S C Σ and X= (Ua \ a E S). Let Δ - {α E Σ | Ϊ7α < * } .

Set Δ, = {«G ΔJ -α £ Δ) and Δ 2 =_{α E Δ | -α E Δ}. Then

(i) Â  = ( ζ I α E Δj> = Π α e Δ i Ua is unipotent.

(ii) X2 = (t/α I a E Δ 2 ) is semisimple.

(iii) X=XλX2 with JT, < X

Proof, (i) follows immediately from (2.11). Consider the set Δ 2 . Let

Δ+ = Δ 2 Π Σ + and X2

+ = (Ua \ a E Δ+ >. Then X+ < £/, so X2

+ is uni-

potent and X2 — Π α e Δ + ί/α. It is easy to verify that Δ 2 is a root system. It

follows from the Bruhat decomposition that X2T is a group with a

(By 7V)-pair and X£ Tis a Borel subgroup of X2T. This implies (ii).

For (iii) it will suffice to show [Ua9 Uβ] < Xl9 whenever α G A j and

jβ E Δ 2 . Suppose 7 = [ί/α, Uβ] and y =̂  1. If α, j8 are long roots, then

Y = Ua+β and Ό_a = [U_{a+βy Uβ]. So if a + yβ E Δ 2 we have α E_Δ2,

which is not the case. Now consider the general case, but exclude Σ of

type G2. Then Ua+β< Y and the only possible difficulty is when

[U_{a+βy Uβ] = 1. This forces a + β and β to be short, K of characteristic

2 and α, /? fundamental roots in a system of type B2. But here X >

(U±β,U±{a^β),Ua) and α direct shows the latter group contains U_a.

Again we have a contradiction. Similar arguments work if Σ has type G2,

and we omit the details.

J2.13) Let δ, , . . . A G 2 + and assume that for each / φj, (Z8t + Zδj)

Π Σ is a root system with {δ/9 δ.} as a fundamental set of roots. Assume

that the corresponding graph (with vertices δl9...9δk) is a Dynkin dia-

gram. Then X— (U±δι9...9U±sk) is a Chevalley group associated with

the same Dynkin diagram. Moreover, ( δ 1 ? . . . 9δk} is a fundamental system

for the root system of X.

Proof. For each 1 < / < A: let ti denote the reflection associated with

δ/9 and let Wo = (tv.. .9tk). The roots δ l 9 . . . ,δ^ are pairwise obtuse, so a

standard argument implies that they are linearly independent. Comparing

the action of Wo on the Z-span of {δl9.. .9δk} with the action of

the appropriate Weyl group on the underlying lattice we see that Δ =

(δ/^0: / = 1,... ,&} is a root system with δ 1 ? . . . ,δ^ as fundamental system.

Since each ti can be realized by conjugation by an element of (U±a;),

we have X — (U±δ: δ E Δ). We claim that Δ is a closed system of roots.

We have Δ locally closed in the sense that the root subsystem of Δ

spanned by ±δi9 ±δ y is closed in Σ for all ij. On the other hand, any pair

of roots in Δ can be conjugated by an element of Wo into such a local
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system. This proves the claim. At this stage the result follows from the

Bruhat decomposition and the classification of reductive groups.

In view of the claim we see that Γ is a root system and {δl9...9δk} a

fundamental set for Γ. This completes the proof.

The following lemma shows that the maximal tori of G are defined

unambiguously and will be used implicitly throughout the paper.

(2.14) Let L be of Lie type over F . Suppose Ll9 L2 are semisimple

algebraic groups over F^ and τ1? τ2 are surjective endomorphisms of Ll9 L 2,

respectively, such that L- Op\{L^)r) for / = 1,2. For / = 1,2 let Jι

denote the set of maximal tori of L defined with respect to τΓinvariant

maximal tori of Lt. Then Jλ — J2.

Proof. Write Lx = Ln - - Lin , where the product is a commuting

product of simple algebraic groups. Then ( η ) acts transitively on

{Ln,...,Lin} f o r i = 1,2. Let ξ = < / / τ - Γ " l " 1 : / G L ; i > . Then Xλ9 X2

are T/1'-invariant images of L u , L2 1, respectively, so are connected simple

algebraic groups. Moreover, L < XtZ(Lt) for / = 1,2. On the other hand

L — Op (L), so L < Xι for / = 1,2 and we may now replace Ll9 L2 by Xλ9

Next argue that we may assume Xl9 X2 are simply connected. It then

follows that there is a surjective endomorphism γ from Xλ to X2 satisfying

τ,γ = γτ2. Then γ induces a bijection between the set of τΓinvariant

maximal tori of Xλ and the set of τ2-invariant maximal tori of X2. It

follows that γ | L is an isomorphism with J? = J2. On the other hand, any

isomorphism of L can be lifted to an endomorphism of Lλ commuting

with Tj. It follows that J? — Jx, proving the result.

(2.15) Let A be an abelian p'-group acting on a commuting product

Y, — Yk9 where for 1 < / < k, Yt is a group of Lie type over a field of

order pe\ Assume that p > 5. Then A normalizes a maximal torus of

Yλ - - - Yk (the product of maximal tori, one from each Yt).

Proof. Argue by induction on | Yλ Yk 11A \ . Clearly we may as-

sume that A is transitive on {Yl9...9Yk} and that Z{YX Yk) = 1. If

Aγ = NA(YY) and Ax < A, then Aλ = NA(Yt) for 1 < i < k. Inductively,

there is a maximal torus Tλ of Yλ with Tfι = Tλ. Then 4̂ normalizes

Γ = (Tx : α E A) and Γ is a maximal torus of Yλ Yfc. So we now

assumed = 1.
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Regard A/CA(YX) as a subgroup of Aui(Yx) and let AO/CA(YX) =
A/CA{YX) Π Ϋj, where Ϋx denotes the subgroup of Aut(Y,) generated by
inner and diagonal automorphisms. Assume Ao> CA(YX) and choose a
subgroup B of Ao with B < A and | B/CA(YX) | a prime. Then B central-
izes maximal tori of Yx and we let D be the subgroup of Yx generated by
all such maximal tori. By (2.9) we have D = Dx DtI, where the Di are
commuting groups of Lie type over extension fields of Fpe, and / can be
taken as any maximal torus centralizing B.

By induction we may assume A < N(JX •••//), where for 1 < i < /, Jt

is a maximal torus of Dr Write Yx = OP'(YT)9 where Γis the correspond-
ing adjoint algebraic group and T an endomorphism of Y. Then A can be
extended to a group of endomorphisms of Y (automorphisms of the
abstract group Y). Hence A normalizes the group C — Cγ(B)°. Write
C — Lx - Lsϊ, where the Lt are commuting quasisimple algebraic groups
and / is the τ-invariant maximal torus of Y containing /. We may assume
Jt < / for / = 1,...,/. Each of the groups Dλ9 ...,Dι is the group generated
by all /^-elements fixed by r in a particular orbit product of ( T ) on
{Ll9...9Ls}. Using (2.6) we see that/ = C£JX •••//)°. Hence, A < # ( / )
and so A < N(ΐ Π Y,) = N(I). Consequently, we may now assume Ao —

Now A/CA(YX) — (a) X (b), where no element of (a) is in the coset
of a nontrivial graph automorphism of Yx and \b\ — sk for s — 2 or 3. If
k > 0 then (b) contains the coset of a graph automorphism (either α or b
could be trivial). By Lang's theorem ((10.1) of [26]) α induces a field or
graph-field automorphism of Yx. It follows from the fact p > 5 that A
centralizes an element c of Yx with | c \ — 2 or 3. Consequently, A normal-
izes Cγ[c) and we can argue as in the preceding paragraph, replacing B by
(c). This completes the proof of (2.14).

3. Basic properties. In this section we begin the discussion of
Γ-root groups. We maintain the notation of §2 and introduce additional
notation and terminology as follows. Set Go = OP\G) and To = T Π Go.
If Go < Gx < G, then a group of the form T Π Gx is called a maximal
torus of Gλ. Let Δ = {f/α | « e Σ}, the root subgroups of G with respect to
f. Set t / = (t7α |α G Σ+> and 5 = £/ f, a Borel subgroup of G (not
necessarily σ-invariant).

For α E Σ, regard Uα as a 1-dimensional K representation of T. Let
φα denote this representation (φα equals α if we regard α as a character
of T).

Since Δ is the set of minimal Γ-invariant unipotent subgroups of G,
Δ = Δσ, so Δ = Δj U UΔ^, a union of (σ)-orbits. Correspondingly,
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we set Σi - {a \ Ua G Δ,.}. For i = 1,... 9v we set Xt = (Δ z ) and Xt =

Op\( Xi)σ). The groups Xl9... ,XV are the T-root subgroups of G. We note

that for i = 1,... ,t>, Xt < OP\G) = Go. For 1 < i < ϋ, there is a unique
j E { l v . . ,t>} such that Σ,. = -Σ,.. We set jζ = **, Xy = X*, and Δy = Δ*.

The first result is that a Γ-root subgroup is either a /?-group or a
group of Lie type defined over an extension field of F .̂

(3.1) Fix i — 1,... ,t>. The group JSζ. is either unipotent or semisimple.
Correspondingly, Xi is either a/?-group or Jζ is a group of Lie type defined
over an extension field of Fq.

Proof. Consider the group Xr We may assume that Xi is not uni-
potent. But Xj - X? and Xt is f-invariant. Let X{Γ = Q L, where Q =
^ M ( ^ ) and L is the product of T with those root subgroups Ua such that
i7α and t/_α are both contained in ^ (see (2.12)). We have L ΠQ= 1.
Also, each root subgroup of X. is contained in either L or Q. Since σ
normalizes each of L and β, we conclude that (Δ, ) < L, hence Jζ = L.
Write L ^ ^ ^ L ^ a central product of the components of L. For each
Ua G Δ , Ua < Ly for somej. Therefore (σ) is transitive on {Lλ,...9Lk}
and A /Zί-X O ^ O ^ ί L O ^ J / Z ί O ^ ί L ! ) ^ ) ) . The argument in (2.6) of
[23] shows that Xi/Z{Xi) is associated with Fqk, completing the proof of
(3.1).

Order the Γ-root groups so that Xl9...9Xt are/7-groups and Xt+λ9...9XΌ

are groups of Lie type. We note that if T is contained in a σ-stable Borel
subgroup of G, then t — v and {Xl9...9XΌ} are the usual root subgroups
of G. We also point out that there may be containments among the X^s.
This even occurs when T is a Cartan subgroup of G. For example, in the
case of PSU(Λ, q) with n odd, there is a non-abelian root subgroup E of
order q3 and Z(E) is also a root group.

The next result gives bounds on the nilpotence class of the groups
Xλ9...9Xr First, we require the following (temporary) notation. Let H —
H° be a maximal torus of G with H < Bx — 5J7, where Bλ is a Borel
subgroup of G. Let J2 be the root system of G, with respect to H, and
{«!,...,«„} a fundamental set of roots. For a G Σ, write ά = Σ «,-«,- and
let c(i9 ά) = Σrij, the sum ranging over those j with α̂  G ajσ\ Let
c = max{φ', d ) : α G Σ , l < i < π}.

(3.2) If 1 < / < ί, then Λ̂  has nilpotence class at most c.

Proof. By either (3.9) of [3] or by [4] there exist a parabolic subgroup
Pλ < G such that X.^ < Ru(Pλ) and N^X^ < Pj. Moreover, PJ is obtained
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canonically from Xt = X?, so Pλ — P°. Therefore, we may assume that

Let Pλ < Po, where Po is a maximal parabolic subgroup of G. Let
P = Π, Po

σ'. Notice t h a t ^ < P and P0<
σ> has size 1, 2, or 3, with the latter

case possible only for G = A W - NOW i?M(P) < Λα(Λ) Indeed, i?M(P)
= Π i?w(Po

σ). RU(P{) is a product of root subgroups for T. Choose Po

such that some element Ua of Δ, is such that a has non-zero coefficient of
the fundamental root defining Po. It follows that Ua< RU(P), and hence

We now know that Xi has nilpotence class bounded by that of RU(P).
RU(P) is also the product of root groups of G with respect to the maximal
torus H. Viewing RU(P) in this way and using the Chevalley commutator
relations, the result follows.

The table below gives bounds on the nilpotence class of the groups Xι9

1 < / < t, for the various groups G. This bound is c except for the cases of
G — Sz(ςf), 2G2{q), and 2F4(q). In the latter cases the bounds are less
than c. This is because the characteristic restrictions needed to define G
force the appropriate parabolic subgroups of the above proof to have
unipotent radicals of smaller nilpotence class. In these cases direct compu-
tations give the bounds. Otherwise, the number c is computed easily once
the root system is given; for σ induces a (possibly trivial) graph automor-
phism on the root system for H.

TABLE 1

G0/Z(G0)

?SL(n,q)
Psp(«, q)
PSU(«, q)
PO±(n,qY

E6(q)
E7{q)
E,(q)
G2(q)
E4(q)
3D4(q)
2E6(q)
Sz(q)
2G2(q)

%(q)

bound on class Xt

1

2

2

2

3

4

6

3
4

3
4

2

3

5



ROOT SUBGROUPS FOR MAXIMAL TORI 171

It will be a consequence of later work that the above bounds are best
possible. Also, we will discuss the embedding of Γ-root groups in G, and
for the classical groups we describe the action of Γ-root groups on the
natural module.

Our next two results concern the embedding of Xt in G and the
embedding of Xi in G, for i — 1,..., t.

(3.3) Let 1 ¥= C be a unipotent group generated by a subset of
{Xl9...9Xt}9 and let C be the subgroup of G generated by the correspond-
ing subset of {Xl9...9Xt}. Then C is a p-group. There is aparabolic
subgroup P = P σ > T of G, such that C < RU(P). The group Pσ = P is a
parabolic subgroup of G satisfying C < Op(P)9 and Γ is contained in a
conjugate of a Levi factor of P.

Proof. Since C is unipotent, there is a canonical parabolic subgroup
P < ^ w i t h C<RU(P) (Borel-Tits, (3.9) of [3]). Then P = P σ and f <
Nς(P) = P. To see that P = Pσ is a parabolic subgroup of G first use
Lang's theorem to get a Borel subgroup /of P (hence of G) stabilized by σ
and then use (2.12) of [25] to conclude Jσ is a Borel subgroup of G. This
forces P to be a parabolic subgroup of G.jClearly C<Ru(P)σ< Op(P).
Choose x G P such that Γ < /*. Then RU(JX) is a product of some of the
root subgroups Ua for α G Σ and the Levi factor of P is generated by T
together with those Ua < P such that ί/_α < P. So σ stabilizes the Levi
factor and the result follows.

(3.42 Let i& {1,...,/}, let X= Xi9 and X = Xσ. Choosey G {1,...,/}
so that Σj = -Σ,, and set Jί* = (Xj)σ. Then

(i) F = (-ζ, Xj)= Dλ "
mDk9 a commuting product of (σ)-con-

jugate, semisimple groups, each generated by certain root subgroups of T.
(ii) Y = (Xi9 Xj)σ — Y(qk), a group of Lie type defined over ¥qk.

(iii) There exists a unique Γ(σ>-stable parabolic subgroup Po of Y
such that X < i?M(^). Also, f < Λfe(P0).

(iv) Po is the intersection of a (σ)-orbit of maximal parabolic sub-
groups of Y. If σ induces a field automorphism of G, then Po is a maximal
parabolic subgroup of Y.

(v) Suppose q > 4. Then Po = (P 0)σ is the unique parabolic subgroup
of Y" normalized by T and satisfying Z < Op(P0).

(vi) Suppose r̂ > 4. Then ΓΠ y is a maximal torus in Y9 T Π y/Z(y)
is cyclic and there is a Levi factor of Po in which T Π y is a minisotropic
torus.

Proo/. Let Ϋ= (Xi9Xj). Then F is formalized by f. Let Γ be the
collection of all roots a G Σ such that Ϊ7± α < F. Then Γσ = Γ and by
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(2Λ2)_(Ua I a E Γ) is a semisimple subgroup of Y. Since Σι9 Σ y < Γ we

have Y — (Ua \ a E Γ) and Y can be expressed Y = Dx Dk9 with each

Dέ quasisimple and generated by certain of the root subgroups in Γ. As T

is connected, T^Ng{Dt) for / = 1,...,&. Also, each γ E Σ ; satisfies

Uy^Dι for some /. As U_y<Dι as well, we conclude that (σ) is

transitive on {Dl9...9Dk}. This gives (i). The argument in (2.6) of [23]

shows that (ii) holds.

We may write YT — Dx - DkZ, where Z is a sub torus of T and

Z — Z(Y- T)°. Now σk stabilizes each of Dx,... 9Dk and we observe that

for the purpose of proving the remaining parts of (3.4) we may replace

(G, T9 σ) by (Dλ/Z(Dλ)9 f ΠDX/Z(DX), σk). Therefore, we now assume

that Ϋ- G. In particular, Cj{X) = 1.

Let P be a parabolic subgroup of G such that X < i?w(P)_< P_= P^

> Γ(see (3.3)). Conjugating, if necessary, we may assume that X < 5 < P,

where 5 is the Borel subgroup f(ί7α | α E Σ + >. So P = (B, U±0Lj\ αy ί 5 )

and S — {«,,... ,a,-} is a subset of Π = {α^... ,an). Now we may write

σ = wγ, where w ^ W — N/T and γ is a field or graph-field automor-

phism of G defined with respect to % B, f. Then Pσ = Γ γ = P̂  and so

P w — pγ ] Since BΎ ' = J5, p ^ " 1 is also a standard parabolic subgroup

for B. Thus P, P^ are both parabolics containing B and this forces

P = Pw, whence w E P. Also, γ E N(P). We claim that the permutation

of Σ associated with γ is transitive on S.

If G is a Suzuki or Ree group, then this is clear from P = PΎ, unless G

is of type F4(K) and P a Borel subgroup. But in this case X is an ordinary

root group of G, contradicting (Xι9 Xj)— G. We now exclude the Ree

and Suzuki groups for purposes of establishing the claim. For a E Σι9

Ua< RU(P) and we let (a)[ be the coefficient of at in a. Since w E P,

(α), = (aw)i for each α 6 Σ,.

Write S — S{ U U 5 m , where the union is disjoint, each St is a

(γ)-orbit, and suppose m > 1. For α E Σ / 5 let α(/c) = Σ α G s («)/ Then

α(A ) = β(k) for each α, β E Σ,-. Choose χ(α y ) = 1 for eacft a* E S, U S2,

χ(α y ) = φ for each αy E 5Ί, and χ(α y ) = η for each ay G S2 Considera-

tion of the numbers α(l) and α(2), for a E Δ1? shows that it is possible to

choose I ¥= x such that χ(α) = 1 for each α E Σ f . But then Λ(χ) E

Cγ{X) — 1, a contradiction. This proves the claim.

The claim gives (iv), once (iii) is checked. So suppose Px is another

f(o)-stable parabolic subgroup of G with X < # „ ( . ? , ) . Then Px = ^

where 5 < P 2 . So Γ, Γ g < P/ and, conjugating, we may assume that

g G NςiT) = N. So Pj = ^ w for some w <Ξ W. But now consider PΠP™.

This group is Γ(σ>-invariant and we apply the results in §2 of [8]. Write



ROOT SUBGROUPS FOR MAXIMAL TORI 173

P = Pj{ and P2 = Ph where Jλ, J2 C Π, and w - w2w'wx, where w2 G Pϊ̂ 2,
Wj G J*^, and w' E W/2f/l, the distinguished set of double coset repre-
sentatives. Then P npf= (PJχ Π P^')Wl, and we consider the group PJχ Π
P£. Let tf = /, Π_J2

W\ By_(2.4) of jβ], Pκ = (PJχ Π P£)Ru{PJχ\ so X ^
P ΠP2

M; = (P7i _ΓΪ P£')w' < P^1 and Pκ is a paraboUc subgroup of PJχ = P.
Since P£ι is Γ(σ)-stable we apply the above claim to conclude that
Pκι = PJX = P τ h u s > "Ί E Pκ> PK = ^> and /, C //'. By (2.6) of [8],
Lr < L^, where Lτ and L^ are the standard Levi factors of Ps and P/,
respectively. Reversing the roles of P and P2 we have LJχ — Lj2 = Lκ and
J\ — J2 -

Fix a, Eπ — Jv By (2.4) of [9] we see that Wκ is transitive on the set
of roots, α, such that a has at coefficient equal to 1 and αy coefficient 0 for
each αz ¥* oίj E π — Jx. Using this together with the fact that π — Jλ is a
(σ)-orbit we have Wκ(σ) transitive on those roots β G Σ satisfying
Σβi,*/, (0)ί = L F o r t h e remainder of the proof, if β G % let (β)7ι denote
the integer Σ β | € 7 l (jβ),-. Let o = {j81 (j8)7i = lj^a ^ (σ)-orbit of roots.

We claim that Σ, C o. For suppose a G Σ and (α)^ = c > 1. Let Γ
be the collection of all γ G Σ with (γ)7 l a multiple of c. It is easily checked
that Γ is a closed root system of Σ and this contradicts the fact that
G=(Xi9 Xj). So % C o. Now, P? = P% = P£w* = /£', s i n c ? . w i ^Lκ =
Lj\ So, by symmetry, there is a W^(σ>-orbit o' such that Σz C O' and
(π- J2y' C o'. But then,_o = o' and we have <nw> = J2

W' U (π - J2Y' Q
/ , U o C S + . Therefore,_(Σ+)^= Σ^ and wf = 1. We now have Px = P2

W

= ^ = P£Wι = PJ7' = ^ ? = ^ = Λ This proves (iii).
Suppose X<Op(Px) and # > 4 , where ^ is a Γ-stable parabolic

subgroup of G. Then Px = N^O^P^ so by (3.9) of [3], there is a
canojαical parabolic_subgroup P t of G such that ^ < Px and O^Pj) <
RU(PX). Then Γ < P, and we claim f < PJ. To see this first note that if
Λ(χ) G Γ, then χσ = χ and hence given α,]8G Δz, φα = φ|fc for some
integer k (a slight change is required for the Suzuki and Ree groups).
Therefore, Cτ{Ua) = Cτ(Uβ) for each α, jS G Σz , and since Cf(X) = 1,
we necessarily have T cyclic. Write Tj= (t). Then / is semisimple and is
contained_in a maximal torus fx of PJ. Then fx < Q(Γ)° = f b y (2.7).
So Γ - Tx and Λ - Po by (iv). Therefore, Px < (Px)σ - (P 0 ) σ = P0._If
equality^ailed to hold, then Op(Px) > Op(P0). However, Op(Px) <RU(PX)
= RU(PO), so this is impossible. This proves (v) and (vi) follows from (v)
and the above argument.

In §4 we will describe the Γ-root subgroups of the classical groups
and also the groups Y and Po of (3.4). One additional result of interest is
the following.
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(3.5) The set {Σ,,...,Σ,} can be partitioned as {Σiι9...9Σik} U
(Σjι9... ,ΣΛ} in such a way that each of (Xiχ9... 9Xik) and (Xjχ9... 9Xh) is
unipotent.

Proof. Let P, be the canonical parabolic subgroup of G such that
Xλ < Ru(Pλ) and N£Xλ) ^_Pλ (see (3.9) of [4]). Then PJ = P° and f < PJ.
For each α E Σ , either C/α or U_a is a subgroup of P l β So for each
1 < / < ί, either X. or A? is a subgroup of Λ^Pi) or both of Xt and Jζ*
are contained in the Levi factor, Ll9 of Px. Inductively, we can partition
the roots in the root system for L, so that the result holds in Lλ. Now we
obtain (Σ^,. ..,2^} by taking the (σ)-orbits in one of the partitioning
sets for the root system of Ll9 together with those Σ, such that Xt < Rv(Pλ).
Passing to the opposite parabolic subgroup of P,, we see that the result
holds.

In the notation of (3.5), the group (Xiχ9... ,X,k)σT can be regarded as
a replacement for a Borel subgroup. However, there may be several ways
to obtain partitions as in (3.5).

(3.6) Assume q > 4 and that Y is a group acting on Go and normaliz-
ing To. Then 7 permutes the set of Γ-root subgroups of G.

Proof. We may assume Z(G0) — 1, Y acts faithfully on Go, and
Y = (y) for some automoφhismy of Go. There is an endomorphism T of
G such that [T, σ] and T |G = j . So r normalizes To and (2.6) implies that r
normalizes Γ. Consequently, T permutes the set of (σ)-orbits of Γ-root
subgroups. The result follows.

4. Classical groups. In this section we determine the Γ-root sub-
groups Xl9...9Xt9 when G is a classical group. Choose notation as in §3
andJΊx l^i^t. Set Δ ^ Δ , X= Xi9 X = Xi9 X* = X*. In addition, we
set Y = <Z, X*>, 7 = 7σ, and P, P the parabolic subgroups of Y and 7,
respectively, as described in (3.4).

To make the statements and proofs less cumbersome we will assume
throughout the section that G and G are the appropriate linear groups.
However, it is easy to pass from these results to those for other forms of G
and G.

(4.1) If Go = SL(fl, q), then there exist positive integers r9 s, y such
that the following hold:



ROOT SUBGROUPS FOR MAXIMAL TORI 175

(ii) X is elementary abelian of order q^-^y.

(iv) ( X, X*) — Dx Dy a commuting product of copies of SL(r, K),
permuted transitively by (σ) and each generated by Γ-root subgroups of
G.

(v) X— Op(P) and P is the stabilizer of an s-space of the usual
module for SL(r,^). _ _

(vi) The projection of X to Dx is the unipotent radical of a parabolic
subgroup of_Z)1 obtained by deleting the (sth) node of the Dynkin
diagram for Dx (which has type Ar_x).

Proof. Write (X9X*)=Dι-> Dy with (σ) transitive <m{DX9... ,Dy)
(see (3.5)(i)). Let γ = σy, so that γ stabilizes each of Dl9... ,Dy. Since the
root system of each Dj is a subsystem of Σ, and since Σ has type An_λ9

there is an integer r such that D} ̂  SL(/% K), fory = 1,...,/. So (iv) holds.
We first observe that γ induces a field automorphism on Dx,,,.,Dy.

To see this write σ = rq as in (2.1). Since σ is a field automorphism of G,

T - w G W, so γ = wyqy. Now if we set W} = W Π Dj9 then N^(Wj) =

WJC^(WJ). It follows that w^ induces an inner automorphism on Zλ;

hence (-ζ) γ - SL(r, qy). At this point (iii) will follow from (v) and (2.3)

of [23].
If we can verify (i) and (vi), then the remaining parts of (4.1) will

follow, by projection, from the known structure of parabolic subgroups of
type Ar_x and the connection between parabolic subgroups of Dx and
(Dx)y. Hence we have reduced the problem to the case of G = SL(r, K),
Gσ = SL(r, qy\ and (X, X*) = G.

By (3.4)(iii), X < RU{P). Regard P as the stabilizer in G of an s-space
of the usual module for SL(«, K) (here we are using (3.5)(iv)). Then
P/RU(P) is a central product of SL(s, K), SL(r - s9K)9 and a 1-dimen-
sional torus. Each of these groups is stabilized by σ. From the uniqueness
of P we conclude that Γis a minisotropic torus of P/Op(P)9 so T contains
the central product of cyclic groups of order (qys — \)/{qy — 1),
(qy(r-s) _ λy(qy _ 1 ) ? a n d qy _ χ ( s e e C a r t e r [ 5 ] )

Let α G Λ(, Then T induces a cyclic group on Ua and induces
algebraic conjugates of φa on the other root subgroups in Δ r Since RU(P)
is abelian, X is the direct product of the groups Ua9 a E Σ, and T induces
a_cyclic_ group on X. Then Cf(G) = Z(G) implies Cf(X) = Z(G) (as
G = (X9 X*) and C^(^*) = Cf(X)) and so Γ/Z(G) is cyclic. From this
and the above description of T we have (s, r — s) — 1. For if (5, r — s) —
d>l9 then ZaXZa< T/Z(G\ where α = (qJd - \)/(qJ - 1). This
proves (i).
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The group RU(P) is the product of s(r — s) Γ-root subgroups of G.
Since Γ is a minisotropic torus of P, σ acts as wλw2q where for i = 1,2, wz

is a Coxeter element of the corresponding component, SL(s, K) or
SL(r — 5, K), of the Levi factor of P. Thus | w, | = s9 \ w2 \ — r — s and
(wl9w2) is transitive on the set of Γ-root subgroups in RU(P). By (i),
(wl9 w2) = (wxw2)9 so X — RU(P) and this proves (vi). This completes the
proof of (4.1).

A result quite similar to (4.1) holds when G is replaced by an arbitrary
classical group, although there does exist one ambiguity (which is cleared
up in §12, but under additional hypotheses).

(4.2) Suppose that G is one of the groups: Sp(w, q), SU(Λ, q), or
SO~(«, q)'. There exist positive integers r, s, y9 such that the following
hold:

(i) Either (r, s) = 1 or r = 2s.
(ii) If r φ 2s, then X/X' is elementary abelian of order 9>*<Γ-2s>

(q2ys{r-2s) j f y j s a u n i t a r y g Γ 0 U p ) .

(iii) ( Ύ, X*) = />! Z ,̂ a commuting product of copies of one of
the groups SL(r, K), Sp(r, K), or O+(r, ^Γ)'. Also, (σ) is transitive on
{Dλ9... ,Dy) and each Di is generated by Γ-root subgroups of G.

(iv) If rφ2s, the (X, **) = SL(r, ^ ) , SU(r ,^) , Sp(r, ^ ) , or

(v) If r ¥= 2s, then X= Op(P) and P is the stabilizer of a totally
isotropic (singular) s-space of the usual module for (X, X*).

(vi) If r = 2s and q >: 4, then Jf is elementary abelian of order qys

(q2γs if Y is a unitary group), P is the stabilizer of a totally isotropic
(singular) s-space of the usual module for 7, and X < Op(P), equality
only if s = 2 and ( Â , A*) a unitary group.

Proof. We first make reductions as in the proof of (4.1). Let
(X9 X*) = Dx Dy9 a central product. From (3.5)(i) we get (iii). Then
each Dj is a classical group, although perhaps of a different type than that
of G. As before, the element σy stabilizes each Z)z, but it need not be the
case that σ' induces a field automorphism on each Dt. Possibly σt induces
a graph-field automorphism on D^ i= l,...,j>. In any case, we now
project to Dl9 as before. That is we assume (X, X*) = G and G is defined
over F^,. If G — SL(r, qy), then we are done by (4.1). So suppose this is
not the case. Then G = Sp(r, qy\ SU(r, qy\ or O~ (r, qy)'.

Consider the group G = Sp(r, K), SL(r, K), or O + (r, K)'. Then P is
the stabilizer in G of an s-space, Vl9 and (r — ̂ )-space, V29 of the natural
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module V for G, satisfying F, < V2. In the symplectic and orthogonal
cases Vx is totally singular with V2 - Vx . Let Q = RU(P), so that

Q = Qσ = op{P).
First suppose that r — 2s. One checks that Q is abelian and that the

Levi factor of G contains SL(.s, qy) (SL(.s, q2y) if G is a unitary group). It
follows from (3.5)(v) and q > 4 that Γ contains a cyclic group of order
qys - \/qy - ]_ (q2ys -\_/qy + 1 if G is unitary). Since jf = Θ α e Δ ί £ ,
CΓ(-Y) < CΓ(X) = CΓ(-Y*) So CΓ( X) < Z(G) and | X\> qys (q2ys in
the unitary case). On the other hand, σ = wτqy, where w is an s-cycle in
the Weyl group, Ss9 of a Levi factor of P and r is a graph automorphism.
It is easily checked that T = 1 unless G is unitary, in which case | T | = 2
(for this use the fact that G ¥= O~ (r, q*)', since Vx is singular). Therefore
I Δ | < J (2s in the unitary case) and so | X|< qys (resp. #2 > ; 5). Therefore
(vi) holds.

From now on assume r φ 2s. Let Z be the subgroup of Q that is
trivial on V2 and on V/Vx. Then Z < β. If G is symplectic or orthogonal
then Q is the product of those root subgroups Uβ having positive coeffi-
cient of as (temporarily we label the Dynkin diagram starting at the stalk
of the diagram of type At) and Z is the product of those root subgroups
Uβ such that /? has αs-coefficient equal to 2. If G is unitary, P is the
intersection of two maximal parabolics (conjugate under the graph auto-
morphism of G) and Q is the product of root subgroups corresponding to
roots having positive coefficient of as or at — aΎ

s. Moreover, Z is the
product of root subgroups for roots having both as and at coefficient
positive.

Now X < Q and since G = ( X, X*) we cannot have X<Z. Another
observation is that G Φ Sp(r, K} with char(jf^) = 2. Otherwise, X is
generated by roots with α5-coefficient equal to 1, these being short roots in
the root system of type Cr/2. But char(AΓ) = 2 implies that the collection
of all root subgroups for short roots generates a proper subgroup of G
having type Dr/2. Consequently, from the description of Z and Q we can
conclude (using the commutator relations) that Z — Qf — Z(Q).

We claim that X = Q. In view of the above it will suffice to show that
XZ = Q. Let Γ denote the set of root subgroups Uβ < Q such that
Uβ4 Z. Then Q/Z = ®βET Uβ. Similarly XZ/Z^@β^JΪβ, so we must
show Δ = Γ. That is, we require that (wr) be transitive on Γ. We
illustrate the method with G — Sp(r, K); the other cases follow the same
argument with only minor changes. The Levi factor L of P satisfies
Ώ = LXX L2 with Lx s SL(s, K) and L2 s Sp(r - 2s9K). Write w =
wxw2 with Wj G Wi9 the Weyl group of Li9 for i = 1,2. As T is minisotropic
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in a Levi factor of P (with respect to σ — wλw2q), we necessarily have wx

an s-cycle in Wλ = Ss. Lety = \w2\ , d = (s, y), s — dsv andy = dj\.

Let Γ 1 ? . . . ,Γ7 be the orbits of Γ under (wλ). Each orbit has the form

Γz = {/?,, βt + as_λ9... ,βj + as_{ + + aλ}9 where /?, is the element of

Γz having minimal height, and we order so that ht(β{) < < ht(/?7).

Then βj = α5, β2 = as + as+l9 etc. and / = r - 2s. Let M be the (iXs)-

matrix with rows Γ 1 ? . . . ,Γ/? and let Cl9...9Cs denote the columns of M.

The direct sum of the root subgroups in a given row or column affords the

usual representation of Ll9 L2, respectively. For the rows this is easy. For

a column Cy one checks that for each β E Cy there is a unique Y £ Cy such

that β + γ = δ is a root. Moreover, δ depends only ony. Hence, we obtain

the natural module for L2 by letting the root subgroups Uβ be singular

1-spaces and realize the form via commutators. (If G is an orthogonal

group then root subgroups corresponding to a given column commute.

However, by taking two adjacent columns we obtain a nondegenerate

symplectic form, via commutation, and since L2 is represented equiva-

lently in the two column spaces we see that L2 necessarily preserves an

orthogonal form on each.)

Let E — ®ι

=ιUβ, viewed as the natural module for L 2, and let Eo be

the subspace spanned by those Uβ such that Δ Π Γ ^ 0 . Then Eo is

T(w2)-invariant. AsΓ 2 = Γ Π L 2 is minisotropic (with respect to w2)9 we

conclude r a d ^ o ) = 1. Suppose Eo < E. Then Cγ2(E0) has positive dimen-

sion, which implies Cγ(X) has positive dimension. However, Cf(X) =

Cj£X*) and G — (X, X*). This is impossible, hence Eo = E andy = / =

r-2s.

lίj\ is odd then (T2)σ has order divisible by qd/1 + 1, as does (Γ1)σ.

Hence | T/Z(G) \ is not cyclic. It follows that there exists a E T - Z(G)

and ® E Δ such that a E C(U%). But then a E Cγ(X) = Cf(X*) =

Cγ(G) — Z(G), a contradiction. Soy\ is even and w{/2 E (w2). On the

other hand, (ws)= (w2

Sχ)— (H>/), hence w{/2 E (ws) the latter group

leaving each C, invariant. The element w{/2 sends each % E Ct to the

unique root γ E C, with S + γ a root.
d)= (wfw£)= (wf w()Let Δl9...9Δd be the orbits of Δ under (wd)= (wfw£)= (wf9(a group of order sγjλ). Fix ίB E Δm and suppose {®} = Γz Π Cj. Let Γ̂

be the image of Γ under w2

/2. One checks that if γ E Δ and ® ± γ is a

root, then γ E Γ U Cj U Γk. It follows that γ E_ΔW. Setting Gι = (U±β:

% E Δ, ) we conclude that the groups G 1 ? . . ,,Gd commute and generate

G. This forces d — 1, (s, I) — 1, and (w) transitive on Γ, as required

( | Γ | = J / = 5/).

As I = S we have X = Xσ = β σ = β = O / P ) , proving (v). (iv)

follows from this and (2.3) of [23]. Also 1 = (5, /) = (s9r- 2s) = (s9 r)9
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proving (i). Finally, one checks that Qf = Zσ, so X/X' = Qσ/Zσ =
(Q/Z)σ which has order given in (ii). This completes the proof of (4.2).

5. The action of T on root subgroups. In this section we are
concerned with the action of T on the nilpotent Γ-root subgroups
Xl9...9Xr The results are fundamental to the rest of the paper and are in
the spirit of Lemma 3 of [22].

We adopt the following notation. For 1 < / < ί, let ϊ^ = (Xi9 X?)9

Yέ\ = (Yj)σ, Pj the T(σ)-stable parabolic subgroup of Yt satisfying Xt <
Ru(Pi) (see (3.4))^and Pt = (Pj)σ. In addition, set Vt = XgRjJP^f /Rjjp^f
and Vt — XtRJ^PiY/R^Py. Except for the cases where Σ, has roots of
different lengths (G a Suzuki or Ree group), we see from (2.1) that Vt can
be regarded as an F^-module of dimension | Σ, | .

(5.1) Let 1 ^ / < ί .
(i) Vt is Γ(σ)-isomorphic to the external direct sum of the root

subgroups Xa for a G Σz. Also, Vt — (Vi)σ.
(ii) If G is not a Suzuki or Ree group, then the representation that T

induces on K ®F<? Vi is the direct sum of the representations φa \T9 a E Σf .
(iii) If q > 3, the To acts irreducibly on the elementary abelian

/?-group, Vt.

Proof. Let Σ ; = {γ,,... 9yk}. The group Ru(Pi)' = Dt is the product of
certain of the root subgroups for T and the proof of (3.4)(ϋi) shows that
U ^ Di ΐorj = I9...9k. Therefore, VjSzX^X - X Ϊ ^ Let^ = Xt Π D(.
Then Jt is a product of Γ-root subgroups, so Jt is connected and Lang's
theorem implies that (Xi/Ji)σ = XJJJ^ So (i) holds. From here we have
(ii). For the Suzuki and Ree groups one can obtain (iii) from a direct
check of the possible configurations. So we now exclude these cases.

Let denote images in R^P^/D^ So Vt = Xγι X XXΎk. As Δ, is a
(σ)-orbit, σk stabilizes each of the groups Xγ,j= 1,...,A:, and σ = τq,
where r is an automorphism of G. Then τk induces scalar multiplication
and we see that (Xy )σ* is elementary abelian of order qk. By (3.5)(i), Yt is
the commuting product of a (σ)-orbit of quasisimple groups, so taking
projections we may assume that Yt is quasisimple. By induction on dim(G)
we may assume G — Yt. Also, we may assume Z(G) — 1, so Cf( Jζ ) ^
Cj{Yt) — 1, and Γ acts faithfully on Xt. On the other hand, the represen-
tations of T on Xyι9...9XΎk are algebraic conjugates of each other. We
conclude that T acts, faithfully, as a cyclic group on X 9 for / = 1,... ,/c.
Taking projections it is clear that it will suffice to show that (iii) holds for
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t h e a c t i o n of Γ o o n (Xyι)ck = V. W e h a v e | V\= qk,\ T\ = d\ TQ | = Φnι(q)

)» where ΦΠ |(JC) is the cyclotomic polynomial of degree φ(« z) and

d is the order of the center of the universal covering group of Go. In

particular, d \ q ± 1. We may assume G is an adjoint group.

First suppose To — T. By (2.1) Φnι(x) Φn(,x) is the characteristic

polynomial of r in its action on R ® X{T). So | τ | = / , where / =

l.c.m.{n l9... ,ns). In particular, k \ I. By Zsigmondy [28], for j — I9...,s9

φn(q) has as a factor a primitive divisor of qnj — 1, unless φn(q) = p + 1

= 2C or 9. We claim that Πj \ k for ally. In view of the above, this is clear

unless there is a unique y with φn (q) — φ2(q) — 2C or 9. But φ2(q) \qk — I

forces k even. So the claim holds. This implies that /1 k; hence / = k. As T

acts faithfully on V we also have T acting irreducibly on V (viewed as an

F^-space). So (iii) holds.

For the general case we first note that an easy check gives the result if

I T\= ψnι(q) — q ± 1. If Πj Φ 1,2, then each primitive divisor of qnj — 1

divides \T0\ . Setting l0 = l.c.m.{«y | «y ^ 2} we see that To cannot act on

Vo < V with I Vo | < qι°. So supposing To reducible on V9 we have /0 odd,

/ = 2/0, V = Vo + Vl9 To acts irreducibly on Vo and Vl9 and | Vo | = | Vλ \ =

qι°. Since cp2(?) 11 T\ , ί/| ^ + 1 and any primitive divisor of q + 1 (if such

exists) divides d. If Go is a unitary group, then | T \ is a product of terms

# c - ( l ) c (see Carter [6]). So /0 odd forces / = 2, and since Γis cyclic j T\

divides q2 — 1, and we contradict the fact that q > 3. From now on we

have d < 4. Since Γ is contained in a proper parabolic subgroup of G we

necessarily have q — l\\T\ and so | To | is divisible by \{q — 1)(# + 1).

However, | To \ divides qι° - 1 = (q - \)x with (x, ^ + 1) = 1. This forces

d — q + 1 = 4, a contradiction.

The next two lemmas were communicated to the author by R.

Steinberg and lead to a much shorter proof of (5.5) than our original one.

(5.2) If α G Σ and if ω is a nonzero weight of Σ, then | α | < 2 | ω | ,

with equality precisely when Σ has type Crt, a is a long root, and ω is W

conjugate to £α.

Proo/. Since Wacts irreducibly on Q <8> X(T) and preserves the form,

we may assume (ω, a) > 0. Combining the fact that ω is a weight with the

triangle inequality, we have
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This gives the desired inequality. If | a | = 2 | ω | , then the second inequal-
ity implies ω — ca with c > 0, while the first inequality shows that c = ^.
Finally, for ^α to be a weight we must have a long and Σ of type Cn.

(5.3) Let α φ β G Σ, 9 > 5, and assume G Φ Sz(8) or 2F4(8). Then
Ψa \τ0 ̂  Φβ lro This holds f or # = 5 unless Σ is of type Cn, β = -a a long
root, and ασ = 5α.

/. We may assume G is simply connected. Then X = X(T) can be
identified with the lattice of weights of Σ. Let qλ = Jq if G is a Suzuki or
Ree group; otherwise set qx = 9. As in §2 σ acts on Λ", inducing qxτ on
R ® X9 where r is an isometry. Also the argument of (1.7) of [25] shows
that X{qλτ - 1) is the annihilator of To = fσ. Then a - β = ω(qxτ - 1)
for some 0 φ ω G X Then

(1) < I a I +1 β I (triangle inequality)

(2) <4 |ω | (by(5.2))

(3) < ( 9 l - l ) | ω | ( ^ > 5 )

(4) <I ωqλτ I — I ω | (T is an isometry)

(5) — I ω(<7iτ ~" 1) I (triangle inequality).

Therefore, we have equality at each stage. From equahty in (1) we have α,
β dependent. Hence β — -a. From (2) and (5.2) we conclude Σ has type
Cn with α a long root. Equality in (3) yields qx — q — 5, while equality in
(5) gives ωqr — cω with c > 0. As T is an isometry, c — q and ωr = ω.
The equation a — β = ω(q{τ — 1) now gives a = 2ω, so ασ = 5α and the
proof of (5.3) is complete.

(5.4) Assume G Φ Sz(q), 1F4t(q\ or 2G2(q) and assume q φ 2, 3, 4, or
9. If α, jβ G Σ with α*1 |ΓQ = β \TQ for some 1 </?' < ?, then α |Γo = β \TQ.
This also holds for q = 9, unless /?' = 3, G is of type Cw, and β = -α, a
long root.

/. AS in (5.3) we may take G to be simply connected and we may
write fa - /? = ω(qτ - 1) for 0 Φ ω G X and r an isometry of X Set
9 = /7y, so thaty > 1. Then ω = β + p\pJ~^T — α), so write ω — β+ pι8
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with δ E X AS j > i we have δ φ 0. Replacing ω by β + /?'δ in the

equation pιa — β = ω(qτ — 1), we obtain a + δ = (#δ + pj~^)r. Then

I α I +1 δ I >I #δ + /j '-'jS I > ήr I δ | -pJ~ι'\ β | , which together with (5.2)

yields (pJ - l ) | δ | < 2 ( l + j p 7 " / ) | δ | . We conclude that pj'\pι- 2) < 3.

For/? > 5, this is impossible. Suppose/? = 3. Here the only possibility

is q = 9 and i — \. Moreover, all inequalities must by equalities. Using

this and (5.2) one checks that 2δ = a = -β a long root and G is of type

Cn. Finally, assume p — 2. Here / = 1 and (q — 1) | ω \ — \ qωτ \ — | ω | <

I ω(qτ - 1) | = | 2α - j8 | < 2 | α | +1 )8 | < 6 | ω | the last equality by (5.2).

Hence q < 4, completing the proof of (5.4).

THEOREM (5.5). Let 1 < / <j < / α«J assume q > 5.

(i) F; ui«J ^ are inequiυalent irreducible Έp[Toymodules unless G —

Sz(8), 2F4(8), or q^ 9 and G is of type Cn.

(ii) If {Xo Xj) is ap-group, then V% and Vj are inequiυalent irreducible

Fp[Toy modules.

Proof. We may assume G is simply connected. Write q— pa. By

(5.1)(iv) each of Vt and Vj is an irreducible F^tΓol-module. For the moment

exclude Suzuki and Ree groups. Then F^ ®¥p Vt = Vι\@ Vf θ θ Vf~\

the direct sum of the Galois conjugates of Vι (which is regarded as an

FJΓ0]-module on the right side of the equation). Similarly for Vy Assume

that Vt and Vj are equivalent F;?[Γ0]-modules and tensor the equations with

K. Then (5.1)(ii) implies that there exist 1 <pk,pι <pa and roots a E Σi9

β E Σj such that apk \TQ = βp' \TQ. By (5.4) and (5.3) q = 9, G has type Cn

and β — -a is a long root of Σ. So (i) holds in this situation.

Suppose q — 9 with β — -a a long root and Σ of type Cn. Then

(Xi9 Xj)= (Xl9 X?)=nγ^(Uy9 Ό_y). It is easy to see that (Xo Xj)σ s
SL(2, qs\ where ^ = 1 2 ^ and that (Xi9 ^ 7 > = (Xi9 Xj)σ. Therefore, we

have proved (5.5) for all but the Suzuki and Ree groups.

The Suzuki and Ree groups are handled by direct calculation, which

we leave to the reader. We observe that for G — Sz(g), 2G2(q), T — To is

necessarily a Cartan subgroup of G. If G = 2F4(q) with T a Cartan

subgroup, then as in Lemma 3 of [22] CΓ(FJ) φ Cτ(Vj) unless Xj = X*. In

this case (Xι9 Xj)— ^(v) 0 Γ Sz(^r) and we are reduced to the above.

Assuming T not a Cartan subgroup it follows that T is necessarily the

direct product of Zq_λ with a minisotropic torus of L2(q) or Sz(^).

We remark that the exceptions in (5.5)(i) are real. If G = Sz(8) and if

Γis a Cartan subgroup, then Γhas equivalent representations on U/Z(U)
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and on Z(K), where U9 V are the unique Sylow 2-subgroups normalized

by T. This example carries over to 2i7

4(8). Similarly, SL(2,9) is an

exception, which carries over to Sp(2π, 9) for all n > 1.

We conclude this section with the following result.

(5.6) Assume that q>5,GΦ Sz(q) or 2F4(q), Γis a Cartan subgroup

of G, and that Xt ψ Xj are nilpotent Γ-root subgroups of G. Then Vt and

Vj are inequivalent F^ΓoJ-modules unless q — 5 or 9, G is of type Cn and

Xiy Xj are opposite long root subgroups.

Proof. The proof is just as in the first paragraph of the proof of (5.5).

II. Γ0-INVARIANT SUBGROUPS

This chapter will be concerned with general results concerning Γo-

invariant subgroups of G.

6. Γ0-invariant solvable groups. In this section we consider Γo-

invariant solvable subgroups of G and show that for q > 7 each such

group is the product of a normal Γ-invariant /7-group and part of the

normalizer in G of Γ. Moreover, we show that each Testable /7-subgroup

of G is a product of a set of Γ-root subgroups of G.

We maintain the notation in §2. So T = Tσ, Go = OP\GO), and

To = Γ Π Go. The main result of this section is the following theorem,

although there are several other results that will be useful in other

sections.

THEOREM (6.1). Suppose q>l andT0< S < G, with S solvable. Then

(i) S = Op(S)Ns(T0);

(ii) Op(S) is the product of T-root subgroups of G.

This theorem will follow from the other results of this section, several

of which are of independent interest.

(6.2) Suppose q > 1 and A is a Γ0-invariant, abelian, / '-subgroup of

Aut(G0). Then ,4 <

Proof. Suppose false and take a counterexample so that \A\ | Go | is

minimal. Then A is an r-group for some prime r Φp, A > NA(T0), (by

(2.7)), andA/NA(T0) is an irreducible FΓ[Γ0]-module. Also, Z(G0) = 1.
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Suppose CT(A) φ 1 and let 1 Φ t G CT(A). We consider the groups
Q ( 0 and CG(t). Since f < C&ί)0, we have Γ < ( Q ( 0 ° ) σ = y < Q ί O
Let 70 ^ Y be as described in (2.9). That is Yo = £(Γ)X and A' = Z(70)
-CT{E{Y)). Then by (2.9) 7 = Y0T with only diagonal automoφhisms
induced on each component of E(Y). Write 2?(y) = Z^ Z)Λ, a central
product of components.

We claim that A<N{D() for i '=l,.. .,fc. For suppose α G .4
and D° = Dj for j ¥= i. If JC G Γo Π D,. then x" l x a G Λ < C(A). It
follows that Df = D, and xβ = ( c"1)" (mod Z{DtDj))9 which forces
(Γo Π D^Z^D^/ZiDi) to be an elementary abelian 2-group. So Di is
neither a Suzuki or Ree group. Suppose Di is defined over ¥qb and the
overlying algebraic group has Lie rank s. Then by (2.1) To Π Dt has rank
at most s (as an abelian group). On the other hand, (2.4)(iii) shows that

( a s ? > 7 )

This forces ^ = 1, so dι < 2, and we obtain a contradiction. This proves
the claim.

For ι = l , . . . X let Kt = Dx -Dr DkX and Cf = K4/ΛΓ,.. Then
£(C, ) = DiKi/K; and Zf = (Γo Π D^/K, is a maximal torus of £ ( Q .
By minimality Z, is A -invariant. So if Tλ = (To Π Dλ) (TQ Π Z)̂ ) we
have [i4, ΓJ < ΓΊίΓj? = X Therefore, A normalizes TλX and hence A
normalizes Cγ(TλX) = Γ (see (2.8)(i)). This contradiction shows that
CT(A) = 1.

Let Aλ = [A, To], so Aλ < Go. Suppose Aλ <A. By induction i41 <
7V(Γ0), so [^19 Γo] <i4, n r o < CΓ(Λ) = I. By (2.8) Aλ < Γo, whence
ylj < CΓ(^4) = 1. Hence A = Aλ. The same argument shows NA(T0) = 1.
Therefore, To acts faithfully and irreducibly on A. In particular, AT0 is a
Frobenius group and 4̂ < Go.

Consider the action of AT0 on the Lie algebra, M, of G. Viewing M as
a A^[ylΓ0]-module and using Clifford's theorem we see that M \TQ contains
the regular representation of To. So if G has Lie rank n we have the
inequality dim(M) >| To | > dr\q - \)n (by (2.4)). Use the fact that
q — 1 > 6 and the known values of d to obtain a contradiction. This
proves (6.2).

(6.3) Assume q > 1 and let Tλ be a maximal torus of G. Suppose
71! Π GQ<NG(T0). Then η = Γ. In particular, Γo is weakly closed in
NG(T0).
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Proof. We may assume Z(G 0) = 1. Suppose TQ¥= T2 = Tx Π Go<

NGQ(T0). By (6.2) To < N(T2). Hence [TQ9 T2] < Γ o n Γ 2 < Z(Γ0Γ2). If Γo

Π Γ 2 = 1 , then T2 < Q o(Γ o) = Γo by (2.8). Similarly, Γo < T2. So we

assume Γo ΠT2Φ\.

Let C = C^Γ 0 Π Γ2)°. Thenf, fj < C and C = /λZ, where fx =

Q(Γi) ° (a maximal torus), Z) = £(C),_and Z = Z(C) < f n η . Note

that 7 V 7̂  forces Z> ̂  1. Let £> = Op\Da)9 T3 = To Π £>, and Γ4 = Γ2 Π

JD. By (2.5) T3 and Γ4 are maximal tori of D. Since Γ4<JV(Γ3), we

conclude, inductively, that Γ4 = Γ3. But then T4= T3<T0Π T2< Z(C\

which contradicts (2.8).

A useful consequence of (6.3) is the following

(6.4) Assume q > 7 and let Γo < P — P σ , where P is a parabolic

subgroup of G. Then f < P.

Proof. Suppose To < P = P σ . By (5.16) of [25] there is a σ-invariant

maximal torus_f, of P such that To < JV(f,). Then Γo < JV((^)σ) and (6.3)

implies Γo < ( f ^ . But then ft < C^Γ 0)° = f. Therefore, T=TX<P.

(6.5) Suppose # > 7 and Γo < NGo(S), where 5 is a solvable //-sub-

group of G. Then S < Λ^Go(Γo).

Proof. Let 5 be a minimal counterexample and 5 / 5 0 a chief factor of

5Γ 0. Then S0<N(T0). If [Γo, S] < So, then 50Γ0 < SΓ0. But 50Γ0 <

N(T0), so (6.3) implies that S < N(T0). Thus, we may assume that

[Γo, 5/5 0] = S/ So' a n d b y minimality, [Γo, 5] = S. In particular 5 < Go.

If 5 0 = 1 then S is abelian and we are done by (6.2). Suppose then, that

SQ 7̂  1 and let Sx be a minimal normal subgroup of ST0 with Sx < *S0. By

(6.2) SΊ < iV(Γ0), so [SΊ, Γo, Γo] = 1. Say \SY\= ra, with r a prime. Then

We claim that Z(ST0) =̂ 1. Suppose otherwise. If Or,(T0) 4 C(S/S0)9

then [Or,(T0)9 S] covers S/So and by minimality, [Or,(T0)9 S] = S. Then

S < <O r,(Γ0)
S Γ°)< C(5i) and Γo acts irreducibly on S lβ Then [Sl9 Γo, Γo]

= 1 implies Z(ST0) φ 1. Therefore, Or,(T0) < C(S/S 0 ) This means that

0 r '(Γ o)SΌ< Or,(Γ0)S, and since Or,(T0) < Or,(S0T0)9 we conclude that

either Or,(T0) = 1 or OΓ,(Γ0) < Or,(ST0) φ 1. In the latter case, let 7 be

minimal normal in 57^ with Y an r'-group contained in Or,(T0)S0. Then

[Γ, T09 T09 To] < [5 0 , Γo, Γo] < [So Π T09 To] = I. Thus, C(Y) >

(O r(Γ0)
S Γ°>. But To/CTo(S/So) is an r-group, and this forces C(7) > S.

As above, this yields Z(ST0) Φ 1. Therefore, we assume that Or,(T0) = 1

and Γo induces a cyclic r-group on S/So.
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Since [Sl9 To, To] — 1 we apply Theorem B of Hall-Higman (see p.

359 of [13]) and conclude that T0/CTQ(SX) has exponent 2 or 3. In

particular, T0/CTQ(S/S0) = Z2 or Z 3 . Let Tx = CTQ(S/S0). Then Tx <

Or(TxS0) and TλS0< ST0. Since Sx is minimal normal in ST0 we have

Sx <Z(Or(TλS0)) and [Tl9Sx] = 1. If r = 2 let g be a 2-element in

ST0 — 5Ό Γo. If r = 3, then S/SQ is an elementary abelian 2-group (this

follows from the proof of Theorem B of Hall-Higman) and we let

g E S - So. In either case <S0, T09 g> = ST0. Therefore, Tx Π Tf < ST0.

If Tx Π Γf ^ 1, then we may take SX<TXΠ Tf and obtain Γo < C(SΊ).

This would imply ST0 < (Γo

5 : Γ o)< C(5Ί), a contradiction. Therefore, Tx Π

Γf - 1 and [Γ l9 Γf ] < 7\ Π Γf = 1.

Let ftj=| Γf I . Then Z? > r " 1 1 Γo | > (dr)~\q - l)π, where /i is the Lie

rank of G (here we use (2.4)(iii) and note that the numerical restrictions

rule out Suzuki and Ree groups). On the other hand, Tf < N(T0)9 while

To Π Tf — 1. So by (2.7) we may regard Tf as an abelian r-subgroup of

W, the Weyl group of G. We leave it to the reader to check that the

assumption q > 7 leads to a contradiction. (In this check the following

inequality is useful. For A an abelian r-subgroup of Sm+ι we have

I A 1 < r(ιn+i)A To see this let oλ9... ,oι be the orbits of A with | oι,\ = rΛ'.

Then m + 1 = Σ rki and | ̂ 4 | < Π r Λ | (as 4̂ is abelian). Since rkι > rki we

have m + 1 > Σ r& = r(Σ fc, ), and the inequality follows.) This proves the

claim, hence Z(ST0) φ 1.

Choose 1 φ x E Z(ST0) and consider ST0 as a subgroup of CG(x). By

(2.8) Λ: E C G O (Γ O ) = Γo, and so T < (Q(jc)°) σ = 7. Also, 7 = 70Γ, where

Yo = E(Y). ° Since [5, Γo] = 5 we have S < Yo = D{ Dk, where

Du...,Dk are the components of 70. Fix /E{1,...,/:} and let bars

denote images in Y0T0 modulo Dx - - Dέ — Dk. Then S is normalized by

7j), hence by To Π 70. By induction, S < N(T0 Π y0). Therefore, 5 <

o(To Π Fo)) - ΛΓ(f0) and [S, Γo] < 2), - Dt - - Z)Λ. Repeating this

for each / we conclude S = [5, Γo] < Z(70), and finally [5, Γo] = 1. This

is a contradiction proving (6.5).

The next result completes the proof of (6.1)(i).

(6.6) Suppose q>l and let To < S < G, with S solvable. Then
S = Op(S)Ns(T0).

Proof. Let S be a minimal counterexample. Suppose L < S with

To < L and let I b e a Hall /-subgroup of L with Γo < X Then S =

LNS(X) = L7V5(Γ0) by (6.3) and (6.5). By minimality, L = Op(L)NL(T0)9
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so S = Op(L)Ns(TQ) = Op(S)Ns(T0). We conclude that S = (To

s). In
particular, S < Go.

Let NOp{S)/Op(S) be minimal normal in S/Op(S), where TV is a
/?'-group. Then 5 = Op(S)Ns(N) and we may assume T < N5(ΛO (take TV
in a Hall /?'-group containing To). By minimality, we conclude that
S = Λ (̂7V). Let C = Q(N). Suppose, C = 5 and let I =£ x £ C. Then
x E CGo(Γo) impUes x G Γo, so Γ < ( C ^ J C ) 0 ) . = 7. We have Y= Y0T,
where 70 = Dx DkZ as in (2.9). Since S = (7^), we conclude S < 70Γ0.
Fix 1 < i < /: and let bars denote images in Y modulo Dx — Dt - - DkZ.
Set T\ = ΓQ_Π />! jZ\Z and SΊ = (7f). By minimality and (6.3), 5J =
( ^ ( ^ ^ - ( η ) = O^SΊXf,). It follows that S[<J, where JZ/Z =
Op(SλZ/Z). Therefore, Sλ = Op(Sx)Tx and S = SXNS(TX) <
O^SO^ίQoίΓi)). Since i^(Cyo(7\)) = ToNsnYo(Tx) = Γo, we obtain 5 =
0^(5!)7J) = Op(S)T0, which we are assuming false.

In view of the above, it will suffice to show that C = S. So assume
C < 5. Since Γo < #Co(TV), we have [TV, Tθ9 To] = 1, by (6.2). Therefore,
T0C Φ S. Since S = (Γo

5> we may choose C<K<L<S with K,L<^S
and such that LΓ0 = 5, L/A' is a chief factor of S and Γo Π L < A. (For
example, set L/C = (S/C)' and A/C any maximal normal subgroup of
L/C). Minimality of S implies KT0 = Op(KT0)NKTo(T0) = Op(K)NKTo(T0).

Let ^ be a /?'-Hall subgroup of A with ZΓ° = X and set ^ = To Π
A < X. Let 7 = JSf Π Opp,(K). Then S = 0^#)#, . (y) , so minimality of
5 forces Y < S. Since KT0 = Op(K)NKTo(T0) we conclude that Tx < K.
At this point we are in a position to use the argument in the proof of (6.5).
We have seen that Op,(Z(S)) = Op,(Z(LT0)) = 1. Replace the groups S,
So, Sx of (6.5) by L, K, TV, respectively. Arguing as in (6.5) we first obtain
(via Hall-Higman, Theorem B) that T0C/C = Z 2 or Z3, and then argue
that To is an r-group for some prime r. Finally we obtain a numerical
contradiction. This completes the proof of (6.6).

To obtain (6.1)(ii) we must consider ^-invariant unipotent subgroups
of Go. A key result is the following.

(6.7) Let q > 5 and assume that (Xi9 Xj) is unipotent. Then [Xi9 Xj]σ

Proof. Let Γ = [Xif Jξ ] and_set L = [Xt, Xj]. So_L < La. As Γ is
Γ-invariant, L is a product of Γ-root subgroups of G, and since L is
σ-invariant these root subgroups fall into (σ)-orbits. The first observation
implies L = L°. If L = 1, then the result is trivial, so we assume dim(L)
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Suppose there is a normal subgroup, A of X, such that A = Aσ, A is a

product of root subgroups of Γ, and 1 φ LA/A = Z(X/A) — XWA/A for

some w E {1,...,ί}. We claim that LσA/A — LA/A. Let denote images

in X/A. Then L = Xw and Xw is Γ-isomorphic to Vw =

XwRu(PwY/Ru(Pw)' H e n c e La = Xw (Lang's theorem) is Γ-isomorphic to

Vw. By (5.1) Tacts irreducibly on Vw9 so it will suffice to show that LΦ\.

For this it will suffice to check that there exist elements a E Xι and b E X}

such that [a, b]Φ\.

Since L = Xw9 it is not the case that [Uδ, Uβ] = 1 for each δ E Δf and

β E Δy. Therefore, choose δ E Δ7 and β E Δy with 1 ^ [£/δ, t£] < Uw.

Interchanging δ and β, if necessary, we may assume that there is an

integer d = 1,2, or 3 such that δ + dβ E Σw (d = 1 if δ, β are both long

roots) and [ί/δ, L ]̂ > Uδ+dβ. Let | Δ | = / and | Δ 71= m. Then Δz =

{δ!,...,^} and Δ y = { i 8 1 , . . . , i 8 J , where «! = δ, βx = β, δz = δ;_, for

2 < i < /, and βz = j8/L, for 2 < / < m (here T is the permutation of Σ

associated with σ).

From Lang's theorem we have (Jξ/JiζOσ = XiX[/X[ and ( - ζ / ξ ) σ =

XjXWX':. Moreover, the 3-subgroup lemma shows that 1 = [X'ι9 X] =

[X., Xj]. Let a E Xi and 6 E Xy There are elements x, y E ΛΓand c 2 , . . . ,c/5

c/2,...,t/m_E^*_such that α = U8χ{x)U8(c2x^ 'j_ U8i(clX^'1) (mod ^ )

and 6 = Uβι(y)Uβ2(d2yη ί/^(Jmj^^~ ) (mod XJ) (slightly different for

the Suzuki and Ree groups). There are qι choices for x and qm choices for

y
For each δM E Δ, there exists at most one βυ E Δy such that [Uδu, UβJ

- uδ+dβ T h e projection of [ά9 b] to UB+dβ is UB+dβ(h\ where A =

Σzcud^xq" xydqV \ and the sum ranges over the pairs (t/, v) for which

[Uδu, UβJ > ί/δ+^? and z is an integer with (z, /?) = 1 (z = ± 1 if δ, β and

δ + jβ are all the same length). Fix y Φ 0 and for each pair (w, v) let

eu = zcudiydqV~\ Then h = f(x), where f(t) = Σueut
qU~\ a non-zero

polynomial of degree at most ςr7"1. There are qι choices for x, so we may

choose x with A — f(x) Φ 0. So for suitable choice of x and j we see that

[a, b] has nontrivial projection to Xjk. We have now proved the claim.

We now claim that if A — A° is a product of root subgroups of X with

A < X, then LA/A ~ LσA/A. This is proved by induction on άim(X/A).

If this dimension is 0 the claim is obvious. So assume the claim holds for

all Aλ with Aλ satisfying the conditions that A satisfies and dim(X/Aλ) <

dim(X/A).

Suppose that for / = 1,2 there exist A<Aj=A°<X such that

AJA< Z(X/A) and At, = A- Xt for tt E {1,...,/}. Also, suppose Aλ Φ

A2. By the induction hypotheses LAi/Ai — LaAι/Ai, for i — 1,2. Con-

sider AλA2/A. Then AλA2/A = Vt X Vt (a f(σ)-isomorphism). By (5.5)
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and (5.1) Γ has inequivalent irreducible representations on Vtχ and Vh.
Moreover, for i— 1,2 Vtι is Γ-isomorphic to (Ai/A)σ — XtA/A (for the
equality use Lang's theorem and the fact that Xu Π A is a product of
Γ-root subgroups, hence connected). Therefore,

LA/AC\AXA2/A = LA/AΠ (Ax)σ{A2)σA/A

= (LA/A Π XtA/I) (LA/A Π XtA/A).

Now,

and LσA/A ΠAλ/A = 1 or XtχA/A. If the claim is false, we must have
the latter case, but LA/A Γ\XtA/A = 1. Passing modulo A2 we have a
contradiction. We now suppose that no such groups Al9A2 exist.

Let Z/A = Z(X/A). Then Zσj= Z and Z is a product of root
subgroups of Γ. By the above, Z = A - Xw for some w E {1, ...,*}. By the
first claim we may assume L A/A Φ Z/A. As dim(X/Z) < dim(X/A)
we have LZ/Z = LσZ/Z. Also, the usual arguments show that (Z/A)σ =
XWA/A. So either Lσ̂ 4/y4 ΠXWA/A — 1, and we are done by order
considerations, or XWA/A < Lσ^/v4. We assume the latter holds. Then
L >_XW and_so LA> Z. Let ^ < XΓ(σ) be such that_Z < ^ < L and
i4j/Z is an XT{o)-chief factor. Since ̂  is a product of Γ-root subgroups,
we must have Aλ = JS^Z for some k. Since XkA/A rφ Z(J¥/4) either
[ Jζ , Λ ]̂ or [Xy, A ]̂ is not contained in A. With no loss of generality we
suppose [Xi9 Xk]β A. Hence [X±9 Xk]A/A = XWA/A^

Now dim([Jζ, JifJ) < dimίL^so^by induction [JSQ, Xk]σ = [JQ, XJ.
Moreover, Xk<L implies that XkZ/Z < LOZ/Z — LZ/Z. Therefore,

At this point the equality LZ/Z — LQZ/Z and order considerations,
imply that LA/A — LσA/A, proving the claim. The result follows by
setting^ = 1.

(6.8) Suppose q > 5 and 1 < / < t. Then

(iii) VΛ = Jζ./jg as ^[ΓJ-modules.
(iv) V{ s Jζ/^ϊ as #[Γ]-modules.
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Proof. By (6.7), [Xi9 Xt] = [Xi9 Xt]a9 so it will suffice to show that

[Xi9 Xξ] = -ξ Π Ru{Py. Let % = [5), ^ ] . Then Y( is f-invariant, hence a

product of Γ-root subgroups. The group Xi/Yι is then i£[Γ]-isomorphic to

the direct product of those root subgroups of Xt not contained in Yr These

root subgroups fall into orbits under (σ) . By definition Xi is generated by

one such orbit. This Yt — X{ Π Ru(Pt)'9 proving the result.

The next result will complete the proof of (6.1).

(6.9) Let A — Aτ° be a/?-subgroup of Go and assume q>l. Then

(i) A is a product of Γ-root subgroups.

(ii) Let {Cl9...9Ck} be the composition factors in a fixed AT-com-

position series for A. For each / there exists a unique ni E {1,...,£} such

that Ct = VUι as F^Γl-modules.

(iii) Let nλ9...9nk be as in (ii). Then A — Xn Xn and if A —

Xn Xn , then 4̂ is a subgroup of G with ^4σ = A.

(iv) Let nv...,nk be as in (ii). Then {flp...,^} = {j\Xj ^A).

Proof. Let 1 Φ A be a -subgroup of^G0 with ^ = Aτ\ By _(3.9) of [4]

there is a canonical parabolic subgroup P of G such that A <Y = RU{P)

and 7VC(^) <_P. Then To < P, so by (_6.4) f ^ P. Also, P = P°.

Let 1 = 70 < ^ < < Yk = 7 be a Γ(σ>-composition series for Y.

Then each ^ is a product of Γ-root subgroups of G, and for / = 1,... ,£,

M = Yj/i^.j is Γ(σ)-isomorphic to the external direct product of the

root groups in some (σ)-orbit of roots, say Σn . Hence, Yt = XnYI_}.

Recall that for / = I9...9k9 Vnι = XnRu{PJ/_Ru{PJ. Then Mt = Vn.

Also, Lang's theorem implies that (Mi)σ = XιYι_x/Yι_x = Vn . By order

consideration we have Y — Ya — Xn- - XUk. This shows that Xn^.. -,XΠk

are Γ-root subgroups satisfying the following conditions: (i) A < X

Ί'x^ ΐ 7 L ( i i ) X n ι l ' ' x « β γ a n d *»*'" *" ^fΐ0ΐi = ι" - >*; (ϋi)

1,... ,/c. Among all sets of Γ-root subgroups {Xl9...,% } that satisfy (i),

(ii), and (iii), choose one such that \Xt Xι | is minimal. We claim that
A = X i > 'XL

Let L =__Xh Xlm and Lz = Xlχ Xκ for 1 < / < m. Similarly, set

L = Xf - " Xlm and L ; = X7 X7. Suppose A < L. Then for some iA Π

L, < Lz (i.e. yl avoids the LΓ composition factor LJL^^). Choose /

maximal for this. By minimality of | L \ , i < m. Also, ylL/ = L. Now,

L/Lx_x — ALι_λ/Lι_λ X Lz /L z _ 1 and this will be a contradiction to

minimality if we can show that ALt_λ is a product of root subgroups
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satisfying the necessary conditions. To see this consider L/Lt_x. Suppose
j , k > i and consider [Xι., A, ] Π Lx, = ϊ. The group / either covers or
avoids the L-T(σ) composition factor Li/Li_ι and / is a product of
Γ-root subgroups. So if / covers LJL^^ then Xt <[Xn Xlk]. Conse-
quently, (6.7) implies that Xl{ < [Xι, Xlk\. But AL - L and Li/Li_λ <
Z(L/L^}). So this forces' Li/Li_x = XιLi_λ/Li_λ <AfL^λ/L^l9

whereas we have assumed that A avoids LJL^y Therefore, / avoids

Letting I. = lk = /.+ 1 we see that Li_3rλ/Li_x is abelian. Since L / + 1 is a
product of root subgroups we have Li+λ/Li_λ = (A/ + L^χ/L^χ) X
(XιLi_x/Li_x) (consider the action of T(σ)). Letting /,- = /,-+! and /̂
vary, we see that Lt_xXl + < L. Consequently, the m-tuple
(X l 9..., Xt , A) , A/,..., A, ) satisfies conditions (i), (ii), and (in).

Notice, also, that A ^ / A - Γ ^ (^ + 1 A-i/A-i) x (^A-i/A-iX and
To acts irreducibly on each factor with inequivalent representations. Since
A is Γ0-invariant we conclude that (A Π L/+1)L/__1/L/_1 =
Xι+Lι_λ/Li_v Therefore, a rearrangement of Xlι9...,Xlm also satisfies
conditions (i), (ii), and (iii) with an avoided factor nearer the end of an
LT0 composition series of L. Repeating this a sufficient number of times
we obtain a contradiction to the minimality of | L \ , because at the last
step we have A contained in a proper subgroup of L which has the correct
form. This proves the claim and the result follows.

We complete this section with one additional result that is useful in
computations.

(6.JΌ) Let Xnχ9...,XΆk be Γ-root subgroups. Suppose that either q > 5
and (Xnχ,...,Xnk) is unipotent or q > 7 and (AΠi,...,AΠfc> is nilpotent.
Then

Proof. Suppose q > 1 and (Xnχ9... ,Xnk) = D is nilpotent. By (3.9) of
[4] there is a canonical parabolic subgroup P of G with D < RU(P) and
Λ^<Z)) < P._Hence 7^< P and, by (6.4), f < j \ The argument of (6.9)
shows that jζ < RU(P) for 1 < / < k. Hence ( AΛi,...,Xnk) is unipotent.
So in either case we have X = ( AΛi,..., AΛ^) a unipotent group.

We may assume k > 1. Suppose (b) holds. We prove (a) by induction
on the number of (σ)-orbits of root subgroups in X = ( A ,... ,AΠfc). We
have X' = ([Xiχ,...1Xiy.{iλ,...2il} C {nl9...9nk}) and since X' is in-
variant under both T and (σ), Xf — ( A^,..., Ay ) for some {jl9... ,/J C
{!,...,*}. Inductively, (A% = ( A,.,..., AΛ ). Also, X/Xf is the product of
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the groups Mt = Xn X'/X'. For i = 1,...,/:, Miis either trivial or Mt = Ĵ  ,
so (5.1)(i) implies that X/X' is the direct product of the nontrivial Λfz.
Consequently, Lang's theorem implies Xσ — (Xn9. - . 9Xn )X'σ —
{2Cnλ> ziXnk){Xjχ> - >-*/;>• W e m a y choosey^,... ,y; such that for eachy/9

XJt<[Xiχ9...9X^ f o r s o m e fa,. ••>'/} Q{nλ9...9nk). S o b y ( b ) , Xjt <

[^ v..., jζ.j < < Xnι,...,Xn/) and (a) follows. Therefore, it will suffice to
prove (b).

To prove (b) argue by induction on k. For k — 1 the result is trivial
and for k = 2 apply (6.7). So suppose k > 3 and that the result holds for
fc-l._Set Y=[Xnι9...9XΛkJ9 Y=[Xni9...9XnkJ9 D = [Y9Xnk]9 and
Z) = [7, XrtJ. Let Γ = {/ \Xt < /)}. Then (6.9) implies that D = Π, e Γ Λ).
Also, (6.9)(iii) shows that Dx = Π ^ Γ ^ J ?

 a 8ΓOUP w i * (A)σ = D-
Suppose Λ G {l,...,_0 and X A ^ 7. By (6.7), [Λ ,̂ ^ J σ - [Λ ,̂ XJ

< [7, Jζ,J - 2λ Then [XA, Jζ,J < Dx. If 1 ^ ^ <Jf£Dx)9 then letting Λ
vary we have D = [7, XnJ < Dl9 wjience Dσ < (D,)σ = D < Dσ, proving
the result. So let ^ < 7^or ^ = X^. It will suffice to show that Xj <
NάiDJ. Since 7, J ^ < JV(D), we have [XJ9 Xt] < /) for each / E Γ. Thus,
[Xj, Xt] is a product of certain of the groups Xa, for α E Γ, C Γ. Then
(5.5) and (6.8)(iii) imply [XJ9 Xt] = Πα G Γ i Xa < i^, as desired. This com-
pletes the proof.

7. Nonsolvable Γ0-invariant subgroups. In this section we maintain
the previous notation. In addition, let 7 be a 7^-invariant subgroup of G
such that 7 = Yx 7n, a central product of groups of Lie type in
characteristic/?. For 1 < / < n write Y; = Op\Yi) = ^(/?e') The goal of
this section and the next is to relate 7 to the Lie structure of G and to the
root system of G. Throughout this section we assume/? > 5 and q> Ί.

The main results of this section are as follows:

(7.1) To contains a maximal torus of 7.

(7.2) Suppose To < Tλ < T and Tλ < N(Y). For 1 < ι < n, let jr. be a
Cartan subgroup of Yr Then/ = Πf=1 C y Γ i (^) is a maximal torus of GOTX.

These results will be used in later sections to characterize such groups
7. The difficulty is that, at the outset, the groups Yt are not known to have
any connection with the existing Lie structure of G. In particular,/?*' is not
known to be a power of q.

We will prove (7.1) and (7.2) together, in a series of steps. Suppose
that one of (7.1) or (7.2) is false and choose a counterexample (for some
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choice of TQ) with \Y\ -\G0\ minimal. Then Z(G0) = 1. First assume that
(7.1) fails for Y and set S = NTQ(YX).

(7.3) (i) Tois transitiveon{Y l 9...,Y n}.

(ii) S^C(Y).

Proof, (i) is trivial from the minimality of Y, since otherwise we could
replace Y by the products of the Γ0-orbits on {Yl9...,Yn}. For (ii),
suppose 5 < C(Y) and let x G Y; - Z(YX) be a //-element. Then Λί =
(jcr°) is abelian and Γ0-invariant. Therefore, (6.2) implies that [A,T0]<A
Π To <A Π S <C(Y). Letting x vary we have [Y, To] < C(7), hence
[7, Γo] < Z(7). But this forces [7, Γo] = 1, contradicting (2.8).

(7.4)7=7,.

Proof. Suppose n > 1 and let Ix < Yx be an S-invariant abelian
//-group. Then / = (If0) is a Γ0-invariant abelian//-group and as in the
last result we apply (6.2) to obtain [/, To] < Γo Π / < Cy(Γ0). It follows
that IxZ(Yι)/Z(Yι) is an elementary abelian 2-group (also 7J,/5 = Z2).

By (2.14) we may take Ix to be a maximal torus of Yx. Suppose the
overlying algebraic group of Yx has Lie rank / and set qo—p€l- By
(2.1)(iii), Ix has rank at most / (as an abelian group). So | IX/Z(YX) |< 2ι.
On the other hand | IX/Z(YX)\= e~λf{q0\ where e < / + 1. By (2.4)(iii)
we have e~xf(q0) > e~\q0 - I)1 > e~ι4ι (since qo>p> 5). Therefore,
27 > e~ι4ι > (/ + l ) - ^ , forcing / = 1. The only possibility is YX/Z(YX) s
PSL(2,5). However, here one can argue that Tx Π Y, < Z(7,) and that /,
can be chosen as a subgroup of order 3. This is a contradiction.

By (2.14) we may choose a maximal torus / of Y with Iτ° = /. Let

/0 = / n r0.

(7.5)(i)C/(Γ0) = / 0 > [ Γ 0 , / ] .
( i i ) Z ( r ) n r o = i .

(iii) [Γo, /] is cyclic.

Proof. We first use (6.2) to obtain [Γo, /] < Γo Π / = /0. Also, /0 <
Q(Γ0) < Γo by (2.8). Thus (i) holds.

Suppose I T ^ Z G Z(Y) Π ΓO and let E(CG(z)) = Xx - Xs, a com-
muting product of groups of Lie type over extension fields of F̂  (see
(2.9)). By (2.9)(v), To Π X. is a maximal torus of Xi for i = 1,... ,5. Since
Y = O''( Y) we have Y < Z, - Xs9 so (2.8) impUes that Y ̂  C(Γ0 n Xt)
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for some /. Therefore, Y = [Y9 To Π Xt] < Xi9 so minimality of | F | | Go |
shows that To Π Xt contains a maximal torus of Y. This is a contradiction,
proving (ii).

Suppose (iii) false and choose Zr X Zr = /? < [Γo, / ] , where r is
prime. Let l ^ e G £ satisfy E(Cγ(e)) Φ 1. (It is not difficult to check
the existence of such an e. Consider E contained in a maximal torus /of a
suitable algebraic group. Then E acts on each /-root subgroup, inducing a
cyclic group.) Now apply (2.9). Write E(Cγ(e)) = D] -- Dm, a commut-
ing product of components. Minimality implies that (7.1) and (7.2) hold
for the group Dλ Dn. By (7.1) To Π Dt contains a maximal torus of Di

for 1 < i < m. On the other hand, (2.5)(v) shows that / Π Z>. contains a
maximal torus of Di9 and To Π D(, I Π Dt normalize each other.

Fix 1 < i < m and let //, be a Cartan subgroup of Dr By (7.2)
At = CTT(H() is a maximal torus of Go. We claim that each //-root
subgroup of Z>. is also an ^4-root subgroup of Go. We remark that the
argument used here will be quoted in the proofs of (7.8) and (7.9). By (3.6)
Ai permutes the i/Γroot subgroups of Dt and centralizes Hέ. So (5.6) and
the assumption p > 5 implies that either At normalizes each //-root
subgroup of Dt or there exist //-root subgroups Rl9 R2 such that At

normalizes (Rl9 /? 2 )= SL(2,5) or PSL(2,5). In the first case the claim
follows since Ai < C(Hi Π (/?,, R2)) So suppose the latter case holds
and let At= CAj((Rv R2)). Ύhcn_\Aι,: Aι^|<_4 and C^A^0 is not a
maximal torus. Write C^iA^0 — XZ, where X is semisimple and Z =
Z(XZ)°. Let At be the σ-invariant maximal torus containing At. Then
Z < τ4y and 4̂y Π l i s a maximal torus of X. Now use (2.4) applied to X
and the fact that q>25 (since p — 5) to conclude |yl/ Π ΛΓ: ^ Π
Z( X) |> 4. This contradicts X < C ^ ) and proves the claim.

Since each A -root subgroup has Frattini quotient on F^-module, the
above claim shows that Dt is defined over a field of size at least q. Thus
(6.3) and (2.8) both apply to /),. From (6.3) we conclude To Π /),. = / Π Di

for each /. From (2.8) we see that if 7^ = (Γo Π Dx) (To Π /)m) and
C = C(e) Π C(Dλ /)m), then S = CCy{e^T^C/C) is an abelian sub-
group of Cγ(e)/C. Since both T0C/C and IC/C are contained in 5, we
conclude [Γo, /] < C.

Then £ < C and, in particular, £ centralizes a proper ^-subgroup of
7. By (2.3) of [23] this implies that Y is generated by the subgroups
Dλ • Dm as E ranges over E*. Hence, [Γo, /] < C(7) n / Π Γ 0 < Z(7)
Π Γo = 1, by (ii). Then (2.8) gives / < To, which we are assuming false.
This proves (iii).
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(7.6) Let [Γo,/] = <*>.

Proof. If x — 1, then / < CG(T0) = Γo, which we are assuming false.
So (i) holds. Let C = C^(JC)°. TO prove (ii) we make use of the universal
covering group, G, of G. Let π: G -» G be the natural surjection and
regard σ as acting on G and commuting with π. Then Gσ = Gj maps, via
7τ, onto Go. Now ( Γ ) ^ " 1 is the central product of part of Z(G) with a
covering group, Y,, of Y. Since Yj is also a group of Lie type, (I)π~ι is
abelian. Choosing x to be a preimage of x we have (Z)^""1 < Q(Jc) =
Q(Jc)° (see (4.4) of [25]). Therefore, / < (CJ(JC))TΓ_= C^(JC)0, proving (ii^

At this point we obtain a contradiction. Let C = Q(JC)° and C = Cσ

Π Go. By (2.9) C = E(C)T0 and by (2.5)(v) (Γo Π £(C))Z(C)/Z(C) is a
maximal torus of E(C)Z(C)/Z(C). Moreover, [/, To] < /0 < Z(C), so
7Z(C)/Z(C) centraUzes (Γo ΓΊ £(C))Z(C)/Z(C). It follows from (2.8)
that / < Γ0Z(C) = Γo, a contradiction.

At this point we know that (7.1) holds for Y (and for all smaller
groups). Consequently, (7.2) must fail for Y. Recall, that To < Tλ < Γ.

(7.7)LetZ = Z(YΓ1)
(i)Z<η.

(ii) Y = Yj, so Yis quasisimple.
(iii) To Π Y contains a maximal torus, /, of Y.

Proof. Supposeyt G Z, withj; e Γ a n d / G Γ , . Thenj G CGo(Γo) = Γo

(by (2.8)), proving (i). (iii) is immediate from (7.1).
Suppose n > 1. By minimality of | Y\ \ Go\ , P = CYnTι(Jn) is a

maximal torus of G0Γ,. Also, P normalizes Y, Yn_1? so another appli-
cation of minimality together with (2.3) shows that

1 = 1

is a maximal torus of G0P = GQΓJ. NOW CγTγ{Jn) = Yx Y ^ ^ , so
ΠJLj CγTι(Jt) = /. Therefore w = 1, proving (ii).'

/. Let Z = Z( Y7\) and C = C y η ( Y). Clearly, Z < C. Also, CTX

is a solvable/ '-group, so (6.1) implies C < N(TX). On the other hand,
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C < YTX; we conclude that [C, TX]<C ΠTX< Z(YTX) = Z. If [C, ΓJ =

1, then C < 0 ^ ( 7 ^ ) = 7̂  and Z-C. Suppose C ^ l . Then we conclude

Set Z, = C Π η and D = ^ ( Q ί Z , ) 0 ) . By (7.7) Γ o n 7 contains a
maximal torus of Y, so Y is generated by conjugates of To Π Y. It follows
that Y<D. Let Z) = OP'(DQ). Then Y<Z> and (2.5) implies that Tx

contains a maximal torus of each component of D. Let Dx be a component
of Z> and T2 = 7\ Π A Then Γ2 ^ Z ί ^ ) , so Γ2 φ ^ and Y = [Y, Γ2] <
Z>j. Letting Dx vary, we conclude D is quasisimple.

Since 7Z> is connected we write TD = Z>Z, where Z is a torus, Z < 7",
and [Z, D] = 1. By induction, J2 = Cγτ(Jx) is a maximal torus of D. Let
A be a maximal torus of l ί F with /2 < A. Then Z < Z and Aσ = JΓ. Set
/3 = GQΓJ Π ̂ 4. By definition, Aσ is a maximal torus of Gσ, so J3 is a
maximal torus of Go Tλ.

At this point we apply the argument of (7.5) to show that each
nilpotent /2-root subgroup of D is also a /3-root subgroup of Go. Similarly,
if we use the groups Y, Jl9J29 and D we conclude that each /Γroot of Y is
a /2-root subgroup of Z>, hence a /3-root subgroup of G. As in the proof of
(7.5) we have Y defined over a field of order at least q. Suppose yt E C
with y E Y and /GΓ, . Then y G Cy(Γ0 Π Y), so by (2.8) (which now
applies to Y) we have y G Γ 0 Π Y. This shows that C < Γ,, and so

z = c = zx.
At this point we invoke Theorem (8.1), the proof of which is indepen-

dent of (7.1) and (7.2). Let Xiι9... ,Xik be the /j-root subgroups contained
in a fixed Jx -invariant Sylow /^-subgroup, U, of Y. Set Y =
< Γ V . . . ,Xik, X*,... ,^*>. Then Y = O*'(Ϋσ) (by (8.1)(iii) applied to D. If
Z> has / simple factors apply (8.1) to a diagonal of O normalized by σι,
then take projections.) Also, YA < D t̂ = DZ.

As 7^<#(Y), y η = Y(YTX Π iV(/,)) < Y(iV(P) Π 7V(Y) Π ΛΓ(/2)).
But N(D) Γ) N(Y) Γ) N(J2) permutes the /2-root subgroups of Y, so
normalizes Ϋ Therefore, Tx < Yη < YN(Ϋ) = N(Y).

Set F = Q(Ϋ)°, a Γ,-invariantjsubgroup of D. By (2J4), ̂ normal-
izes a σ-invariant maximal torus L of F. We have AY= Z,Y, where
5 L Ξ . Z ( ^ ) ° '

 a n d Z i = 2(^i n ξ ) S o ^i n ^ . - V a n d w e s e e t h a t

ZVY contains a maximal torus of G, Therefore, E = C^£ψ(Tx Π Y) is a
Γrinvariant maximal torus of G. Now, Γo < ^ ( £ σ Π Go) and (6.3) implies
that To =^a_p Go, _whence E<Cά(Toj= T. We conclude that E=f
and T < YVZ£_N( Ϋ)._ _

By (2.5) (YΓ)σ =_Yσ7; = YT. Le^C be a_maximaljorus of YT with
/, < C. Then YΓ = YC and YT = (YΓ)σ = (YC)σ = YCσ. So YΓ, = YCX,
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where Cx- Cσ Π GOTX. But Cx is a maximal torus of GOTX - GOCX (see

(2.3)) and Cγτμx) = Cγcμx) = CX(CY(JX)) = CXJX = Cx. We are assum-
ing this to be false, so this contradiction proves (7.8).

(7.9) (i) / is minisotropic.
(ii) There does not exist a subgroup D < Y such that DTχ = D and D

a group of Lie type in characteristic/?.
(in) For 1 φ t E Tl9 Cγ(t) does not contain a component of Lie type

in characteristic/?.

Proof. For (i), suppose / is contained in a proper parabolic subgroup,
K, of Y. The argument of (7.5) shows that each nilpotent /-root subgroup
of Y is also a 7^-root subgroup of G. So Op{K) is a product of 7^-root
subgroups and KTχ = K (as K = Nγ(Op(K))). If K° is the opposite
parabolic then Tx < N(K% so Γj normalizes # Π K° = L, a Levi factor
of K, containing /. We may assume Jx < L. Let Lx = Z/, so that L — LXJX

— LXL If Zq = 1, then Jx = I < Tx. Since /j-root subgroups of 7 are also
Γ rroot subgroups we have Y defined over a field with at least q elements.
Then (7.8) and (2.8) imply CγTχ(Jx) = Tλ9 a maximal torus of GOTX.
Suppose then that Lλφ\, and let J2 = Lx Π /„ a Cartan subgroup of L P

Minimality implies that iϊ = CL^J2)
 ι$ a maximal torus of GOTX. As

/j < CLi/ i(/2) = CL i /(/2) < R9 we also have Λ < Cγτμx) = J.
Replacing Tx by R in the above we have / r root subgroups of Y being

i?-root subgroups of Go. Again we conclude that the defining field for Y
has at least q elements. Then (2.3), (2.8), and (7.8) yield YTι = YJ and /
Cartan in YJ. So / is abelian, and another application of (2.8) shows that
R—J,di contradiction. Thus (i) holds.

Suppose DTχ = D < Y and D is a group of Lie type in characteristic
p. Let Ax be a Cartan subgroup of D and A = CDT(AX), a maximal torus
of GOTX, by minimality. But now consider YA. From (i) we conclude
J2 — CYA(JX) is a maximal torus of G0A. Since YA < YTX we also have
J2 < /. As in the proof of (7.6) the /Γroot groups of Y are also /2-root
subgroups of Go, so 7 is defined over a field of at least q elements. So
(2.8) applies to YTX and shows that / is a maximal torus of YTX; in
particular an abelian group. But then / < C(J2) and (2.8) forces / = /2, a
contradiction to our supposition. This proves (ii) and (ϋi) follows.

(7.10) Write Y - Y(q0) and | Γ, | = iΠ Φlt(q0).
(i) d = 1 or d is prime.
(ii) If 7 as PSL(2, qo)9 then | Tx \ is odd.

(iii) Tx is cyclic, I = Tx Γ\ Y, and Tx is a minisotropic torus of YTX.
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Proof, Suppose t G Tx is an involution and write Y = OP'(YT), where

T is an endomorphism of the algebraic group Y. If t extends to an

involutory automorphism of Y commuting with T, then Yt° is reductive

and (7.9)(iii) implies that Yt° is a torus. Let U be the unipotent radical of a

/-invariant Borel subgroup of Y. Then t inverts U9 U is abelian, and

Y ss PSL(2, # 0 ). So if I T; | is even and Y & PSL(2, qo)9 then some involu-

tion t G 7*! induces a field or graph-field automorphism of 7, against

(7.9)(iϋ). This establishes (ϋ). If Y = PSL(2, # 0) then it easily follows that

(i) and (in) also hold. Suppose then that Y s* PSL(2, q0). Thus | Tλ | is odd.

(2.8) or its proof in case q0 = 5 shows that elements of odd order in YTλ

centralizing / lie in a maximal torus V of YTX. Hence Tλ — V. (iii) follows

from (7.9)(i) and the argument used to prove (7.5)(iii).

For (i) we note that for Y s* ?SO±(2k, qo\ PSL(Λ;, <?0), or PSU(&, qo\

we automatically have d — 1, 2, or 3. For the other cases the result follows

from (7.9)(ϋ) and (7.9)(iii). Namely, (7.9)(ii) shows that Tx must act

irreducibly on the underlying vector space so Y & 0 + (2&, q0)'. Hence

I Tλ I = i(#o + *)> d(Qo ~ 1)» O Γ dilo + *)> respectively, with k odd in the

unitary case. In the latter two cases (7.9)(ϋi) forces k to be prime and since

dI k we are done here. In the remaining case d\ 4 and d\q%+ 1. For k

even, q£ + 1 ^ 0 (mod 4), so d — 1 or 2. If k is odd, Γj contains an

element 1 φ t with | ί 11 (# 0 + *) a n c * we contradict (7.9)(iii). So (i) holds.

(7.11) Let T2 be a maximal torus of 77^ and write | T2 \ = ^Π Φ^ίίo) =

iΠ Φ^ (/?). Assume that djχ ¥= dj2 ίoτjλ φj2 and that T2 < f2 is a maximal

torus of GoΓ,. Then Γ2 = T2.

Proof. Suppose | f2 | = iΠ Φr(ήr) = ±Π ΦSy(/?) By (2.10) it will suffice

to show that d = e and Σ φ ( ^ ) = Σ φ ί ^ ) ' Write | 7̂  | = ^Π Φe /(#0) =

i l l Φ c (#), viewing Γt as a maximal torus of YT{ and G0T{, respectively.

Set q0 = /?* and ^ = /?*.

For m and c positive integers Φm(pc) = Π ΦmCo(p), the product

ranging over those divisors c 0 of c such that (c/c 0 , m) = 1. Using this

and the two expressions for \TX\ we have | Tλ \— ̂ Ue HCo Φ€iCo(p) =
ίΠ 7 .Π β 0 Φ C y β 0 (p). Moreover, Σ e ^ φ ί ^ C o ) = a rank(F) = Σφ(d,-), while

Σcaoφ(Cjao) = b'τa.nk(G) = Σψ(Sj). Consequently, it will suffice to
show that d—e and {e,c0} = {cyα0}.

Consider a term Φe.Co(p) By the primitive divisor theorem (see

Zsigmondy [28]) and our assumption p > 5, either e^Q = 2 and /? is a

Mersenne prime or there is a prime divisor r of ΦeCo(p) with rt/? x — 1 for

x < e.c0. Since rf| ^ 0 ± 1, (<i, r) = 1 if ^ > 2. For such an r, there is a
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pair (cj9 aQ) with r \ Φcao(p). This forces (see the proof of (2.10)) e,c0 | Cja0

and either equality holds or r divides cp^/e^ Of course, we can reverse

all this, starting with a term Φcao(p).

By (7.10)(i) d is one or prime. Suppose Go & PSL(«, q) or PSU(w, q)

with e > 3. Then e < 3 and e \p ± 1. Using this and the remarks of the

previous paragraph, cancel off terms in the two expressions for Tλ where

the subscripts etc0 and Cja0 coincide. Starting from the largest etc0 and

Cja0 we see that all terms cancel except those where e,c0 or Cja0 is 1 or 2

or possibly a single term Φ2CQ(P)> where d is a primitive divisor of the

term (note that Tx minisotropic in YT, forces each et > 1). So we are left

with an expression i(p+l)x = Xp- \)y(p + l)^ or ^Φ2co(p)(p + 1)"
— UP ~~ W{P + W Using the fact that Tλ is obtainable from no proper

subsystem of the root system of the overlying algebraic group of Y (see

(7.9)(ii)) we use the orders given in Carter [6] and extensions to cover the

twisted groups, to conclude x < 1. In the first case use the facts that § <

| , p >: 5, and (7.10)(ii) to conclude e — d and \etc^ — {Cja0}. In the

second case note that d > 3 (otherwise, obtain a contradiction using a

primitive division of Φ2co(/>)) This forces Y = PSL(Λ;, q0) or PSU(&, q0)

and as in the proof of (7.10)(ϋi), d - k. But then 1 ^ 1 = ^Φd(<lo) O Γ

dΦ2d((lo) a n c ^ n o ei = 2- This is a contradiction. Therefore we may now

assume that Go s PSL(«, ?) or PSU(«, q) and e > 3.

If Go = PSL(«, q\ then | Tx | = i ( l / ( ^ - l))Π(?n ' - 1), with 2/if =

n. For the unitary group, replace q by -g, taking absolute values, if

necessary. We obtain | Tx | = i ( l / ( ? + l))Π(^n ' + l)Π(ί π ' - 1), where the

first product is over the odd /i/s and the second over the even w/s.

Moreover, e is a divisor of (n,q — 1) or (n,q + 1), respectively. If

y 5* PSL(2, qo)9 then by (7.10)(ϋ), | Tλ \ is odd, hence there are at most

two terms in the product. In the unitary case, if there are two terms, then

both powers of q must be odd.

Lety G Nγ{Tλ) with \yTλ | = r, a prime. By (7.9)(iϋ) and (2.9) CTχ{y)

is an r-group with order dividing that of the center of the universal

covering group of 7. We also have NGoT(Tλ)/Tλ = Π Z , the factors acting

on (by raising to powers of q or -q) the appropriate factor of Tl9

centralizing the rest. By (7.10)(iϋ), Tλ is cyclic. Therefore, (ni9 rij) = 1 for

ni φ Πj. So r divides ni for a unique /, centralizing a subgroup of the

appropriate factor having order j(q"ι/r ± l )/(? ± 1) with/a divisor of e.

It follows that Λi, = r. For each Πjφnι9y centralizes a subgroup of 7\ of

order j(qnj ± ϊ)/{q — 1), where/| e. Suppose there exists an Πj φ ni with

Πj > 2. Then we can choose a primitive divisor, s, of ςfπ-/ ± 1, and find an

element in CTχ(y) of order s. By the above, 5 = r and s is a divisor of the
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universal covering group of 7. But s > 3, so this and (7.9)(iii) yield

7 a PSL(r, q0) or PSU(r, 9 o ) . Accordingly, | Tx | = i ( ^ ± l ) / ( 9 o ± 1).

Using the facts that Λ7 | J — 1 and s — r we have nj<ni

:=z r. Using the

earlier primitive divisor argument in the two factorizations of | Tx j (com-

pare largest e,c0 and cytf0) we conclude that ar — br, hence q — q^ But

r | g o ± 1, so r cannot be primitive for qnJ ± 1 if Πj>2. This is a

contradiction, proving that no such Πj exists.

If Y ss PSL(2, # 0 ), then j> inverts Γ l5 r = 2, and « < 3, contradicting

έ?>3. So 7 s*PSL(2, # 0 ), \TX\ is odd, and by earlier remarks, there

are at most two nέ. As n > 3, r is an odd prime. At this point the

only possibilities are Go s PSL(/% #), PSU(r, #), PSL(r + 1, q\ or

PSU(r + 1, q). We chose r to be an arbitrary prime divisor of

\Nγ{Tλ)/Tx I and found that NGo(Tx)/Tx = Zr. Checking Carter [6] we

see that this forces 7 = PSL(r, q0) or PSU(r, qo)9 thus J Tx | = ̂ Φr(<?0) or

i^2r(ίo) ^ s above, a primitive divisor argument yields q — q0 and

(G o, 7 ) - (PSL(r + 1, q\ PSL(r, 9 ) ) or (PSU(r + 1, q)9 PSU(r, q)).

This leads to | Tx | = ^((^ r ± l ) / ( ^ ± 1)) = i ( ^ r ± 1), where we al-

ways take the plus sign in the unitary case and the minus sign otherwise.

Therefore, e — d(q ± 1) and this forces d = 1 and e = q±l=(r+l9

q ± 1). In particular, 7 has trivial multiplier, so the preimage, Z), of Jx in

the corresponding linear group is abelian. Order considerations show that

D is a diagonalizable subgroup of the appropriate linear group, from

which it follows that / = /, is contained in a maximal torus of Go = GOTX

(a Cartan subgroup if Go s PSL(r + 1, q)). Comparing orders we con-

clude that / is a maximal torus of Go, contradicting the original assump-

tion. This proves (7.11).

(7.12) Write 7 = Y(qQ) with q0 = pa, and let T2 be a cyclic_subgroup

of YTX with I T2 | = ^Π Φdjίp). Suppose that Σ φ ( ^ ) = α rank(F) (e.g. T2

a maximal torus of YTX) and that dt Φ dj for i φj. Then

(i) T2 is a maximal torus of YTX and of GOTX.

(ii) y η - 7Γ 2.

(in) Γ2 is a minisotropic torus of YTX.

(iv) Γ2

# consists of regular elements of YTX (in the sense of (7.9)(iii)).

Proof. Since T2 is cyclic, T2 is contained in a maximal torus Γ2 of YT}.

By hypothesis and (2.10) we have T2 - f2. Now embed T2 in a maximal

torus f2 of GoΓj. Then (7.11) shows T2 = f2. This proves (i) and (ii)

follows from (2.3). Also, GOTX = G0Γ2. We can now replace Tx by Γ2, and

obtain (iii) and (iv) from (7.9).
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The remainder of the proof consists of obtaining a contradiction by

constructing a certain maximal torus T2 of YTX that contradicts (7.12).

First suppose 7 ^ PSL(«, qQ). Then YT{ < PGL(n, qQ) and

PGL(«, q0) contains an isomoφhic copy of GL(n — 1, qQ) stabilizing a

1-space of the usual module. So YTX contains a cyclic maximal torus, T2,

of order KtfcΓ1 ~~ !)> w i t h τi contradicting (7.12)(iii). So Y $* PSL(«, ήr0).

We remark that (7.10)(ii) shows that | Tx | is odd. In particular, | 77^ : Y\

is odd, so if Y is an orthogonal or symplectic group, then Tx < 7.

If 7 is a classical group of dimension 2n in which the natural module

has a singular rc-space, then the above remarks show that YTX <

PSp(2«, ήf0), PSO + (2«, 4 0)\ or PGU(2«, ^ 0 ) . We may then choose T2 to

be a maximal torus of order ^(qβ — 1) ( K ? o " ~ 1) i n the unitary case)

with Γ2 stabilizing a singular «-space. Again we have a contradiction. If

7 = PSO" (2«, g0)', then Tλ<Y and we consider cases. If n is odd, then

7 = YTX contains a cyclic subgroup, T29 of order JK#o + 1) a n d Γ2

contains a subgroup of order divisible by (qo+ l)/(4, g0 + 1) none of

whose nonidentity elements is regular. This contradicts (7.12)(iv). If n is

even, o~(2n, q0) contains o^ {In — 2, qQ) X Z^ o + 1 . Here Γ2 can be taken

as a cyclic group of order ^ ( ^ Q " 1 — l)(^ 0 + 1) and contradicting (7.12)(iv).

The remaining classical groups are 7 = YTX = VSO(2n + 1, qoy

and PSU(2« + 1, q0). Here, use the containments GL(n, q0) <

PSO(2^2 + 1, q0) and GL(«, ^ ) < PGU(2« + 1, # 0) to get a maximal

torus Γ2 of order ^(qβ — 1) or \{q^n — 1), respectively. Again we con-

tradict (7.12)(iv). At this stage we take 7 to be an exceptional group.

If 7 = G2(q0)9 then 7 > SU(3, q0) and SL(3, ? 0 ). Since p > 5 one of

these has center of order 3, and we choose a cyclic group T2 of order

9o ~~ ?o + 1 o r 9o + 9o + IJ accordingly. This violates (7.12)(iv). If 7 =

£ 7 ( ί o ) , then I Tx \ odd gives Tx < 7. By Table (3.3) of [23] Y>3D4(q0) X

PSL(2, q^) and we take T2 as the direct product of cyclic groups of order

#o ~~ ίo + 1 a n ( i i(9o "~ 1) Again this contradicts (7.12)(iv). If 7 = Es(q0)

then Table (3.3) of [23] shows that 7 > PSL(9, ^ 0 ) or PSU(9, q0), accord-

ing to 3\qo+ I or 3 | g0 — 1. Here take T2 to be cyclic of order

(#o ~~ l)/(9o ~~ 1) O Γ (ίo + l)/(ίo "*" 1)» respectively, and contradict

Suppose 7 = F4(q0). By Carter [6], Table (3.3) of [23] and (7.9)(ii) it

follows that Tx is the Coxeter torus of YTX = 7. Now F4(q0) contains
3D4(q0). To see this use the argument of [23] in the verification of Table

(3.3) (note that the subgroup of F4(K) spanned by all long root subgroups

in a fixed system has type D4(K) and the triality graph automorphism is
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induced by a Weyl group element). Now 3D4(q0) contains a cyclic maxi-

mal torus, Γ2, of order q£ — ql + 1. By (7.12), T2 is a maximal torus of 7,

so we may assume T2~ Tx. But this contradicts (7.9)(ii).

Suppose Y = E6(q0). We claim that TXY > 3D4(q0) X Γ3, where T3 is

cyclic of order ^(ql + q0 + 1). Given this, we take T2 — T4X Γ3, where

T4 is a cyclic torus of 3D4(q0) of order ^ — ql + 1. For existence of
3D4(q0) X Γ3, argue as in (3.3) of [23]. Namely, we first argue that there is

an element of the Weyl group of Y mapping the diagram

ax a3 <x4 a5 a6 r a2 a4 a3 <xx,to

« 2

where r is the negative of the root of highest height. Since the Weyl group

is transitive on fundamental systems, we can either do this or map the first

system to the reverse of the second. In the latter case multiply by the

graph automorphism of Y to get a map as desired. However, the resulting

map induces an element of order 3 on ZΣ so cannot involve a graph

automorphism. Now, complete the construction as in [23].

Next, suppose Y s 2E6(q0). Here, we note that if Wis the Weyl group

of E6(K) — Ϋ, then for T the graph automorphism, W(τ)= WX Z 2 ,

where the nonidentity central element sends all roots to their negatives. It

follows from the previous case that 2E6(q0) contains 3D4(q0) X T3 where

T3 is cyclic of order ^(ql — q0 + 1). So we again get a maximal torus T2 of

YTX that contradicts (7.12)(iv).

The final case to consider is 7 = 3Z>4(^0). Then Table (3.3) of

[23] shows that Y contains X ^ P S L ( 3 , q0) or PSU(3, q0) according to

whether 3 | q0 + 1 or 3 | q0 — 1. Accordingly, Cγ(X) is cyclic of order

#o + #o + 1 0 Γ 4o ~ Qo + l Therefore, we let T2 be cyclic of order

{ql — \){ql ± q0 + 1) resp. and contradict (7.12)(iv). We have now con-

sidered all cases and the proof of (7.1) and (7.2) is complete.

8. Γ0-invariant groups of Lie type. In this section we continue the

analysis of §7. Let Y be a Γ0-invariant subgroup of Go such that 7 is a

commuting product of groups of Lie type in characteristic/?. Assume that

p >: 5 and q > 7. In (8.1) we assume To Π Y is a Cartan subgroup of Y

and show that Y is related to the root system of G. In later sections we

will apply (8.1) and the results of §7 to determine Y in the general case.

Write Y — Yx - Yk a commuting product of groups of Lie type in

characteristic p.
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THEOREM (8.1). Suppose To Π Y. is a Cartan subgroup of Yt for i =

1,...,&, and let Ut G Syl^l^-) with Uι invariant under To Π Yr For each

1 < / < /c, there exist T0-root subgroups Xj,...,X* of G such that the

following hold:

{ϊ)U, = X r--X .
(ii) Y, = Y,(q' )forsomee,>h_

(iv) Yi is the commuting product of a (σ)-orbit of et semisimple

subgroups of G, each generated by T-root subgroups of G.

(v) ( Yj,..., Yk) — Yλ - Yk9 a commuting product.

By way of example, say Y =2D4(qJ). Then Y will be the commuting

product of j copies of D4{K), the components of Y corresponding to a

subsystem of Σ having the structure of j orthogonal copies of D4.

The proof of (8.1) will be carried out in a series of steps. Assume the

hypothesis of (8.1). The idea of the proof is this. First we reduce to the

case where Y has just one factor. Next we consider the case Y = SL(2, pe)

or PSL(2, pe). This is the hardest case. After that we work through the

various rank 2 possibilities for Y as well as the 3-dimensional unitary

group. The general case follows by induction and an application of (2.13).

(8.3) (i) Each (Γo Π Y)-root subgroup of Y is a Γ-root subgroup of G.

(ii) Ui = X)χ '"Xl for Γ-root subgroups X)χ,... , j ς of G.

(iii) Yt = Ylqe') for some ex > 1.

(iv) Let Yt be as in (8.1)(iϋ). Then (Yl9...,Yk)= Yj Yk is a

commuting product.

Proof. Since T0<C(T0Γ) Yt) for / = l,...,k9 To normalizes each Yt.

The argument in the proof of (7.8) shows that each (To Π Y;)-root

subgroup is also a Γ0-root subgroup of Go. This proves (i) and (ii) follows

from this and (6.9). For (iii) note that the defining field of Yt has order

equal to the minimum of the orders of the root subgroups of Yjm

Fix / and a (To Π Y))-root subgroup, D. Let E be the opposite

(To Π Y^)-root subgroup of Yt. We claim that E — D*, the opposite

7^-root subgroup in Go. By (5.5) and (6.8)(iii) it will suffice to show that

the representation of To on the Frattini quotient of E is inverse to the

representation on the Frattini quotient of D. To see this set Z = Z(YιT0).

Then (To Π Yt)Z/Z is a Cartan subgroup of YJ0/Z and (2.8) shows that

Γo induces diagonal automorphisms on Yr As T0<C(T0Π Y;.), (2.3)

shows that TQ/Z is a Cartan subgroup of Y^TQ/Z, and the claim follows.
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S o f o r e a c h / , ^ = 4 ^ 4 ^
the Γ-root subgroups contained in Ur To obtain (iv) we need only apply
(6.10).

In view of (8.3), we now assume that Y - Yx. Write Xjr - Xjr for
eachyr.

(8.4) Lctjm¥>jnG{jl9...Jι}9 with Xjm, Xjn root subgroups of Y
corresponding to fundamental roots.

(i) If V is the (Γo Π 7)-root subgroup of Y opposite to Xj , then
V=X*._

(ii)"[Λ£, Xjn] = 1.

Proof, (i) was established at the end of the proof of (8.3). It follows
from (i) that Xf is a root group of Y corresponding to the negative of a
fundamental root. Since the difference of fundamental roots is never a
root we conclude that [X*m, Xj ] = 1. So (ii) follows from (6.10).

(8.5) Suppose Go is a classical group and Y = SL(2, qj) or PSL(2, qj).
Then (8.1) holds.

Proof. Here U = Xt for some 1 < ΐ < / and by (8.4)^7 =_(Xi9 X?).
Let D = (Xi9 Xf). By (3.5), D is a reductive group and D = Dx Dm a
commuting product of a (σ)-orbit of reductive quasisimple groups, each
generated by Γ-root subgroups of G. We must show that m = j and that
Dx ss SL(2, K) or PSL(2, K). Suppose m > 1. Then OP\Dσ) is isomorphic
to ^ ' ( ( J D , ) ^ , modulo centers. Also, Xt = Π/(^ Π 5^). Replacing G by
Dp σ by σm, ^ by ^ Π ̂ ^ b y ( f ΠJD1)σW, and Yby the projection of Y
to Z>l9 we may assume that G = ( A), JQ1'). Then 7 < Go.

By (4.1) and (4.2) X^O^P) for P a parabolic subgroup of Go

corresponding to the stabilizer of a singular /-space of the usual module,
M, of the appropriate classical group. In view of (4.1) and (4.2), we may
assume that Go ss PSp(2j, q), PSU(2s, q) or PSO+(25, q)e. In all cases
s> 1.

It will be more convenient to deal with the appropriate linear group
Gx - Sp(2s, q), SU(25, <?), SO + (2Λ , q)\ respectively. Accordingly, we set
G, = Sp(2s, K\ SL(25, K), or SO(2s, K). Then G, is a covering group of
G and universal except for the orthogonal group. We replace G by Gλ and
G by G^ in order to consider module actions. We retain the other
notation, viewing X. and To as subgroups of Gl9 Xt and T as subgroups of
Gx. Let M = if ® Aί, the natural module for Gt, where in the symplectic
and orthogonal cases the form is extended naturally.
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From (4.2)(vi) and (3.4)(vi), we see that under the action of Tθ9 M
decomposes into the direct sum of the two inequivalent, irreducible,
Γ0-submodules, Mx and M2, each of dimension s. Moreover, the stabilizer
in Gx of M, induces on Mt either GL(s, g), a subgroup of index q + 1 in

s, q2), or a subgroup of index 2 in GL(s, q), according to Gx ss
s, q\ SU(2s, q\ or SO+ (2s, q)\
We claim that Y — (Xi9 Xf) acts irreducibly on M. First note that

To < N(Y) and by (5.1) CTQ(Y) = C^X,) < C^X,) = Cf(G{) = Z(GX).
Therefore, (Γo Π Y)Z(GX) has index at most 2 in Γo. Using primitive
divisors we see that To Π Y acts irreducibly on Mx and on M2. Also, the
assumptions p >: 5 and # > 5 imply that To Π Y contains an element, t,
inducing scalar action for different scalars on Mx and M2, So if Y acts
reducibly on M, then Y stabilizes either Mλ or M2. But this is inconsistent
with / G Γ 0 Π 7 < 7 ( a s ί ί Z( Y)), and the claim holds.

View M as a ^[Γ^-module. Since M} and M2 are inequivalent, and
irreducible as (Γo Π 7)-spaces, M is the direct sum of 1-dimensional
K[T0 Π y]-modules affording distinct linear representations of Γo Π 7.
As f < C(Γ0), each K[T0 Π 7]-submodule is also a i£[f]-submodule of
M.

Since [M, ZJ and [M, Xf] are (Γo Π 7)-invariant, it follows that
M = [M, XJ Θ [M, Λ?]. Write M\γ = K 1 θ θK r, with each F; an
absolutely irreducible ίΓ[y]-module. Then, for 1 < fc < r, F^ =
[*Λ> ^ ] θ [ ^ /̂*] It follows (see (13.1) of [26]) that Vk is isomoφhic to
the extension (to K) of an algebraic conjugate of the usual module for
SL(2, qj). By the previous paragraph, each Vk is Γ-invariant. Therefore, Vk

is invariant under (7, T). But (Xl9 T) = Xtf and (Xf, f) = j^f . Hence,
(7, f >> (^., Jζ*>= Gl9 and this shows that r = \ and Gx = SL(2, ίΓ).
But this contradicts s > 1, proving (8.5).

(8.6) Suppose 7 = SL(2, qj) or PSL(2, ̂ ) . Then (8.1) holds.

Proof. In view of (8.5) we may assume that Go is an exceptional
group. As in the proof of (8.5) we reduce to the case G = (Xi9 Xf), where
Y = (X,, X*). Also CT±X,) = CTo(X*) = Crβ«A), ^*» < C Γ o ((^, ^*»
< Z(G), so replacing G by G/Z(G) we may assume that CΓ( JQ = 1.
Thus 7 ^ PSL(2, qj) and To is cychc of order qj - 1 or \{qj°~ 1). An
argument with primitive divisors shows that G has Lie ranky (observe that
the assumption/? > 5 excludes the cases Go = Sz(g), 2G2(q), or 2F4(q)).

Let P be the unique parabolic subgroup of G satisfying T < P and
*, < O^(P) (see (3.5)(y)),_and let P - Pσ for P = P^, a parabolic sub-
group of G. By (6.4) T < P and we may assume 5 < P. We will consider
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possibilities for P, locate T in P and T in P, and indicate the element of

the Weyl group of P that does the twisting. That is we present σ = τq and

determine the orbits of τ on root subgroups in RU(P). We can then

determine Xi9 X^ and (Xi9 Xf). Order considerations show Go &
 3D4(q).

First suppose Go = G2{q). Then P — (B, sλ) or (B, s2)9 and we may

take T = sl9 or s29 accordingly. Since |A,. | = 2 , Xt, = (£/α, Uβ), where

{α, 0} is one of {α2, α̂  + α^}, {^ + 3a292ax + 3α 2}, {α1? «j + 3α2}, or

{«! + α 2 , α, + 2α 2 }. But Jζ. is abelian, and the commutator relations

show this to be false in the first, third, and fourth cases. In the second case

(Xi9 X*)= (U±a, U±β)^SL(31q) (the group generated by all long root

subgroups), contradicting (Xi9 X?) — G. So G = G2(q) is not possible.

For the rest of the proof of (8.6) and for the proof of (8.8) it will be

convenient to introduce the following table, which indicates possible

choices for G, P, r, and Σ f . In each case the containment To < P limits the

choices for P (usually just one possibility) and we choose an appropriate

representative for T = w or T = wδ with w E W{P) and 8 a graph auto-

morphism (only relevant in the case G —2E6(q)). The choices for T are

based on the facts: To is cyclic, minisotropic in P of order divisible by

\{q2 — l ) ,τ has an orbit of lengthy on Σ, (recall that \Σi\ = j) and

(Xi9X?)= G.The latter fact implies that if Σ has roots^of different

lengths, then Σ, is an orbit of short roots. Otherwise, (Xi9 Xf) would be

contained in the proper subgroup of G generated by all root subgroups,

Ua9 with a long. Similarly, if P = (B, si \ i φ i0) ( P has this form, even if

G = 2E6(q)), then each a G Σ must have α/Q-coefficient equal to 1. These

conditions eliminate many possibilities for Σ,.

TABLE (8.7)

G

2E,(q)
E,{q)

EΊ{q)

Es(q)

'o

1
4
4
2

2

2

T

(s3s2)(s^)

4 S I

2 5 I

1 5 I

3 5

s γS4s6s3s5

S\S4 ^6 ̂ 3 ̂ 5 ̂ 7

sλs4s6s%s3s5sΊ

orbit representative of Σ f

(none possible)
(none possible)
(none possible)
(none possible)
000000 001111 111111

1 ' 1 ' 1
0000000 1111111 1121000

1 ' 1 ' 1
0011111 1232111

1 ' 1
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To complete the proof of (8.6) one simply checks (with a bit of

calculation) that in none of the cases is Xt an abelian group.

(8.8) If Y = SU(3, qj) or PSU(3, qJ), then (8.1) holds.

_ Proof. Write U = X, and Z(ί/)j= Xk, for / , t 6 { l , . . . , / } . Then

I Σ,. I = 2j and | Σ k\ = j . Set P = < Xz , JSq*> and P = P σ Π G 0 . First assume

that Go is a classical group. Then the structure of P is given in (4.2). Using

the notation of (4.2) we first note that Xi nonabelian implies r Φ 2s. The

result then follows from (4.2)(iv) and (4.2)(v). We may now assume Go to

be an exceptional group.

Arguing as in the proof of (8.6) we may assume G = ( Xi9 X?) and

passing to quotient groups, if necessary, we may assume Z(G) — Z(G0) =

1. Also, Z(YT0) < Z(G) Π Γ O = 1 , so YT0 s PSU(3, qj) or PGU(3, qj\

and To is cyclic of order q2J — 1 or \{qlj — 1). As in (8.6) we conclude

that G has Lie rank 2 j . This immediately rules out the case Go = EΊ(q)

and 3D4(q) is ruled out by order considerations (namely, | To\ divides

Suppose G^G2(q). Then 7 = PSU(3, q). The remarks preceding

Table (8.7) show_that Σj_= {βl9 jS2}_for short roots βl9 β2<ΞΣ and (6.7)

shows that [Xi9 X.] = [Uβι, Uβi] = Uy for γ G Σ. The only possibility is

P = N^(Uy), with γ a long root. We may take T = ^ , where s E NG(T0)

and i1 is in the derived group of the Levi factor oί P. Then s E C((Uy9 U*))9

which gives s E CGo((Xk, Jtjf)). Hence C G O ( J ) > SL(2, 9). On the other

hand, s normalizes (Xi9 X*) = y, since 5 normalizes Γo, A), and Jζ*. So s

induces a graph automorphism of y ^ P S U ( 3 , #), forcing C y ( j ) ' s

PSL(2, q). This is a contradiction. Therefore Go ^ G2(q).

The remaining cases are Go = /^( ί ) , 2E6{q), E6(q), and i?g(g), where

we refer to Table (8.7).. The first three are ruled out immediately. Suppose

G0=Es(q). Here | Σ Λ | = y = 4, so [JΫj, ^ ] is the product of 4 f-root

subgroups of G. However, for each of the possible orbits listed in (8.7) a

direct check with the commutator relations shows that [Xi9 Xt] is the

product of more than 4 Γ-root subgroups. This proves (8.8).

We have now proved (8.1) when Y has Lie rank 1 (noting that p>5

excludes Suzuki groups and Ree groups). Next, we establish (8.1) for

groups of Lie rank 2. We will use the following notation. For O a

representation of the abelian group A and n E Z, On is the representation

given by On(a) = O(an).

(8.9) Suppose Y = SL(3, qj) or PSL(3, qj). Then (8.1) holds.
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Proof. Write U = X&Xi with Xι = [Xi9 Xk]9 and regard these sub-
groups as irreducible Fp[r0]-modules. Set q — pa There are linear Fqj-rep-
resentations φ,, φkf φ, of To such that ¥qJ ®F/, Xt = φ/> © ©φf". Simi-
larly for * Λ , X7. We have <Xi9 X?) = <Xk9 Xj?> 5 < * „ Xf> - SL(2, ̂ ) , so
by (8.6) each of (Xi9 Xf), (Xk9 *?>, and (Xl9 Xf) is the commuting
product of a (σ)-orbit of7 copies of SL(2, #),_eachgenerated by^a Γ-root
subgroup of G and its opposite. Write Xtf = Uβχ X X Uβj9 Xk =
UΎιX X Uγ, and jζ = ^ X X ί/δ/ By (6.7) we have [Xi9 Xk] = ^ .

Let Z = Z(7Γ0) and let z = yt E Z, with j e 7 and t G Γo. Then
y E C y ( 7 Π Γo) = Y Π Γo by (2.8). S o Z < Γo. Passing to ψ Z and
applying (2.7), we conclude that Nγ(Y Π To) < Nγ(T0) < N^T). Since
jVy(7 Π Γo) is transitive on the (Γo Π 7)-root subgroups of Y9 we see that
2, , ΣΛ, and Σ/ are conjugate under N^{T). In particular, the roots in
2, U Σfc U Σ ; are all of the same length. Consequently, we may choose
notation so that [Uβ], UΎι] = C/5]. _ __ _ _

Let φ, ψ, ̂  be the /^-representations of Γ afforded by i^ i? ί/γi, £/βi,
respectively restricted to Γo. The commutator relations show that φψ = ̂ .
It follows from (5.1) that we may assume ψ = φf, ψ = φ ^ fl = φf. We
claim that [t^, t/γr] = 1, for r > 1. Otherwise, l ^ , l/γ ] = ί/δj for δs = j8,
+ γΓ. Then β**""1 = φψ^ r l and since φψ — θ we obtain φ" = ψϋ, for

u = r

9 * - i - 1 and v = qr~ι - q'~\ This implies (φ")^ = (φ^)^. Let Tλ

^T^Π (Xl9 Xf), a Cartan subgroup of <X(, Xf }= SL(2, qJ). If φt and
φfc denote φ, | Tx and φ^ \Tχ9 respectively, then computation within Y yields
φ. = (φ~2)^c for some 0 < c < fly. Therefore, (φv

k)
κ = ( φ ^ 2 ^ " ) ^ and so

φ»+2/>'iι = j B u t ^ s contradicts \φk\= qJ - 1, proving the claim.

Transforming the commutator relation of the previous paragraph by
powers of σ and using (8.4)(ϋ) we obtain the following commutator
relations:

For 1 < r <y let Dr - {Ό±βr9 ϊ / ^ ^ T h e n Dr ss SL(3, K) ox PSL(3, X),
and the above relations give [Dn Ds] = 1 for r 7^5. Since (Z,, X * ^
P! 5^, the proof of (8.9) is complete.

(8.10) Suppose 7 is a non-trivial image of Sp(4, qj) or G2(qJ). Then
(8.1) holds.

Proof. The arguments are similar to those in (8.9), although slightly
more complicated. We consider only the (more difficult) case of G2(qJ).
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Let α, β be fundamental long and short roots of the root system of Y, so
that the complete set of positive roots is {α, β, a + β, a + 2β, a + 3β,
2a + 3/3}. Say Xt and Xk are the (TQ Π 7)-root subgroups of Y corre-
sponding to a and /?, respectively. Let Xr9 Xs9 Xn and Xw correspond to
the compound roots a + β, a + 2β, a + 3β, 2a + 3β, respectively. Then
[Xi9 Xk] = XrXsXtXw9 so (6.7) implies Λat [ ξ , Xk] =_XrXjCtXw.

Write Δ,_ = {UβιlL.., lfcy}, where Uh = l β , . . . , ̂  = I j ^ . Similarly,
write ΔΛ = {[/γi,..., UΎj}. Set # = p

a and regard each of Xi9 Xk, Xr, Xs, Xt,
and Xw as ^/-dimensional F/,[Γ0]-modules. As in (8.9) we choose linear
F^y[Γ0] representations oi9 ok9 or9 os9 ot9 ow so that FqJ ®F/? X{ =
of ® - - @ofJ for / E {/, fc, r, 5, /, w}. We may assume that of9 o% are
the ^-representations that To induces on Uβγ9 Uγ9 respectively, and we may
assume [Uβι9UΎι] Ψ 1.

From the commutator relations for G2(qJ) it follows that there exist
a9β9y9δ9ε9η9μ9pE{l9...9aj} and that or = ofo{\ os = ofo\p\ ot =
o/^r, and ow = ^ Λ

Suppose [Uβι9 Uyι] Φ 1 for 1 < / <y. Then of(ofι)κ = ((ofoξ0)^)^
{{ofyo2/γm)κ

9 ((ofo\pym)κ, or ( ( o ^ O O * , for some 0 < m <y - 1.
There are elements ί, t; G Γo Π 7 such that ot(t) = ok(v) = I (i.e., / E
C ( ^ ) , ϋ G C(J^)) and | ^.(υ) | = | ^(/) | = qj - 1. If / = 1, evaluate at t
and t) and conclude that the first possibility must hold and a — β. Now
suppose / > 1. Evaluating at t we again see that the first possibility must
occur and we obtain the congruence qι~ι =paqm (mod paj - 1). Evaluat-
ing at v we have 1 =paqm (mod paj - 1), contradicting the other con-
gruence. Therefore, [ϋβχ9 UΎί] = 1 for each / > 1, and transforming by
powers of σ we have (Xi9 Xk) a central product of the groups
(Uβι, UΎι)9.„,(%., UΎj). By_(8.4χii), [Uβg, ϊ L j - 1 for 1 < g, h <j,_and
bL(8.6^[C/^,C/_^] = \[UvU_yh] UJ^g±h^j. So letting Dg =
(U±βg, U±Ύg) for 1 < g <y, we have (A), Xf9 Xj9 X*) equal to the central
product of the semisimple groups Dl9...,Dj.

The group Z), has as its root system a rank 2 subsystem of Σ. On the
other hand, <*;., Xh)= (Uβι9UΎι)X - X(Uβj9 UΎj) and (A), JTΛ> has
nilpotence class 5. This forces Dλ to be of type G2(K) (it also forces y = 1,
since G2 is not a sub-root system of any other indecomposable system).
Since {Dλ9... 9Dj) is an orbit under (σ), we have proved (8.10).

(8.11) Suppose Y is a non-trivial image of SU(4, qj\ 3D4(qj)9 or
5 ^ ) . Then (8.1) holds.

Proof. We will discuss the most difficult case where Y is an image of
SU(5, qJ). Here U is the product of four root subgroups, Xi9 Xk9 Xl9 Xm9
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where Xt and Xk are fundamental, (Xi9 X*) = SL(2, q2'), (Xk,X*)^

SU(3, qJ), Xι is a conjugate of Xi9 and Xm a conjugate of Xk. In addition,

each of X'k and X'm is a (Γo Π 7)-root subgroup. Say JΓ£ = Xr and

X'm = Xs. Then each of Jζ, A*, * „ Xm, Xr, and X, is a Γ-root subgroup of

G.

View Xt and Xk/Xk as 2 ay-dimensional F^T^-modules, where # = ^ β .

There are linear F^y-representations φ and ψ of Γo such that Fqij Θ Jζ. =

φp_ ® . . . _ ® φ ^ y and F ^ ® (Jr*/A£) = V ® θψ ' 2 α y . Let Δ, =

{Ij^ . . , Uβ2j] and Δ^ = {ί/γi,...,£/ }. We^jnay assume that φκ, \pκ are

the ϋΓ-representations of To induced on Uβχ9 Uyχ, respectively. We have

[Xi9 Xk] = XιXm (computation in Y) and so (6.10) implies [Xi9 Xk] =

Jζjrw . We relabel if necessary so that [Uβ, Uγ ] Φ 1 and for 1 < / <y,

Ϊ7A= ί/,f' and ί/γ/ = f^f1.
Let δ, ω be linear F^-representations of Γo such that F^, ® J^,

Έqij ® (Xm/X'm) are the sums of the Galois conjugates of δ, ω respectively.

Computations in Y imply that there exists a such that we may take

ω = <p\pp". From the relation [ Jζ , Xt] = X'm we see that for some β, γ we

must have δ φ * ^ = _(ω 1 + *y γ = (φψ^β)<1+^>Λ

Suppose [Ljgj, ί/γ/] T^ 1. Then by the above φψq is a Galois conjugate

of one of δ, ω, co1+<?y. By the previous paragraph each of δ, ω, ωx+qJ can be

expressed in terms of φ and ψ. Make this substitution and consider the

resulting relation between powers of φ and ψ. There exist elements tl912 of

To such that

( = l and

Substituting tX9t2 into the above relations we see that such a relation can

hold only if the obvious equalities hold between powers of φ and powers

of ψ. First substitute / = 1 and obtain φψ = cυ and a = 0. Now let / > 1

and obtain a contradiction. Consequently [Lĵ , Uy/] — 1 for / > 1, and

transforming by powers of σ, we conclude [Uβ, £/γ ] = 1 for any u Φ υ.

From (6.10) and the fact [Xi9 Xk] Φ 1, we conclude that [Xi9 Xk] φ 1.

Therefore, [L^, ί/γJ ^ l,£or 1 <_U < 2y.

Consider the group Dλ — (U±βι, U±Ύχ9 U±Ίj+λ, U±β ) . The argument

of (8.9) shows that (U±Ύι9U±Ύj+ι)^SU39 K)9 with {γ1,γ / + 1} a funda-

mental_system. By (8.6), [ t / ± A , £/±i8.+1l = 1, and by (8.4)(ii) [ ζ , C/_γ ] =

[ C / . ^ £/γJ = 1 for 1 < i/f υ < 2y.

We claim that βx and γ! are roots of the same length. Otherwise, the

commutator relations applied to [Xi9 Xk] = XtXm shows that either ( φ ψ 2 ) ^

or (<p2ψ)κ is a component of one of the representations F^y ® (Xm/X'm)9
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¥qJ ® X'm9 or F^ ® X7. The previous computations show that this is impos-

sible, proving the claim. There are three classes of (To Π F)-root sub-

groups of Y (under Nγ(T0 Π Y)), with representatives, Xi9 Xk9 Xr. Since

(U±yχ9 U±Ύj±1)^ SL(3, # ) we conclude that the roots in Σ U Σ* U Σ 7 U

Σ ^ U ^ U ^ are all long roots. Hence (U±βι, U±Ύι)^ SL(3, K) ss

(U±Ύj+i,U±βj+]). We can now apply (2.13) and conclude that Dj is an

image of ̂ 44(ΛΓ) with fundamental set {βv yl9 γ. + 1, βy+i}.

Let /),. = JDJ1' J, for 1 < / <y. Using the aforementioned commutator

information together with (8.6) and (8.8) we have (2>1,...,2>y ) =

Dλ - Dp a central product. Thus, (8.1) holds, completing the proof of

(8.9).

(8.12) If F has Lie rank at least 3, then (8.1) holds.

Proof. Let βl9...,βn be a fundamental system for the root system of

7, with Uβi,...9Uβn the corresponding (To Π 7)-root subgroups, corre-

sponding to the labeling of the Dynkin diagram of Y (see §1). For

/ = 1,...9n9 let Uβ( = Xlr Then [Xlχ9 Xu] - 1, while [X; t, Xίn] ψ 1.

Fix 1 < i < « and write Δ7 = {ί^/1?.. .9Uβιk}9 where A:z = y or 2j.
Arrange notation so that Uβk~ Uβιk+'ι9 for eack \<k<ki. Set Z —

{Xtl,... ,Xln_x, XTX,... 9 ^ t - , ) Inductively, we know that Z = Zλ ZJ9 a

commuting product of a (σ)-orbit of Chevalley groups and Op\Zσ) —

{U±βχ,...,U±βn_χ).
First suppose that Y is an untwisted group. Then kt =jίor\<i<n

and we may reorder, if necessary, so that Z, = {U±βλχ9...9U±βn_xx). By

(8.9) there exists a unique k such that Uβ _(( does not commute with Uβ ,

and we may reorder ΔΛ, if necessary, so that k = 1. Set Dj = (Zι,U±βn]).

For i < π - 1, [£/A, £/ ]̂ = 1, so by (6.10)J jζ f, ξ j - 1, hence [Ϊ7A], 4 j

= 1. This together with (8.4)(ii) yields [U±β'χ9 uίβnλ] = 1 for each z < 'Λ

- 1. By (8.9), (U±βn_u,U±βJ^SL(3, K),'so we "can apply (2.13) and

conclude that Dλ has the same Dynkin diagram as does Y. Moreover,

(8.6), (8.4), and induction show that /),-•• D; is a commuting product.

The result follows.

Now suppose Y is a twisted group. The argument is essentially the

same as above, although slightly more complicated. We have Z—Zx - Zy

and Z = Op\Zσ) = (U±βχ9...9U±βn_x).Ύo illustrate the charges we con-

sider the case Y = 2E6(qJ), leaving the remaining cases to the reader.

Here, n = 4, Z = O~ (8, qj)' and so Z± = •_= ζ = £> 4(^). Each

(Γo Π 7)-root group of Y is abelian, so Xlχ9...9XlΛ are each the direct
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product of the root subgroups in Δ l 9 . . .,Δ 4, respectively. Moreover,
| Δ 1 | = | Δ 2 | = y,whfle|Δ3 | = | Δ 4 | = 2 y .

Labeling roots as before, we may assume Zx — (U±β3l, U±βlι,
UβlΛ,U±hj+ι). Here, σJ interchanges the groups (U±hι)9 (U±β3J+ι)9

stabilizes the other two groups, and induces a graph automoφhism on the
Dynkin diagram of Zx. Now, Xu = UβAχ X X Uβ42 , and by induction

we have the structure of (Xli9 X^ XU9 Xf2, X%, X%). We may choose our
notation so that [Uβ^ UβJ φ 1. Set Dx = (U±β4ϊ,Zx, U±β4j+ι) and argue,
using (2.13) and commutator information, that Dx = E6(K). The argu-
ment is then completed by setting Di = Df ' for 1 < / <y — 1 and
observing that (Dl9...9Dj) = Dx Dj9 a central product. This completes
the proof of (8.10).

Theorem (8.1) follows from (8.6)-(8.12).

9. A technical result. In this section we apply the results of §7 and
§8 and establish a technical result that will be useful in §10. Continue the
assumptions/? > 5 and q > 7.

We introduce the following notation which will be used throughout
the rest of the paper. Jf Y is a Γ0-invariant subgroup of G, set Y(T0) =

X^Y) and Ϋ(T0) = <jζ| Jζ< Y).

Throughout the section we let 7 < G with Yτ° = Y and Y/Op(Y) a
central product of groups of Lie type in characteristic p. Let Tx be a
/-Hall subgroup of a Sylow/?-normalizer of Y. Then TxOp(Y)/Op(Y) is a
Cartan subgroup of Y/Op(Y). This forces CYTQ(TX) to be solvable and we
choose a p'Ήall subgroup, Γ2, of CγTo(Tx). Then T2>TX. We call T2 a
Cart an subgroup of YT0.

(9.1) (i) T2 is a maximal torus of Go;
(ii) Y_= Y(T2)_= O*'(Y(T2))σ and YT0 = YT2;

(iii) Y(Γ2) = 7(Γ0) and 7(Γ2)Γ2 - Y(T2)T9 where Γ2 = C^(Γ2)
0 (the

maximal torus of G containing T2);
(iv) T2 can be chosen so that there is a Γ2-invariant subgroup / < Y

and Yis the semidirect product Y = Op(Y)J and JT2 = /Γo;
(v) Γ2 is a/?r-Hall subgroup of a Sylow /?-normalizer of YT0.

We remark that a missing item in (9.1) is the assertion Y — Y(TQ). At
this stage we do not even have Go = G0(Γ0); that is we have yet to
establish the fact that Go is generated by its Γ0-root subgroups.
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The rest of this section concerns the proof of (9.1). We first show that
(i) holds, noting that this is just (7.2) in case Op(Y) = 1. So suppose
Op(Y) 7̂  1 and let P be the canonical parabolic subgroup of G with
Op(Y)<=:Ru(P) and Ng(Op(Y)) < P. Then P is σ-invariant and (6.4)
shows T < P. Let L be the Levi factor of P, with respect to the maximal
torus f. Set / = L ΠYRU(P). Then / < Op\Lσ) = L and / is a Γo-
invariant commuting product of groups of Lie type in characteristic p.
Now let fx be a Cartan subgroup of / and Γ2 = CJTo(fx). By (7.2), f2 is a
maximal torus of Go. But JRu(P)σ = 7Rw(P)σ implies that f2 and Γ2 are
conjugate by an element in Ru(P)σ. Hence (i) holds.

Let f2 = Q(Γ2)°, a maximal torus. We claim Y = Y(T2) =
0*'((F(:Γ2))σ). Let Fi and F2 be Sylow/ -subgroups of 7normalized by Tx

and such that_7 = (VX±V2). The argument of (7.5) applied either to YT0

or to YT0Ru(P)σ/Ru(P)σ (according to whether or not Op(Y) = 1) shows
that T2<N(VX) Γ) N(V2). By (6.9), Vx and V2 are each products of Γ2-root
subgroups of Go and Vi = J^(Γ2)σ, for i = 1,2. As 7 = (VXl_V2) we have
7 = Y(T2). If O/7) = \±letK= G, and if ^ , ( 1 0 ^ 1 let P be as above
and K the Levi factor of P containing Γ2. So K = ^Γσ.

If Op(Γ) 7̂  1, embed each Fj in the unipotent radical of a (σ)Γ2-
invariant parabolic subgroup of P and use (5.1) and (5.5) to conclude that
J^(JΓ2) < P, for / = 1,2. Moreover, in this situation, each Γ2-root sub-
group of P is contained either in RU(P) or in K. It follows that Vt(T2)
= O/7(7)(Γ2)(^(Γ2) Π K) for / = 1,2. By (6.10) ^ ( 7 ) ( Γ 2 ) is normalized

by Vt(T2) Π K for / = 1,2. Therefore, Ϋ(T2) =~δJΫ){T2){Ϋ{T2) n ^ ) ,
and this also holds if Op(Y) = 1. Since ^ = O^yX^. Π J5Γ), for / = 1,2,
YΠK complements Op(Y). Hence, (8.1)(iii) shows that Y(T2) =
Op'(Y(T2)σ). This proves the claim.

Set / = Ϋ(T2) ΠK,J= Op\Jσ)9 and X = yΓ0. Then Y = 7(Γ2) =
0^(7)/, a semidirect product. The Frattini argument gives X = YNX(T2)
= Op(Y)JNx(T2). Now, / = /(Γ2) is the group generated by all Γ2-root
subgroups of 7 whose opposite root group is also in 7. Since NX(T2) <
#(f 2 ) , we conclude that Λ^(Γ2) normalizes both / and J = J(T2). Thus,
JNX(T2) is a group and normalizes JT2. As JNX(T2) complements 0 / 7 ) ,
we may replace To by a 7-conjugate that lies in JNX(T2). In particular, Γo

normalizes a maxial torus, f3 = Tξ, of /f2. Then Γo < N(G0 Π (Γ3)σ), so
(6.3) implies^ = G0_Π (Γ3)σ. But then (2.8) implies f3 < Q(Γ 0 ) 0 = f.
Hence, f = f± and /f2 = /f. Then (2.5) implies JT2 = JT0. Now 7 =
7(Γ2) = Op\Y{T2)σ) = Op(Y)J9 therefore YT2 = YT0, completing (ii).

From the above, 7 = Op(Y)J9 a semidirect product, and JT0 = JT2.
This proves (iv). From Ϋ(T2) =Op(Y)(T2)J and the fact that Jf2 = If,
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we conclude Ϋ(T2)f2 =J{T2)f. We next prove Ϋ(T2) = Ϋ(T0). Let D
= Op(Y)(T2), so that Dσ=Op(Y), by (6.9). Earlier argumentsjmply
D< F(Γ2), so D <\ Ϋ(T2)f2 = Ϋ(T2)f. Thus, f (σ) normalizes D, and
since 2)σ = Op(Y) we again apply (6.9) to conclude D =_Op(Y)(T0). So it
will suffice to show J = J(T2) = J(T0). We have JT2 = JT, so each
component of / is Γ-stable and generated by certain Γ-root subgroups of
G. If a E Σ/ and if the Γ-root subgroup t/α is contained in /, then Xt < /.
Hence Xt < 0*'(.£) = /. This shows / < /(Γo).

For the other containment, suppose Xt < /. If Z, is a /?-group, then /
contains a Γ(σ)-invariant parabolic subgroup P with Xt< RU{P). Then
#M(P) is the product of certain Xl9 1 < / < t, and (6.9) implies A) < i?w(P).
HenceJζ<7.

Now suppose Jζ. is of Lie type and defined over Fgk. Let C be a
σ-invariant maximal torus of XtT contained in a σ-stable Borel subgroup
of Xtf (see (2.9) of [25]). Set C = Go Π Cσ. Then C Π Jζ. is a Cartan
subgroup of Xi9 while C is a maximal torus of Go. Moreover, X.T0 — XtC
by (2.5). Therefore, C < A)Γ0 < /Γo and replacing Γo by C in the above we
conclude C < JT2 — JT. Each C-root subgroup of X{ is a /?-group, so the
argument of the last paragraph gives Xt < / . Therefore, /(Γo) < / , and
(iii) holds.

It remains to prove (v). We have seen that T2 < iV(Fj), so (v) follows
from this and (ii). This completes the proof of (9.1).

III. THE MAIN THEOREMS

10. Classification. In this section and the next we complete our
analysis of subgroups of G invariant under a maximal torus. We show that
any such subgroup arises from a subset of Σ. However, to carry out the
proof, we must invoke the classification of finite simple groups. Let %
denote the list of simple groups; the alternating groups, groups of Lie
type, and the 26 sporadic groups (see (11.1)). At one point we will need
the fact that any Γ0-invariant simple section of G is isomorphic to a group
in %. Very little information about groups in %is actually required for the
proofs of the main results, but the author sees no way to avoid an
application of the classification theorem.

The fundamental result is (10.1) below, while (10.2) provides extra
information, which follows fairly easily from (10.1) and previous results.
To state (10.2) we require the following terminology and notation. For a
subset Δ c Σ let D = (Ua \ a G Δ> and A =_{β G Σ \Uβ < D). We say Δ
is closed if Δ = Δ, in which case we write D = G(Δ, T). If Δ is a closed,
(σ)-invariant, subset of Σ, we set G(Δ, f) = OP'(G(Δ9 f)σ).
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Throughout this section and the next we make the standing hypothe-
sis that p > 3 and q > 11.

THEOREM (10.1). Let Ybea T0-invariant subgroup ofG.
(i) Y(T0) < Yand_(To

γ) = Y(T0)T0.
(ii) Y(T0) = O'\Y(T0)σ).

THEOREM (10.2). Let To < Y < G. Then
(i) Op(Y) < Y(T0) and Y(T0)/Op(Y) = E(Y/Op(Y)).

(ii) Y(T0) is the semidirect product of Op(Y) and a T0-invariant sub-
group J = /(Γo), and J is a central product of groups of Lie type over
extension fields ofFq. Also, Op( Y) is a product of T-root subgroups of G.
_ (iii) IfTx is any maximal torus ofGo with Tx < 7, then Y(T0) = Y(TX),
Y(T0) = Ϋ(TX), and Y(T0)T0 = Y(TX)TX.

(iv) There is a maximal torus Tλ of Go such that Tx < Y and Y —
Y{Tx)Nγ{Tλ).

(v) There is a unique (σ)-invariant, closed, subset Δ of Σ, such that
Ϋ(T0) = G(Δ, f ) and Y(T0) = G(Δ, f) .

We will first show how to derive (10.2) from (10.1). So suppose
To < Y and that the hypotheses and conclusions of (10.1) are satisfied. Set
Δ_= ί«l Ua< Ϋ(T0)}. Clearly Δ_is (σ)-invariant, closed, and Ϋ(T0) =
G(Δ, f) . Hence, 7(Γ0) = G(Δ, f ) . This gives (v).

By (2.5) Y(T0) = i?u(7(Γ0))L, where L = Lσ is Γ-invariant and L is
semi-simple. Then (Λu(Γ(Γ0)))σ = Op(Y(T0)\ J= Op\Lσ) is a central
product of groups of Lie type over extension fields of F ,̂ and Y(T0) —
Op(Y(T0))O?'(Lσ). By (6.1) Op(Y) < Y(T0), so Op(Y(T0)) = Op(Y) and
(ii) holds.

Since q>ll, J = E(J) and so (10.1)(i) implies Y(T0)/Op(Y) <
E(Y/Op(Y)). Suppose equality fails to hold and let X/Op(Y) =
C(Y(T0)/Op(Y)) Γ)E(Y/Op(Y)). Then [X,T0]<X9 while (10.1)(i) im-
plies [X, To] < Y(T0)T0. This forces [Jf, Γo] < Op(Y), whence
O^YJΓofί/, where / = XT0. The Frattini argument implies / =
Op(Y)Nj(T0). Now, Γ0O;7(7)/O/?(7) < Z(I/Op(Y)) and Γo Π O/7) - 1.
Therefore, ΛΓ7(Γ0) < C7(Γ0) = Γo by (2.8). But then / = Op(Y)T0, a con-
tradiction. This proves (i).

Let Tx be a maximal torus of Go with Tx < F. Replacing To by Γj in
the above we have Y(Tx)/Op(Y) = E{Y/Op{Y% so Y(TX) = Y(T0). Let
T3 be a Cartan subgroup of / and T2 = C/Γo(Γ3). By (9.1) Γ2 is a maximal
torus jof GQ with L = 7(7^) = /(Γo). Also, the proof of (9^) showed
J(T2)f2 = /(Γ0)f, where f2 = Q(Γ2)°, a maximal torus of G. By (9.1)



216 GARY M. SEITZ

and_ (2.5Kiv),_/Γ2 = Go Π (J(T2)f2)σ = G^Π (J(T0)f)σ = JΓ 0 . Since f2

^ Y(T0)T, we have Γ2 < N(RU(Y(TO))). From (6.9) and the fact

= ^ ( 7 ) we conclude RU(Y(TO)) = Op(Y)(T2)9 and this proves

Y(T0) = 7(Γ2).

The results of the last paragraph yield Y(T0)T0 = ί1(Γ2)Γ2. Since Γ3 is

a Cartan subgroup of / we have Y = Y(T2)Nγ(T3). Now Nγ(T3) normal-

izes C(T3) Π 7(Γ2)Γ2 and this group is solvable with T2 as a Hall

//-subgroup. So the Frattini argument yields Y =• Y(T2)Nγ(T2). Notice

that this gives (iv). In addition, the factorization shows 7 < N^(Ϋ(T2)f2)

(since Y(T2) < Ϋ(T2)). In particular, Ί\ < N(Ϋ(T2)f2) so by (5.16) of [25]

7̂  normalizes a maximal torus Γ4 of Y(T2)T2. By (6.3) we have Tλ = (Γ 4 ) σ

Π Go, so (2.8) implies Γ4 is the unique maximal torus of G containing Tv

Therefore, Ϋ(T2)f2 = Ϋ(T2)f4 so (2.5) implies Y(T2)T2 = Y(T2)TX. By the

above, 7(Γ2)Γ2 = Y(T0)T0 and Y(T0) = Y(T2) = Y{Tλ). Hence, Y(TX)TX

= Y(T0)T0. Replacing Tλ by a 7(Γ2)-conjugate we may assume JT2 = /Γp

Now replace Γo by Γj in the previous argument to get Y(T2) — 7(Γj).

Hence Y(TX) = 7(Γ0) and this establishes (iii), completing the proof of

(10.2).

The rest of §10 and all of §11 concerns the proof of (10.1). Toward

this end suppose the result false and let Go be a counterexample of least

order for which (10.1) fails for some pair (Γo, 7 ) . Then Z(G0) = 1. We

may assume To < 7 (otherwise replace 7 by YT0), and among all such

groups 7 choose one with | 71 minimal. In other words, if Tλ is a maximal

torus of Go and Tλ < 7, where | 7, | < | 7 | , then (10.1) holds for the pair

{Tλ9Yλ).

For X a finite group, let E(X)p denote the product of all components

of X that are of Lie type in characteristic/?.

(10.3) Suppose I is a proper, Γ0-invariant, subgroup of Go and

X/Op{X) = E(X/Op(X))p. Then (10.1) holds for the group XT0.

Proof. Let T2 be ap'-Hall subgroup of a Sylow normalizer of XT0. By

(9.1)(i) T2 is a maximal torus of Go. By (9.1)(iii) X(T0) = X(Γ2) and by

(9.1)(ii) ^ = O^(Γ(Γ 2 ) σ ) = O**(X(T0)σ). Since [A), Γo] - Xt for any Γ-

root subgroup of G we have (To

x)= XT0. Therefore it remains to show

By (9.1)(iv) we have X— Op(X)J, a semidirect product, where J is

Γ0-invariant, JT0 = /Γ 2 and / = E(J)p. By (6.1) Op{ X) is a product of

Γ0-root subgroups, so we may assume X = J. By (7.1), To contains a
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maximal torus of each component of X, so we may also assume X to be
quasisimple. Then (8.1) shows that X is defined over Fgj for some j and
X(T2) is the commuting product of a (σ)-orbit of j semi-simple groups,
say X(T2) = Dλ Dr Let Xo = Op\{Dx)oJ\ a group of Lie type over FqJ

having A — Xo Π (T ΠDx)σJ as maximal torus. From the minimality of
I Go I , (10.1) holds within Xo and applying the result to the A -invariant
subgroup Xo of Xo we have XQ = X0(A). So Xo is generated by its A -root
subgroups (corresponding to (σ7)-orbits of (ΓΠD,)-root subgroups of
Dx). Using the fact that the map x0 -* X0XQ x%J ! is a surjection from
Xo to X and mapping A -root subgroups of Xo to Γ0-root subgroups of X
we have X — X(T0), as required.

(10.4)(i)7φG 0 .
(ii)If 0,(7) = 1, then E(Y)p=\.

Proof. Suppose 7 > Go. Then (10.1) holds if Y(T0) = Go. So 7(Γ0) <
Go, and we s e t ^ = Y(TQ)T0 < 7. Minimality implies that (10.1) holds for
Y{. However, ΫX(TO) = G and 7 ^ ) = Y(T0) φ Op'(Gσ). This is a con-
tradiction, proving (i).

For (ii), suppose that Op(Y) = 1 and X = £(7)^ ^ 1. By (i), JT < <?0.
If jς is any Γ0-root subgroup of G, then [Xi9 To] = Jζ (use (7.1), (5.5), and
(6.8)), hence A)<<Γ0*'). So if we can show (Γ o

y )<ZΓ o , then (7.1)
implies (To

γ)= XT0 = (To

x), and (10.3) shows that (10.1) holds for XT0,
and hence for 7. Since we are assuming this to be false, it will suffice to
show(Γ 0

y)<ΛT 0.
Let Tx be a Cartan subgroup of X and let D — CY(X). The Frattini

argument shows 7 = XNY(TX) and, of course D < Cγ(Tλ) < NY(TX). By
(7.2), Γ2 = CXT(TX) is a maximal torus of Go. By minimality of | Y\ ,
(10.1) holds for the group Nγ(Tx), which contains the torus Γ2 Also,
(10.1) holds for the groups DT2 and CY(TX), each of which contains T2. So
applying (10.1) to DT2 we have one of Op(D) φ 1, E(D)p φ 1, or
Γ2 < DT2. As D < 7, the first two situations are out. Hence Γ2 < DT2.
Considering Aut(X), we see that CY(TX)/D is a solvable //-group. There-
fore, applying (10.1) to CY(TX) we conclude Γ2 < CY(TX\ From (6.3) we
have T2< NY(TX\ and this proves XT2<NXY(TX)= 7. Now, (9.1)
shows XT2 = XΓ0, so (Γ o

y )< XΓ0, as required.

(10.5) 0,(7) - 1.

/. Suppose Γo < 7 < G and 0^(7) φ 1. By (3.9) of [4] there is a
canonical parabolic subgroup P < G0Y with O (Y) < 0p(P) and
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NG(Op(Y)) < P. In particular To ^ P. By (6.4)_P = G0Y Π Pσ, for P a
σ-invariant parabolic subgroup of G containing T. Write P = VL(T DP),
where F = Op(P) and L is the derived group of the Levi factor, L(T Π P),
of P. If L = 1, then 7 = Op(Y)(T Π Y) and (10.1) follows from (6.9).
Since 7 is a counterexample to (10.1) we have LΦ\.

Set TQQ = To Π L, a maximal torus of L. One checks that the TĴ -root
subgroups of L are just the Γ-root subgroups of G that are contained in L.
Let ~ denote images in LV/V and set 7, = 7 Π FL. Then ^(fpo) < Yj
and <!$> = 7 , ( ^ ) 4 (by minimaUty of | Go |). Set Λ / F = 7 ^ ) and
X=YΠA. Then X < 7, and X/Op(X) = E(X/Op(X))p. Also,

Let Γ2 be a //-Hall subgroup of a Sylow /7-normalizer of XT0. By
(9.1)(i) T2 is a maximal torus of Go, and (9.1)(ϋ) implies XΓ0 = XΓ2.

We claim XT0 < Y. First note that Op(X) = Op(Y) = 0,(7,), then
argue as in the proof of (10.2) that X/Op(Y) = £(1^/0,(7)). This shows
X < Y. Let Fi be a Sylow ^-subgroup of X with Γ2 < JVy(Fi) = i).
Suppose D<Y. Minimality of | Y\ implies D(T2) < D and (Tf) =
D(τi)T2 < D- A s γ/γ\ i s a n abelian //-group, D(T2)<Yλ. Also, 7 =
Λ2Vy(K,) = XD implies JCD(Γ2)Γ2 < 7. Now D(Γ2) < L F and D(T2) is
generated by (T2 Π Lf-root subgroups of L. Hence [D(T2)9(T2 Π L)] =
D(T2). On the other hand, X(T2 ΠL) = XΓ^ < 7^ Therefore, D(T2) < X
and so XΓ0 = XΓ2 = XD(T2)T2 < 7, as required. Suppose then that D -
7; that is X = V.

Let j G 7 . Then FJΓQQ and FJ7J& are normal in 71? and so
(FJTJJQ, Fi7J£)= I^-F, where F is a /?'-group normalizing 7^. Also, i 7 is
generated by T^ and TJJJ' for some υ E Fj. Applying (6.3) to the maximal
torus 7^ of L, we conclude F — Tω. As ^ was arbitrary, VxTm < 7. So
7 = F ^ Γ o o ) which shows VXCY(TW) < 7. But (2.8) implies ^ ( 7 ^ ) <
F,(Γ Π 7), and Vλ{T DY)<Y. Since XT0 = VXTO = K,(Γ Π 7) Π
(70 <[ 7, the claim is proved.

By the claim XT2 = XT0 < 7, so 7 = XNγ(T2). By (10.3) X = X(Γ0)
and by (6.1) X= X(T2). If E is a Γ2-root subgroup of G or a Γ0-root
subgroup of G, then [E,T2] = E or [£, Γo] = E, respectively. Hence
χ= γ(τ2) = 7(Γ0). These remarks and (10.3) show that (10.1) holds,
which we have assumed false. The proof of (10.5) is now complete.

(10.6) Suppose F*( 7) = Fit(7). Then
(i) F*(Y) is a//-group;

(ii) If Yλ < 7 and YλT0 < 7, then Yλ < #(Γ 0).
(ϋi) 7J) normalizes no non-trivial/^-subgroup of 7.
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Proof, (i) is immediate from (10.5). Suppose Yx < Y and YXTO < Y.
Minimality of | Y\ implies that (10.1) holds for YXTO. Therefore, either
Op(Yx) Φ \, E(Yx)pφ \, or Y, < N(T0). By (i) the first possibility is out,
and our hypothesis rules out the second possibility. Therefore Yx < N(T0),
establishing (ii).

For (iii), suppose To normalizes the non-identity /^-subgroup, D, of Y.
Then R = F*(Y)DT0 is solvable. By (6.1), R = Op(R)NR(T0). Since
CY(F*(Y)) <F*(Y) = Op,(F*(Y))9 we have Op(R) = 1 and D < N(T0).
But then [Z>, To] = 1, against (2.8). This gives (iii).

Finally, let Yx = (Γo

y> and suppose Yx < Y. Then Yx < iV(Γ0) by (ii).
Therefore, To < F i t ^ ) < Fit(Y). By (6.1) To < Fit( Y), and (6.3) implies
To < Y. However, with To < Y, (10.1) is a triviality, whereas we are
assuming it false. This is a contradiction. So Yx = Y and (iv) holds.

(10.7) Suppose F*(Y) = Fit(7). Then F*(Y) = Or(Y) for some prime
rΦp.

Proof. Suppose X = F*(Y) = Fit(Y) and JT = ( y Z ) X X
OPi(X)9 wherep v...9p ι axe distinct prime divisors of | X\ and / > 1. By
(6.1) X < ΛΓ(Γ0), so [X, Γo] <T0nX.UT0ΠOp(X) = l for some i, then
[Γo, Op(X)] <T0Π OPι(X) = 1 and OPι(X) < CG(Γ0) = T (by (2.8)). But
(10.6)(iv) shows Y< Go, whence OΛ(ΛΓ) < Γ Π Go = Γo, a contradiction.
Therefore, To Π OA(X) ^ 1 for / = 1,...,/. Suppose To < X. Then for
j 6 7 , Γ ; < I < JV(Γ0), so Tf = To by (6.3). Hence To < Y and (10.6)(iv)
gives the contradiction Y = To. Therefore, l< T Π X < T. Also, X is a
//-group by (10.6)(i).

For i = 1,...,/ the groups 0^(7^) and OPi(X) normalize each other.
Hence, they commute. Set Y; = (0p;(Γo)y>.' Then Yt<Y and Y; <
C(Op(X)). Suppose that for some 1 < / < / we have Y/Γo < Y. By (10.6)(ii)
7, < V(Γ0), hence OΛ,(Γ0) < Fit(^) < Fit( Y) = X. Let C, = C^O^X)).
Then OΛ( JT) < C,<< Y and Γo < YiCi. By (10.6)(iv), Y = YiCi and since
^ < N(T0) and Y = (Γo

y> we have Y = ς τ o = Ci(0Λ,(Γo)). Since both Q
and O^ΓQ) centralize Z = Op,(T0) we conclude Z < Z(Y).

Since Op;(Γ0) 7̂= 1 we choose l ^ z G Z and consider the group
CGo(z) > Y. Let DX9...,Dk be the components of Cc(z). Then Dx --
£>kTo<CGo(z) with quotient group isomorphic to a subgroup of the
center of the universal covering group of Go (see (2.9)). Since Y = (7^) ,
y < />! /)^Γ0 and we have Y = ΓoY, where Ϋ = Y Π Dx - Dk. If
1 <y < fc, let 1̂ .= {J7 G Dj I rfyg G Y for some g G Z^ Dj 2\}.
Then ί̂  is a group and essentially the projection of Y to D. (note that the
projection is not defined since the product may not be direct). Then
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7 < Ϋλ - Ϋk and To Π i)y < Y; for 1 <y < A:. Also, Γo Π Dj is a maximal
torus of DJ9 for 1 <y < A:. Minimality of | Cx01 implies that (10.1) holds for
each of the containments To Π Dj < Ϋj< Dj.

We conclude that for \<j<k one of the following hold: Op(Ϋj) Φ 1,
E(Ϋj)p φ 1, or ΓQ Π Dj < Ϋj. Since Op(Y) = 1 = £(7) , , we necessarily
have Γo Π Dj < Ϋj for 1 <y < fc, hence / = ( Γ o n ί 1 ) (Γo Π Dk) < 7.
By (2.8) Γo = Z), Z)ΛΓ0 Π C(/), so 7 < iV(T0). We then have To < Y
= <Γo

r>, so Γo = y, a contradiction. We have proved that Y/Γo = Y for
1 < / < /. In particular, Y/Yi is abelian for 1 < / < /. Set f = Πί

i=ι Yέ.
Then Y/Ϋ is abelian, so y = (Γo

y>= ΫT0. However, Ϋ<Cγ(X) (as
Ϊ ; . < C ( O Λ ( - Y ) ) ) . Therefore, 7<J^, 7 = ^ r o <iV(Γ0), and as 7 =
(Γo

y) = Γo, this is a final contradiction.

(10.S)F*(Y)φFit(Y).

Proof. By way of contradiction, suppose F*(Y) = Fit(7). By (10.7),
X = Fit(7) = Or(Y) for some prime r and r T^JP by (10.6). As in the first
paragraph of the proof of (10.7) we have 1 < Γ O Π I < Γ O . Also, X<
N(T0), so Or,{T0) < CY(X) < X, and we conclude that To is an r-group.

Fix y E 7 with TJ Φ To and set 7 = Or(7)(Γ0, 7^). If 7 < 7, then
minimality of | Y\ shows that (10.1) holds for 7. However, Cγ(X) < X
impUes that £ ( f ) ^ = Op{Ϋ) = 1. Therefore, Γo < 7. But (6.3) implies To

is weakly closed in its normalizes whence Ttf — To, a contradiction.
Therefore, 7 = y = Or(Y)(T0, Tf).

Let A = T0ΠX, B= TJ Π X, and K = (^, J5>. Both of A, B are
normal inX.HA ΠBΦl, then (Γo, 7^) < C(̂ 4 Π 5) so we can choose
l ^ z G ^ Π ΰ Π Z(7). Then 7 < Q(z) and the argument of (10.7)
gives a contradiction. Therefore, A Π 5 = 1. This shows that K =
(A,B) = AXB. Also, [K, Γo] < [X, To] < ΛΓ Π To - ^ < F, so To <
7Vy(F) and similarly 7^ < iVy(F). Hence V <Y.

If / G 7*0, then [X, /, /] < [̂ ί, /] = 1. Therefore, tr centralizes each
7-chief factor contained within X. But the intersection of the centralizers
of such chief factors is an r-group and hence X. Therefore, tr G X and
To

r < X Π To = A. If (To

y)r contains an element, j , of order r2, then for
t G To we have [rr, y] G [Λl, 5] = 1. As VT0 has nilpotence class 2 we
conclude 1 = [/', y] = [/, yT = [/, jr]. That is, / G Cy(Γ0) = Γo, con-
tradicting A Π B = 1. Therefore, 7Jf, and hence 7 ,̂ has exponent at most
r2.

Say G has Lie rank «, so that | Γo | = ^/(ςf), where/(/) = Π Φd(t) and
Σ<pK) = Λ. By (2.4)(iϋ) \T0\>±(q- l)n >: ^(12)n. As an abelian group
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Γo has rank at most n (see (2.3)). Therefore, | To | < (r2)n and d > (\2/r2)".
As d < n + 1, we have r > 2. Also, Ay^ is isomorphic to a subgroup of
W9 so w >: 2. If r = 3, then the inequality forces q = 13 and consideration
of primitive divisors leads to a contradiction. Therefore, r >: 5.

Suppose G is an exceptional group. Then r \ \ W\ implies Wis of type
E6, EΊ, or Es. If r = 5, then \W\r = r9r, r2, respectively, while if r = 7,
I M |̂Γ = 1, r, r, respectively. In any case, r < 7. If | W| r = r, then X/̂ 4 =
Z r, so X = F s Z r X Z r and Y/Y s SL(2, r). But then | Γo | = r2, against
I Γo | > i(£ - l)w. Therefore, r = 5, ίF is of type E%9 and | J5Γ/>4 | divides
r2. If I Λ I = r2, then | B \ = r2 and X = 4̂ X 5 is elementary of order r4.
So 7/X<SL(4, r), | Γo | < r2 r4 = 56, again contradicting | Γo | >
i ( ί - \)n > (12)8. If \A | = r, then | X\<r3 and one argues | To | < r4,
impossible. So G is not an exceptional group.

Therefore, Go is a classical group (3D4(q) is out as r \ \ W\ and r > 5)
and we let M be the natural module for the appropriate covering group,
Go, of Go. Let f0 be the preimage of To and B a Sylow r- subgroup of the
preimage of J5. Write M = Mλ Θ ΘM7, a decomposition into irreduci-
ble Γ0-irreducible submodules. If Go & SL(m, q) then M has a non-degen-
erate bilinear form and we can arrange Ml9..., Af7 so that for some A: < /,
Ml9...9Mk are non-degenerate, while each of Mk+l9...9Mj is totally
singular. Moreover, Λf = Λfx ± - ± Mk ± (Mk+ι θ Λ^+ 2) ± ±
(Λf/_1ΘM/), with Γo inducing contragredient representations (con-
tragredient followed by a field automorphism, in the unitary case) on the
pairs {M,+ 1,M*+2},...,{M/_1,M/}. Set Nλ = Mk+λ Φ Mk+29...,Nj =
M7_! Φ M7, where y = ±(/ - Λ). We now have M = Λfj ± ± Mk ±
Nx ± -L Λ̂  , and for Go = SL(m, ^), M = M! Φ •• ®Mk9 considering
7 = 0.

We claim that To is not cyclic. Otherwise, A = Zr and To = Zr2. Then
Aut(7J)) has Sylow r-subgroups of order r, which implies X/yί = Zr. Thus,
Jf = K ss Z r X Z r and Y/Jf s SL(2, r). But then Y splits over F, forcing
To = ZrX Z r, a contradiction. This proves the claim, which implies / > 1
and Go & PSL(2, q).

Next we show that k + j = 2. If A; +7 = 1, then 7J) is cyclic, con-
tradicting the preceding paragraph. So k + j > 2. If k +j >3, then
letting Γ be the maximal torus in GL(m, g), Sp(m, ^), SO~(m, q), or
GU(m, ήr) containing f09 we have the Sylow 2-subgroup of Γ of rank at
least 3. Thus, the Sylow 2-subgroup of 7̂  has rank at least 2, which forces
\TQ\ to be even. However, To is an r-group and r > 5. So k + j = 2, as
desired. Accordingly, write M — M' ® M", where each of Λf' and M" has
the form M7 or Nt.
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The representations of f0 on M' and M" have different kernels
(otherwise f0 would be cyclic) and each of Mf and M" is either irreducible
or the sum of two ^equivalent Γ0-submodules. So M is the sum of at most
4 pairwise inequivalent, irreducible, ^-submodules, and since B < N(T0)
and r > 5, B necessarily stabilizes each of these irreducibles.

Let / < M be an irreducible Γ0-submodule of M such that [f0|7, B |7]
φ 1. Say dim(7) = d. Then f0 \r can be regarded as a subgroup of the
multiplicative group of the field ¥qa (F(<?2^ in the unitary case) and B
induces field automorphisms on 1|7. Therefore, r \ d. On the other hand,
Φd(q) divides the order of f0 |7, so let s be a primitive divisor of Φd(q). As
d > 2, we have s 11 To \, whence s = r. However, d is the order of q,
modulo 5, so d\s — 1. We now have r\ d and d\r — 1, which is absurd.
This contradiction proves (10.8).

(10.9) If To < X and (10.1) holds for X, then E(X) = E(X)
p.

Proof. As (10.1) holds for X, (To

x) = X(T0)T0. Let / be the product of
those components of X not contained in E(X)p. Then [Γo, /] < / Π
-Y(Γ0)Γ0 < Z(/). The 3-subgrouρ lemma then shows [Γo, /] = 1. But this
gives / < CGQ(T0) = Γo, a contradiction.

= l and

By (10.5) Op{Y) = 1, so (10.4) shows £ ( 7 ) , = 1. Also, (10.8)
implies F*(7) ^ Fit(F), so X — E(Y) φ 1 and is a product of compo-
nents, none of which is of Lie type in characteristic p. If XT0 < Y, then
minimality of | Y\ and (10.9) gives a contradiction. Therefore Y = XT0.

To prove the result it will suffice to show Fit(7) = 1. By (6.1) we
have To < Fit(7)Γ0 (recall Op(Y) = 1), hence [Γ0,Fit(7)] < To Π Fit(7)
= A. If A = 1, then Fit(y) < CGo(Γo) Π Fit(7) = Γo Π Fit(7) = A = I,
as required. Suppose 4̂ ^ 1. ThenU < Fit(7) < C(X) and so 4̂ < Z(7).
Fix \ φ a E: A and consider the embedding Y < CGo(a).

Since 7J> centralizes no component of Y, X — [To, Y] and this implies
X < Dλ D^, where />!,... ,Z>£ are the components of CGo(α) (see (2.9)).
By (7.1), To Π ΰj is a maximal torus of Dl9 and we may reorder, if
necessary, so that Yι = [Γo Π /),, Y] φ 1. Argue in Dj with the subgroup
^(ΓQ Π Dx), using minimahty of | Go \ and (10.9) to obtain a contradic-
tion.
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(10.11) Let X=F*(Y). Then Y = XT0< Aut(X) and either X is
simple or X is the commuting product of two Γ0-conjugate simple groups.

Proof. Let Xx be a component of Y and {Xl9...9Xk} the orbit of Xι

under To. By (10.10)(ϋi), E(Y)p = 1, so minimality of | Y\ and (10.9)
imply Y = Xx Λ̂ TJ). By (10.10)(ii), each of Xl9...,Xk is a simple group.
Supposed > 1.

Let T2 = NTQ(XX), so that Γ2 <#(.¥,) for i = 1,...,*:. Let r be a
prime divisor of k and let / be an r-element of To with | tT2 \ — r. If tr — 1,
consider the group Cx(t)T0 and obtain a contradiction (using minimality
of I 71). Hence, tr φ 1. From order consideration we have r 11 Xλ | , so it
follows that r divides |̂ 4 | , where A — Cx(tr). Write A = Ax - Άk with
4,. = Λ Γϊ Xi9i= 1,...,£.

Apply (10.1) to the group AT0. Let C/Op(A) = A(T0)/Op(A). Then
CΓ0 <1 ATQ and C = ^ Q , where Ct = C Π Jζ , for i = 1,... ,A:. If
0 0 ^ ( 4 then by (9.1) To contains a maxial torus of C. However,
TonCx<ToΠ Xx = 1 (otherwise To < N(XX)). Therefore, C = Op(A)
and O^iίJΓo < ^4Γ0. Let \φaλE:Aλ with | ύfj | = r. For g G To - Γ2,
αf ^f G XxXf Π C^ί^JΓo. So, modulo Op(A) this element centralizes Γo,
and it follows that X = ̂ -Yf. This proves (10.11).

At this stage in the proof of (10.1) we consider the possibilities for
X = E(Y). This is where the classification of finite simple groups becomes
relevant. Write X= Xxor XXX X2.

(10.12) Xx &Am, f o r m > 5 .

Proof. Suppose Xx =Am. First we rule out the case X— Xx X X2.
Otherwise, let t G To - N(XX) with t a 2-element. Then X[ = X2 and
j = t2 E N(XX). Soy acts as an element of Sm on each of Xx and X2 and
we set At — Cx(j), for i — 1,2. Then A2 — A\. The structure of Ai is
determined from the cycle decomposition of j . From (10.1) we conclude
To < AXA2TO. S o f o r \ Φ a x E A l 9 a x

x a [ G [ A X A 2 , To] < To < C ( / ) . T h i s
forces I 0j I = 2; hence ̂ 4j is elementary abelian. From the known structure
of Al9 we conclude m < 5 and | To | < 8. But I , X I 2 < Go forces « > 2,
and we obtain a contradiction from (2.4). Therefore, X — Xv

Let Ω = {l,...,m}. Since 7 < Aut(Z) and since the order restric-
tions on I To I force m > 6, we have Y ss yίw or 5OT, and 7J, acts on Ω. We
claim To is transitive on Ω. Otherwise, we can write Ω = Qx U Ω2, a
disjoint union of Γ0-invariant subsets. By minimality of | Y\ and (10.9) we
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have I Ω/1< 4 for / = 1,2, hence | Ω | < 8. By considering subgroups of
L2(q) we see that n > 2, and so order restrictions (see (2.4)) lead to a
contradiction. Therefore, To is transitive on Ω, and as To is abelian, To is
regular. In particular, \T0\=m. If m is not a prime, write Ω = Ωj
U ••• UQ/, a disjoint union, corresponding to a system of imprimitivity
for To on Ω. Then To stabilizes a subgroup Γisomorphic toAQ X XA$ .
If I Ω, |> 4, then the minimality of | Y\ and (10.9) (applied to VT0) gives a
contradiction. Suppose | Ωj | < 4. Then VT0 is solvable, and since p >: 5,
we conclude from (6.1) that 1—2 and Fis an elementary abelian 2-group.
That is, I Ωj I = 2 and m = 4, a contradiction. Therefore, m is prime. Also,
To s Zm, Γo < ΛΓ= F*(7), and Nγ(T0)/T0 is cyclic of order £(m - 1).
We use this information in order to get a numerical contradiction.

Suppose Go is a classical group. Let Go be the appropriate linear
group acting on the natural module M9 and let f0 be the preimage in Go of
Γo. With notation as in the proof of (10.8) we have M = Mλ Θ ΘM^ if
GQ = SL(w, #), while M = Mx ± JL Mk ± Nx ± - ± Nj9 otherwise.
Here f0 stabilizes each of the subspaces, acts irreducibly on each Mi9 while
each N; decomposes into two Γ0-invariant totally singular subspaces. If G
denotes the full linear group (GL(w, q), GU(w, q), Sp(π, q), orSO±(n, q))
and f the maximal torus of G containing f0, then f = fλ X X tk if
Go = SL(n, q\ or f = fu X X fιk X f21 X X Γ2y otherwise, where
the appropriate subgroups act on the corresponding Mt or NJ9 and are
trivial on all other parts of the decomposition.

Now, To has prime order. If Go is a symplectic or even dimensional
orthogonal group, say dim(M) — In, then | f\/\ To \ divides 4, and since
q > 13 we conclude that k + j — 1. It follows that NGQ(T0)/T0 has order at
most In. If Go = 0(2n + l9q)\ we get the same conclusion, although
here one of Λf/s has dimension 1 and f induces Z2 on this factor.
Suppose Go = SL(«, q). Then fx is cyclic of order q™1 — 1, where mz =
dimίM;). This forces /: < 2 and if k = 2, then one of Λ/\ and M2 has
dimension 1. So here NGQ(T0)/T0 has order n or 2n — \. Similarly, if
GQ SS SU(Π, #) we have NGo(To)/To of order atjnost 2«. Thus, in all cases,
I NQ^TQ)/^ |< 2r, where r is the Lie rank of G. This gives the inequality,
2r > \(m - 1), or 4r + 1 > m. Also, m>\(q- X)r > ^(12)r (by (2.4))
and d<r+ 1. Hence, (4r + l)(r + 1) > 12r, a contradiction. This shows
that GQ is not a classical group.

Let GQ be an exceptional group and G of Lie rank r. Then \(m — 1)
divides | W\ , while m >: \(q — X)r >\\2r. Considering the possibilities
for I Ŵ l we obtain a contradiction.

(10.13) Xx is not a group of Lie type in any characteristic.
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Proof. Suppose that Xx is of Lie type and defined over F , where

q0 = ra and r is prime. By (10.10)(iii), r φp. Minimality of | Y\ and (10.9)

shows that To stabilizes no subgroup / < X with E{J)rφ 1.

Suppose r divides | To Π X | . We first claim that To is an r-group.

From (3.9) of [4] it follows that there is a canonical parabolic subgroup, D

of X, with Or(T0 Π I ) < Or{D). Then To < N(D) and minimality of | Y\

imphes that (10.1) holds for DT0. Since Op(DT0) < Op(D) = 1 and since

E(DT0)p < E(D)p = 1, we must have To < DT0. In particular,

[OΛT0)9 Or(D)] < OAT0) Π Or{D) = 1. Then [D, OΓ,(Γ0)] < D Π
C(0r(Z>)) Π Or,(Γ0) = 1. In particular, OΓ,(Γ0) centrahzes a Borel sub-

group of X, and checking Aut( X) we see that Or,(T0) = 1. This proves the

claim.

Let U G Syl r(X) with Γo < # ( ί / ) . Then NY(U)TO is solvable and, as

above, Γo < Nγ(U)T0. Suppose X = X, X X,. Then r = 2. Let ί E To -

N(X{) and αj G iV^(t/ Π X^. Then a[ιa{ = [α l 9 ί ] G Γ 0 = O2(Γ0), from

which it follows that q0 = 2. Also, αf ^J G Γo and Γo abelian implies

U Π Xxis abelian. But then, Xx = SL(2,2), a contradiction. Therefore, X

is simple. Since To <q Nγ(U)T0, [Nγ(U), To, To] = 1, and consideration of

Γo = Or(Γ0) < Aut(X) yields Γo < ί/. Let £>! be any proper parabolic

subgroup of X with U<DV Then minimality of | Y\ yields Γo < Dv If

X ^ PSL(2, q0), then letting Dj vary, we conclude To < X, a contradic-

tion. Therefore, X = PSL(2, ^ 0 ) , and NY(U) < N(T0) forces | Γ 0 | = # 0 .

Also, Y= Xand JVy(Γ0)/T0 is cyclic of order q0 - 1/(2, q0 - 1). At this

point we have the same situation that existed at the end of the proof of

(10.12) (set m — q0 but allow for the fact that To may not have prime

order) and this led to a numerical contradiction. We conclude that To Π X

is an r '-group.

Suppose \ ^ t E T0Π X and consider C = Cx(t). Let ί 6 / , a maxi-

mal torus of X. By (2.9), there are commuting groups of Lie type,

Dl9...,Dh over extension fields of F^ such that Dx - DJis normal in C

with quotient isomorphic to a subgroup of the center of the universal

cover of Y. If E(C) Φ 1, we contradict the minimality of | Y\ . Hence,

E(C) = 1. Consequently, either Dx - DJ = / or q0 = 2 or 3 and £>, =

SL(2, q0), PSL(2, ί o ) , SU(3,2), or PSU(3,2), for / = 1,...,/.

Suppose one of the latter cases occurs and set / = [Dx Dh To].

Then J <DX Dt Π Γo < Or,(X>! 2)^ (as Γo is an r'-group). Also,

J <DX'- DjT0. Since Γo is abehan, / Π Z) j < ZiD^ for any / with

Dt « SL(2,3) or SU(3,2). For such an ι, [Γo, Di9 Dt] < [ Z ( ^ ) , Dg] = 1,

and since Z>z is generated by r-elements, [Γo, Z)J = 1. But then Z>z <

CGo(Γo) = Γo, whereas To is an r'-group. We conclude that Dt s PSL(2, ^ 0 )

or°PSU(3,2) for / = ! , . . . , / . Normality of / in Dx DkTQ and the
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previous commutator argument shows that / = Or,(Dλ Z),). In particu-
lar, there are root subgroups Aλ=A2 = Z^ of Y such that PSL(2, q0) =
(Aλ9 A2)< C and E = Or.({Ax, A2)) < Γ0.°Let tλ be a generator of E. As
above, E(Cx(tx)) = 1. This implies that Y has Lie rank at most 2. Since
-Y<G0, w>2, and | Γ o |> ^122 > 48 (see (2.4)). As To is an abelian
r'-subgroup of Cγ(t) we obtain a numerical contradiction.

We now have Dλ Z>7/ = / < C. Let m be the Lie rank of the
overlying algebraic group of Xλ. Then | C | is bounded by the order of a
maximal torus of the universal cover of X, so (2.4) implies that | To Π X \
< (q0 + X)m (replace q0 by qλ — jίfc for the Suzuki and Ree groups).
Here we use the fact that if X = Xλ X X2, then r o n i , = r o n i 2 = l .
Regarding Γo/Γo Π X as an abelian subgroup of Out( X) we have | To |<
(<?o + l ) w + 2 (again we replace q0 by #! = ffi in the Suzuki and Ree
cases). This inequality also holds in case To Π X = 1.

We cannot have Xλ = Sz(ή'), L3(4), or ί^(3). For the first two this
follows since To is abelian of order at least 48. If Xx = t/4(3), use (5.16) of
[23] together with the existence of an extraspecial 3-group in Xλ of order
35 to conclude that n >: 4. Then |Γ 0 |>:yl2 4 , contradicting the above
inequality.

Suppose M is a faithful module in characteristic p for a covering
group of GQ. Using the main theorem of [18], the containment X< Go,
and the above paragraph, we can obtain lower bounds on dim(M).
Excluding the Suzuki and Ree groups, we then have dim(M) >{(q™ — 1)
(in most cases this is too low, but for the symplectic groups in odd
characteristic, it is exact). For X=Sz(# 0 ), 2G2(q0), 2F4(q0) we have

dim(M) ^ (ίo/2)1/2(?o " 1)> %(% - 1), (<7o/2)1/2<Zo4(4o ~ 1), respec-
tively. In what follows we use these bounds on dim(Λf) to obtain
contradictory inequalities involving | To \ . The contradiction is most easily
obtained for the three exceptional cases, although they must be considered
individually. We, therefore, leave these cases to the reader and present a
treatment of the remaining cases.

First, suppose Go to be a classical group and let M be the usual
module for the corresponding linear group. Then dim(M) < 2n + 1. By
the previous paragraph, In + 1 > {(q™ — 1), so n > \{q™) ~ 1. We then
have the inequalities (q0 + l)m+2 >| To \>λ

d(q - l)n >{{q - \)n~x

> ^(12) (1/4)(^)-2. This yields 288(#O + l ) m + 2 > 12^/^^). when m > 2
and q0 >: 5 this is impossible. Moreover, if q0 = 3 or 4, then m < 2, while
if q0 = 2, then m < 4. Suppose m= 1. Then the inequality forces #0 < 25.
Considering subgroups of PSL(2, q), we see that n > 2. But then | Γo |
> ^12" > 48, contradicting Γo < Aut(X). Therefore, m > 2 and it fol-
lows that q0 = 2, 3, or 4. Also, m — 2m the latter cases.
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We treat these cases separately, using the inequality (*) (q0 + l ) m + 2

^1 To |> i(9 - l)w ^ ^12". Suppose ?0 = 4. Then 2Λ + 1 > {{qg - 1) >
7, so w >: 4, which contradicts (*). Suppose q0 — 3. Then m = 2 and X is
simple. For the moment, exclude the case X = PSp(4,3). The result in [18]
then gives 2π + 1 > dim(M) >: 6. So n > 3 and we contradict (*). If
X ss PSp(4,3), then Jf contains the split extension of an elementary
abelian 3-group of order 33 and S3 and O3(X) has class 3. However, Go is
a classical group with n > 2, and one checks that this forces n > 3. This is
a contradiction, leaving only the case q0 = 2. Since 7̂  is an r'-group we
can improve the earlier bound to get | Γ o |< (q0 + l ) m + 1 = 3m+K If
m = 4, the bound 2w + 1 > ^(2W - 1) forces w > 3, whence | To | > ^123,
contradicting the above. If m = 2,3, then π > 2 and we again have a
contradiction unless Xx s PSU(4,2) and Λ = 2. But PSU(4,2) = PSp(4,3)
and we have already observed that this forces n >: 3.

At this point Go is an exceptional group, and, except for the case
Go = G2(q), these cases are easier than the above. Suppose Go = G2(q), so
that Go has a 7-dimensional representation in characteristic p. We then
have the inequality 7 = dim(M) >\(q™ - 1), so q$ < 13. If <?0 = 2, then
as above, | Γo | < (ήr0 + l ) m + 1 which forces m > 4 (as d = 1), a contradic-
tion. If #0 = 3, then (*) forces m = 2 (JT would be solvable iίm— 1), so
X = PSL(3,3), PSρ(4,3), or PSU(3,3). But then we can improve the
earlier bound on | Γo | obtaining | Γ o |< 2(ήf0 + l ) m + 1 , which contradicts
(*). Therefore, qo>4ym= 1, and X = PSL(2, q0). This contradicts (*) (as
q0 <\3). So Go z* G2(q).

For the other exceptional groups argue as follows. In each case X acts
on a module M of dimension 27 if Go = F^q), E6(q), or 2E6(q), dimen-
sion 56 if Go s £7(ςr), and dimension 248 if Go = £8(?). These bounds
give easy contradictions. Details are omitted, but we illustrate with the
case Go = F4(q). Here dim(M) = 21 >\{q™ - 1), while n = 4 and rf = 1.
As above we obtain a contradiction. This completes the proof of (10.13).

11. Classification (continued). In this section we complete the proof
of (10.1). In view of the classification theorem and (10.11)—(10.13) we
have X= F*(Y) a sporadic simple group or the direct product of two
sporadic groups interchanged by an element of To. Our method is to first
show that To is T.I. set in 7, of odd order, and to use this together with
properties of the individual groups to obtain a contradiction. An effort
has been made to keep the number of special properties to a minimum,
avoiding an extensive list of references. For the most part we only need
the orders of the sporadic groups (Table (11.1), below) and the structure
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of centralizers of involutions (available in Table 1 of [2]). For certain
groups we do appeal to the literature for additional information. A
somewhat shorter proof could be obtained by citing a much larger number
of references, but this did not seem worthwhile.

Let n be the Lie rank of G. The containment X < Go certainly forces
n > 2, whence | To | > ̂ {q - X)n 7> 48 (as d < n + 1). In the following
table we list the sporadic simple groups and their orders.

TABLE (11.1)

X

Mu

Mn

M22

M2A

Jλ

J2

J,
J4

HS

Me

Suz

He

2 4 3 2 5

2 6 3 3 5 •

2 7 3 2 5

2 7 3 2 5

21O 3 3 5

2 3 3 5 '

2 7 3 3 5 2

2 7 3 5 5

2 2 1 3 3 5

X

11

11

7-11

7 11 23

•7-11-23

7-11-19

•7

17-19

• 7 - I I 3 - 2 3 - 2 9 -

31-37-43

2 9 3 2 5 3

2 7 3 6 5 3

2 1 3 3 7 5 ;

2 I O 3 3 5 :

•7-11

•7-11

- 7 - 1 1 - 1 3
ι 7 3 17

X

ON

Co,

Co2

Co3

^ 2 2

^ 2 3

Ly

F2

F3

F5

Ru

2 9 3 4 5 7 3 ]

2 2 1 . 3 9 . 5 4

2 l 8 . 3 6 . 5 3

2 1 0 . 3 7 . 5 3 .

2 1 7 3 9 5 2

218.313.52

2 2 1 . 3 . 6 . 5 2

23-29
28.37.56.

246.326.59

19-23-29
2 4 ' . 3 1 3 .56

23-31-47

2 1 5 . 3IO.53

2 i 4 . 3 6 . 5 6 .

2 1 4 . 3 3 . 5 3 .

7 2

7-

7-

7-

•7-

•v-

7-1

•T

•31

72

• 7 2

7-

7-

χ\

11-19-13

•11-13-23

11-23

11-23

11-23

11-13-17-23

•11-13-17-

1-31-37-67

• I I 2 - 1 3 2 - 1 7

•41-47-59-71

- 1 1 - 1 3 - 1 7 - 1 9 -

-13-19-31

1 1 1 9

13-29

(11.2). If t
2-constrained.

To is an involution, then To < O2(Cγ(t)) and Cγ(t) is

Proof. The possibilities for Cx(t) are presented in Table 1 of [2] and
in [17] for X — J4. Suppose Cx{t) is not 2-constrained. We have To <
N(E(Cx(t))), so minimality of | Y\ implies (10.1) holds for E(Cx(t))T0.
The only possibility is X = J3 or J3XJ3, with / inducing an outer
automorphism on each component of X. Hence, Cx{t) = PSL(2,17) or
PSL(2,17) X PSL(2,17), and q = 17. Also, To Π X<Cx{t\ To Π Winter-
sects each component trivially if Xis not simple, and | TQ Π X\> 12 (24 if
Xis simple). Since To is a//-group, this is impossible. Therefore, Cx(t) is
2-constrained. From (10.1) and the minimality of | Y\ we conclude Cγ(t)
< N(TQ), which forces To < O2(CY(t)).
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(11.3) (i) I Γo I is odd.
(ϋ) X is simple.

Proof. Suppose | Γo | is even and apply (11.2) to obtain To < O2(Cγ(t))
and Cγ(t) 2-constrained for each involution t E To. Suppose X = Xλ X X2,
with X2 = X{9 for some y £ To. The previous remarks show that each
involution, /, of 7̂  normalizes Xλ and X2, and since y £ O2(Cγ(t)) we
necessarily have Cx(t) a 2-group (consider [av y] for aλ E C^(ί) of odd
order). However, Table 1 of [2] and [17] show this to be impossible.
Therefore (ϋ) holds.

We know that To is a 2-group of order at least 48, and this forces
I Γo I > 26. By Table 1 of [2] and [17] the only sporadic groups X having an
involution t such that O2(Cγ(t)) contains an abelian subgroup of order 26

are Ru, Co1? Co2, F 2 2, F23, /^, JF2, /4>
 O Γ F\- Moreover, in each case

O2(Cγ(t)) has exponent at most 4.
Since | Γ o | > 2 6 , To has rank at least 3. From (2.1)(iii) we conclude

n > 3. Hence, | Γo | > ^(^ - 1)« > i . 123 (recall, </ < Λ + 1), and since Γo

is a 2-grouρ, | Γo | >: 29. Repeat the argument. Namely, To of exponent at
most 4 implies Γo of rank at least 5. Therefore, n > 5 and | Γo | > ^ 125 >
215. Eventually, we obtain | TQ \>\ X\ , a contradiction.

(ii) NX(TO) is the unique maximal subgroup of Y containing Γo.
(iii) To is a T.I. set in X = 7.

= 7 by (11.3) and Table 1 of [2]. Suppose (ii) holds. If To is
not a T.I. set in Y, then there exists y E y - 7V(Γ0) with 1 ^ 70 Π 7^.
Choose 1 ^ / 6 Γ O Π Γô , so that Γo, Γô  < CY(t). By (ii), C y ( 0 < N(T0),
so (6.3) forces the contradiction To = To

y. Therefore, it will suffice to
prove (ii).

Let TQ < M < X. We must show NX(TO) >: M. Suppose false, so that
minimality of | Y\ implies that (10.1) holds for M. Therefore, either
Op(M) φ 1 or E(M)p φ 1. Suppose E(M)p Φ 1 and let D be a compo-
nent of E{M)p. By (7.1) To Π D is a maximal torus of D, hence To < Λ^(D).
Then (7.2) shows that T2 = C ^ Γ j ) is a maximal torus of Gr0, where 7̂  is
a Cartan subgroup of Zλ Let Fbe a Sylow/7-subgroup of D normalized by
T2. Then V is a product of Γ2-root subgroups of Go (use (9.1)), each of
which has order a power of q. If D & L2(qa), for some integer a, then Γj
is necessarily of even order. But then | T2 \ is even, and applying (11.3) to
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T2 rather than to To, we have a contradiction. So D ^ L2(qa) and
±(qa - \) is odd.

Suppose I V\= q and let T2 = Q(Γ2)°, a. maximal torus of G. There
is a Γ2-root subgroup V of G such that V= Vσ. Then D is generated by V
and the opposite Γ2-root subgroup of Go, and it follows that either
D = SL(2, q) or Go = PSp(4, q) and Vis a root subgroup for a short root.
The first case contradicts | T2 | odd. In the second case, consideration of
NG(V) shows that | T2 \= \{q — I)2 or \(q2 — 1), either way we again
contradict | T2 | odd. Therefore, a > 1, and since ^(qa — 1) *s °dd, so is a.
Thus, #311 V\ . Also, # = -1 (mod 4) forces q to be an odd power of/? and
p = -1 (mod 4). From Table (11.1) we easily rule out all possibilities for
X. Hence, E(M)p= 1.

We then have Op(M) φ 1. Let / be a minimal Γ0-root subgroup
contained in Op(M). Then | /1 = qa for some a > 1. If a = 1, argue as in
the above paragraph and contradict the fact that | To | is odd. Hence
α - 2

Suppose a = 2. Then J ~ Xt for some / E {1,..., v} and A) = UaX Uβ

for α, jβ roots of the same length. Let D = (U±a,U±β). Then Z) is a
Γ(σ)-invariant rank two subgroup of G, so D — Op(Dσ) is a perfect
central extension of one of the groups PSL(2, q2), PSL(3, q), PSU(3, q),
or PSp(4, q). By (7.1), To Π D is a maximal torus of 2λ Also, Γo < iV(/),
so 7J) Π D is contained in a proper parabolic subgroup of D. However,
one checks that this forces \T0 Π D\ even, a contradiction. Therefore,
α > 3 .

From Table (11.1) we conclude that Xis one of the groups Ly, F5, F29

or Fx. In the first two cases, / is necessarily of order 56 and a Sylow
5-subgroup of X. However, / is elementary abelian, while Ly contains
G2(5) (Lyons [19]) and F5 contains a HS section (Table 1 of [2]), which
contains a ί/3(5) section. This is impossible, forcing X = F2 or Fx. At this
point we appeal to (11.8) (which is proved independently of (11.4)) to
obtain a contradiction. This completes the proof of (11.4).

(11.5) Go has a faithful irreducible projective module M over a field of
characteristic/? and satisfying

(i) dim(M) < 2n + 1 if Go is a classical group;
(ii) dim(M) < 8 if Go s G2(q);

(iii) dim(M) < 27 if Go s F4(q), E6(q), or 2

(iv) dim(M) < 56 if Go ss E7(q); and
(v) dim(M) < 248 if Go = Es(q).
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Proof. If Go is a classical group use the natural module associated
with the corresponding linear group. If Go — G2(q), the containment
G2(q) < D4(q) implies the result. Each of the groups in (iii) is contained
in E6(K). To obtain the module M, consider the group EΊ(K) and let P
be the standard parabolic subgroup whose derived group involves E6(K).
Then M = RU(P) can be viewed as a 27-dimensional module for the Levi
factor of P. A similar procedure establishes (iv), while in (v) we let M be
the Lie algebra of G = ES(K).

(11.6) (i) I Γ0 |
(ii) If n > k, then | To | > 1/(A: + 1) 12*.

Proof. By (2.3) \T0\>^(q- l)n. As tf< # + 1 and # > 13, we have
1)» > ((<? - \)/{q + \))(q - I ) " " 1 M ^ " ' 1 = ^ 1 2 " , which

proves (i). To prove (ii) use the inequality \T0\>j](q — \)n >
(Λ + 1))12W and repeated use of the inequality (1/(1+ l))(q - I)1

(11.7) X is not a Mathieu group.

Proof. Suppose X is a Mathieu group. Regard X as a subgroup of M24,
acting on a set Ω of size 24. Let Δ be an orbit of To of maximal length. Fix
a e Δ and set 7̂  = (T0)a. By (11.3) | Δ | is odd and since To is abelian, Tx

fixes each point in Δ. From | Γ o |>48 we conclude TXΦ\, and since
I Δ 12> 3, Γ, 2£ M21 < Aut(PSL(3,4)).

If I Δ I = 3, then | Tλ \ > 16 forces 7 11 Tλ \ , whence TQ has an orbit of
size a multiple of 7. This contradicts the choice of Δ. Therefore | Δ | > 5
and Tx must be contained in a Cartan subgroup of Aut(PSL(3,4)) >: M2X.
Then \TX\ divides 9 and | Δ | > 7. This forces | 7̂  | = 3, whence | Δ | > 16,
impossible.

Proof. If X = F2 or F1? then X contains a covering of 2E6(2) (see Table
1 of [2]). By [18] any faithful projective representation of 2E6(2) in odd
characteristic has degree at least 3 29. So (11.5) implies G is a classical
group and n > ^(3 29 - 1). Combining this with (11.6) we have | To |>
I XI , a contradiction.
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Proof, Suppose Λ ^ M c or Co3. By (11.4)(ϋ) NX(TO) is a maximal
subgroup of X, all such subgroups being determined in Finkelstein [11].
Now X acts faithfully on the Lie algebra, M, of G. Also, As < Me < Co3

and As s GL(4,2). Decomposing M into eigenspaces for the central
involution of the As and using [18], we have dim(Λf) > 2-7 = 14. This
implies Λ >: 4 and so | To | > j l2 4 . The results in [11] yield a contradiction.

(11.10) X & HS.

Suppose X = HS. Then X is 2-transitive of degree 176, with
1-point stabilizer PSU(3,5) and 2-point stabilizer an extension of SL(2,5)
by Z6. Say X acts on Ω and Δ is a non-trivial orbit of To. For a E Δ,
τ\ = (7o)« stabilizes each point in Δ, hence Tx < SL(2,5) X Z3 and
I Γ, | < 15. In particular, | Γo | < 15 176.

If p Φ 5, then using the containment PSU(3,5) < Go together with
[18] and (11.5) we have /i > 4. Hence, | To | > \{q - X)n > \ 124, con-
tradicting I To | < 15 176. So /? = 5, which forces # > 25 and | To | >

(̂̂ r - 1)Λ ̂  i 242 = 263. Also, Γo has order prime to 5, so | Tx | < 32 and
| Δ | > 2 1 . The lower bound on |7J,| implies that each orbit of To is
non-trivial, of odd length, and of order greater than 21, but dividing | X\ .
Table (11.1) shows this to be impossible.

(11.11) ^ ^ R u or Suz.

Proof. Suppose X = Ru or Suz then X contains a subgroup (AX R)D,
where Z2 X Z 2 = R < RD = Λ4, D < JV(Λ), and ̂  = Sz(8) or PSL(3,4),
respectively (this follows from Table 1 of [2]). Let M be a nontrivial,
projective, irreducible module for Go in characteristic /?, and let Go be the
representation group for M.

Write M = CM(R) Θ [Λf, i?]. We first show that [A,[M, R]] Φ 0.
Suppose otherwise. Using (3.3) and (8.10)(i) of [2] we see that there exists
xGX with Rx <AR and Rx Π i < Z(Z) > ^ Π J ? . Then i i ? = i / K
Since 4̂ is trivial on [M, R] we conclude [Λf, Λx] >r [3/, R], hence equal-
ity holds. Therefore, CM{R) = ^ ( Λ " ) , whereas it* induces a subgroup
of A on CM(Λ) and, surely, [A, CM(R)] φ 0. Therefore, [A,[M, R]] Φ 0,
as asserted.

Suppose X= Ru. Then the main theorem of [18] implies dim(M) >
dim([M, R]) > 8 and dim(Λf) > 14 in case Z(X) has odd order. If R is
not abelian, then Clifford's theorem and Schur's lemma imply that M
contains the direct sum of two faithful ίΓ[^4]-composition factors, hence
dim(M) > 16. If R is abelian, we can write [M, R] > Mλ θ M2 θ M3, the
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sum of three faithful irreducibles for A, permuted transitively by D. Here
dim(M) > 24 and dim(M) > 42 if Z(X) has odd order. Apply (11.5) and
note that in (11.5)(iii) the module corresponded to a 3-fold cover of
Eβ{K). We conclude that n > 7 and if n = 7, then Go = EΊ(q) and d = 2.
Therefore, | Γo | > \ 127, and this contradicts (11.3) and (11.4)(i).

Now suppose Jf s Suz and let M be the Lie algebra of G. Here A" = X
acts on M and A does not centralize [M, R], Also, [Af, i?] = Mx θ JI/2 θ
M3, where Ml9 M29 and Af3 are the fixed spaces of the involutions in R.
The spaces Ml9 M29 and Λf3 are left invariant by A and permuted
transitively by D. It follows from [18] that dim(M) > 3 dim( A^) > 45. If
G = F4(K), we have a contradiction by replacing Λf by the module in
(10.5)(iϋ) (a module for the 3-fold cover of E6(K)). Hence n > 5. Since
I Γo I is odd equality holds only if Go = PSp(10, 9) or PSO~ (10, q)' with
I ̂ 0 I— 2(0 "" ϊ)6- The only possibilities are | Γo | = \{qs + 1) with ήr = 13
or 17, or n = 6 and (?0 = PSU(7,13). In each case we have a numerical
contradiction.

(11.12) X&JX.

Proof, We use (11.4)(ϋi) to conclude | T0\
2 < | * | . If /1 > 3, then

I 7J) | > ^123 and this is impossible. Thus, n = 2. A Sylow 2-normalizer of
JΓ contains a Frobenius group of order 237. Therefore, any projective
irreducible for Xin odd characteristic has dimension at least 7. By (11.5)
G s G2(ί:), hence rf = 1 and | To | > (9 - I) 2. As | Γo |

2 < X9 this forces
9 < 1 9 . As | Γ 0 | is odd, |Γ 0 |=Φ 3(ήf) or Φ6(q)9 and one checks that

(11.13)-Yse/2 or/3.

Proof. Suppose X = J2 or /3 and let ί be a 2-central involution in X.
By Table 1 of [2] we have Cx(t) an extension of an extraspecial group of
order 25 by A 5.

We first claim n > 3. To see this let M be a faithful ΛΓ[Z]-module,
and write M = [M, t] θ CM(0 As M is faithful each of the factors is
non-trivial, and they are both Cx{t) invariant. Since O2(Cx(t)) is extra-
special, we have dim([M, t]) > 4. Now consider CM(t). Involutions in
O2(Cx{t)) are non-trivial on CM(t) and it is easy to see that such
involutions are conjugates of t (use Table 1 of [2]). Thus, O2(Cx(t)) acts in
a non-trivial manner on CM(t) and it follows from Clifford's theorem that
dim(CM(0) ^ 5. Consesquently, dim(M) >: 9. Now SL(3, K) acts on its



234 GARY M. SEITZ

Lie algebra of dimension 8; G2(K) acts in 8 dimensions; while PSp(4, K)
s 0(5, K)' acts in 5 dimensions. This proves the claim, and so | To | >: \ 123.

From Sylow's theorem, we have the Sylow 7-subgroups of J2 self-
centralizing while the Sylow r-subgroups of J3 are self-centralizing for
r — 17, 19. Since | To | is odd, the above inequality shows | To | = 33 52 or
35 5, according to X = J2 or J3. However, (11.4) implies that | X: NX(TO) |
= 1 (mod I To |) and this is impossible.

(11.14) X^J4.

Proof. Suppose X = /4. We refer the reader to Janko [17] for proper-
ties of /4. If / is a 2-central involution then O2(Cx(t)) is extraspecial of
order 213. So if M is the Lie algebra of G we have dim(Λf) > 26. Thus

| |

If P E Sylr( JT), then by [17] P is self-centralizing for r = 23, 29, 31,
37, and 43. The Sylow 11-subgroups of X are non-abelian, so by Table 1
we have | To | dividing 33 5 7 112. This contradicts the inequality above.

(11.15) X& He.

Proof. Suppose JT = He. From Table 1 of [2] it follows that X
contains a klein group R such that E(CX(R)) is a covering group of
PSL(3,4) with center i?, and NX(R) is transitive on R. An easy argument
using [18] shows that a faithful projective K(E(Cx(R))ymodulo has
dimension at least 4 3 = 12. So (11.5) yields n > 4, hence | To | > ̂  124.

Since NX(R) has a section isomorphic to PGL(3,4), Xhas non-abelian
Sylow 3-subgroups. Therefore, 33{| To\ . The Sylow 17-subgroups of X
are self-centralizing, so \T0\ is prime to 17. From Table (11.1) and the
above inequality we conclude that O5(T0) E Syl5(JQ or OΊ(T0) E
Syl^JQ. Since 5 and 7 are divisors of | CX(R) \ , we may assume (by
(11.4)(iii)) that R < N(T0). But then To = (CΓo(r) | 1 ̂  r E i?), whereas
CΓo(r) < iV(i?) for each r E i?# and | NX(R) |°is not divisible by | Γo | .
This is a contradiction.

(11.16) X ^ L y .

Proof. Suppose Jf=Ly. Let M be a module as given in (11.5). If
/? ¥= 5, then the containment G2(5) < Jί (see Lyons [19]) and [18] implies
dim(M) > 120. Hence n > 8, equality possible only if G = ES(K) and
έ/ = 1. It follows that | Γo | > 128. But (11.4)(iii) implies | To \

2 < | X| , and
this is impossible. Therefore, p = 5 and # >: 25.



ROOT SUBGROUPS FOR MAXIMAL TORI 235

Since p — 5, | To | is prime to 5. As | To | > 48, and Sylow r-subgroups
of X are self-centralizing for r = 31, 37, 67 (see (3.3) of [19] or use Sylow's
theorem), we conclude | To | divides 37 7 11. By [19] there is an involution
j e X with Cx(t) = AU9 the covering group of Au. We may regard Cx(t)
as acting on M, and write M — Mx@ M2, where Mx — Cx(t) and M2 =
[M,t]. Each of Mx and M2 is non-trivial and considering the action of a
Frobenius subgroup of Cx(t) of order 55 we have din^M,) >: 5 for
/ = 1,2. Hence dim(M) >: 10, so (11.5) implies n > 4, with equality only
if G = F4(iO and d=2. Therefore, | To | > ^244 = 34 2Π. From the pre-
vious divisibility condition we have | To \ — 37 7 11, whereas X does not
have abelian Sylow 3-subgroups. This is a contradiction.

(11.17) X& ON.

Proof. Suppose false. We quote O'Nan [20] for the following fact
about X. Namely, a Sylow 3-subgroup, A, of X is elementary abelian of
order 34, its normalizer being an extension of Qs ° D% by Z>10. It follows
that each orbit of N(A) on A# has size a multiple of 40. Let X be the
covering group of X that acts on M. If A is abelian, then the above and
Clifford's theorem implies dim(M) > 40. Thus, n > 7 and | To | > I 127.
Otherwise, 4̂ contains an extraspecial subgroup of order 35. Here, dim(M)
>: 9 and 3 11 Z(G0) | . The proof of (11.5), shows n = 6 with equality only
if G = Eβ{K). Hence, | Γo | > \ 126. But (11.4)(iii) implies | To \

2 < |
and this contradicts Table (11.1).

(11.18) X^F22,F23, or F2'4.

/. Suppose X ^ .F22, F2 3, or F2 4. Let M be a module as in (11.5).
We first obtain lower bounds for dim(M). Suppose X ^ F22 or F23. By
Table 1 of [2] there is an involution j G X such that Cx(j) = Cx(j)' and
Cχ(j)/(j) = C4(2) or i ^ , respectively. Let j5 be the derived group of the
preimage of C^( y) in a covering group of X that affords M. By Griess
[14], [15] we see that D contains an involution j such that JZ(D) =j (in
fact D s Q(7) if X s F23).

Write M = C^(/) Θ[Af, / ] . Clearly [M, /] affords a non-trivial
module for i). This is also true of CM(j). For if D is trivial on CM(y),
then choosingy T ŷ* E Cx(j) we find thaty* can be chosen so that/* = / ,
and this is impossible. If X s ,F22, then by [18] we have CM(j) and [M, j]
each of dimension at least 21, and so dim(M) > 42. If X s F2 3, we have
CM{j) and [M, j] modules for 2), each non-trivial as before. Hence
dim(M) > 84. This also holds if X = i ^ , since F2 3 < / ^ .
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If X^F22, then by (11.5) n >: 7, with equality possible only if
G = EΊ(K). Therefore, | Γ 0 | > H l 2 ) 7 . On the other hand, (11.4)(ϋi)
implies | 7̂  | 2 < X, and this is a contradiction.

Now suppose X = F23 or F24. If X is a classical group then by (11.5)
n > ^(84 - 1) > 41. Hence | To | > ^ (12)^, contradicting | To |

2 < | X| .
So Xis not a classical group, which forces G = ES(K). From Table (11.1)
we have 23 11 A"| . However, 23 does not divide | Es(q) | for 13 < q < 47
with qΦ23 (one checks this by noting that neither Φπ(#) nor Φ22(q)
divides | £8(g) |). On the other hand 17 does not divide | Es(23) | . There-
fore, I To | > i(46)8, contradicting | To |

2 < | X| .

(11.19) X& Co2.

Suppose * = Co2. Table 1 of [2] shows that some involution in X has
centralizer containing an extension of an elementary abelian group, A9 of
order 24 by GL(4,2) (natural action). It follows from Clifford's theorem
that dim(Λf) > 15, where M is as in (11.5) (an easy argument shows that
we can regard A as acting on M). By (11.5), n >: 7 if G is a classical group;
otherwise « > 4. Suppose G = F4(K). By Table 1 of [2] we see that X
contains an elementary abelian group, E, of order 210. By (5.16) of [25], E
normalizes a maximal torus of G, and this forces the Weyl group of F4(K)
to have an elementary abelian subgroup of order at least 26. This is false.
So G &F4(K) and we conclude from (11.5) that n > 6, equality only if
G = E6(K). It follows that | To | > } 126. Sylow's theorem implies that
subgroups of X having order 11 or 23 are self-centralizing, so Table (11.1)
implies \T0\\ 36537. This is a contradiction.

(11.20)* 2* Co

Proof. Suppose X = Co^ We first claim that n >: 8, equality possible
only for G = E%(K). Table 1 of [2] shows that there is an involutiony G X
such that Cx(j) > A X R = G2(4) X(Z2X Z2) and R# consists of con-
jugates of j . As in (8.6) and (8.8) of [2] there exists a conjugate Rx of R
such that Rx < AR, Rx Π A = 1, and I?* projects to the center of a Sylow
2-subgroup of A.

Let F be the Lie algebra of G and write V = [F, Λ] θ CF(iϊ). Then
[F, R] = Vλ Φ F2 Φ F3, where ^ - [F, Λ] Π C(y;) and R* = {7l, y2, 7 3}.
As in (11.11) we have [A, V{] φ 1 for i = 1,2,3, so by [18] dim(F) >
dim[F, i?] > 3 d i m ^ ) > 3 60 = 180. The claim follows. Consequently,
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By (11.4)(iii), | To |
2 < X, which by the above inequality is impossible

for q > 13. Hence, q = \3. Now 13 has order 11 (modulo 23) and this

forces n > 10. But then, | Γo | > τr(12)10, again contradicting | To \
2 < X.

(11.21) X^F5.

Proof. Suppose X = F5 and let V be the Lie algebra of G. If p ^ 5,

then use (§4, II) of Harada [16] to conclude that X contains an extraspe-

cial group of order 55 and an element inducing Z 4 on the center of the

extraspecial group. Elementary arguments imply that dim(F) > 100.

Hence n>Ί, equality possible only for G — EΊ(K) or CΊ(K). We then

have I To | > {{\2)\ contradicting | To |
2 < X.

Suppose p — 5. Then q — 5a for a >: 2 and from (11.1) we have | To |

dividing 36 7 11 19. Since 19 11 Go | , a primitive divisor argument shows

that if q - 25, then Φ^(25) divides | Go | , for dλ a multiple of 9. But then

φ(d{) > φ(9) = 6 and | To | > ^(24)6, a contradiction. For 9 = 53 use the

prime 11 to obtain a contradiction, etc.

(11.22) X^F3.

Proof. Suppose X & F3. Then X contains a non-split extension of an

elementary abelian group of order 25, by SL(5,2) (Thompson [27]). This

group has trivial multiplier, so (11.5) implies that Λ > 7, with equality

possible only if G = EΊ{K). Hence | To | > ^(# - I)7.

If # > 23, then this contradicts | To \
2 < | X | . For the remaining cases

argue as follows. Since 31 divides | X\ , 31 divides \G0\ . So there is an

integer dx such that 31 | Φdι(q) 11 C?o | . One checks that dλ is a multiple of

30, 30 or 15, according to q — 13, 17, or 19. It follows that n > 8, equality

possible only if Go = Es(q). Hence | To | > (q — I) 8 and this contradicts

We have now considered all possibilities for X, completing the proof

of (10.1).

12. Some consequences of (10.1). In this section we derive some

consequences of (10.1) and (10.2). Throughout this section assume that

p > 3 and q > 11.

THEOREM (12.1). The map X ^ Xσ is a bijection between the set of

closed, connected, o-inυariant subgroups of G containing a maximal torus

and the set of subgroups of G generated by maximal tori of G.
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The above theorem will be a consequence of the next result which
gives additional information. In particular, the inverse of the map X -> Xσ

is described. We first need some notation.
For a subset Δ of Σ, let G(Δ, T) = (Ua\a€E Δ)._If Δ = Δ^ then

G(Δ^Γ^isjτ-invariantjιnd_we set G(Δ, T) = 0^(G(Δ, T)σ). For X< G,
let Σ(X, T) = {α G Σ | £/α < AT}, and for X < G, set Σ(X, Γ) =
Ux^xΣr If the maximal torus T is understood we abbreviate the above
to G(Δ), G(Δ), Σ(X), and Σ(Xχ respectively.

We say that a subset Δ of Σ is T-closed if Δ = Δσ = Σ(G(Δ)). This
agrees with the concept introduced in §10. A final notation. For 7 < G,
let G(Y, T) = G(Σ(7)) f, abbreviated to G(Y) when T is understood.
We can now state

THEOREM_(12.2). Let T0<Y<G. Then
(i) Δ_= Σ(Y) is the unique f-closedsubset ofΣ satisfying G(Δ)Γ0 < Y.

(ii) G(Y) is independent of Γo. That is, if T{ is a maximal torus of G
with T}nG0< Y, then G(Y, T}) = G(Y, T).

(iii) Y<N{G{Y% Tnormalizes Y, andG(A)T < YT.
(iv) IfY>T and if Y is generated by maximal tori of G±then G(Y,T)

is the unique closed, connected, o-inυariant subgroup of G containing a
maximal torus of G and having fixed point set Y,

(v) IfX = Xσ = X° > f, then X = (Tx), where X = Xσ.

It_is clear that (12.1) follows from (12.2) and that the inverse of the
map X -> Xσ is the map Y-* G(7). The next several results aim at the
proof of (12.2). First we characterize Γ-closed subsets of Σ at the G-level.

(12.3) A σ-invariant subset Δ of Σ is Γ-closed if and only if Σ(G(Δ))
= Δ.

Proof. Suppose Δ = Δσ. First assume that Σ(G(Δ)) = Δ. Clearly
Δ C Σ(G(Δ)). If Δ is not closed, then there is some (σ)-orbit Σ ; of Σ such
that Xt < G(Δ) and % $ Δ. However, X. < G(Δ) implies X. < G(Δ), so
the assumption gives Σ7 C Δ, a contradiction. Therefore, Δ is closed.

Now assume that Δ is closed. Hence, Σ(G(Δ)) = Δ and we must
prove Σ(G(Δ)) = Δ. Clearly, Δ c Σ(G(Δ)), so it will suffice to take
Xi < G(Δ) and show Xi < G(Δ). If Xi is_a^-group? then by (3.9) of [4]
there is a σ-invariant parabolic subgroup P of G(Δ)Γ such that Xt< RU(P)
md_T0 < P. By (6.4) we^also have f < P. Therefore, RU(P) is a product
of Γ-root subgroups of G and using (6.9), we have jζ < ΛM(P) < G(Δ), as
required.
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Suppose Xt is a group of Lie type and let Tx be a Cartan subgroup
G(Δ) (a/^-complement in a Sylow/?-normalizer). Then T2 = CG^)TQ(TX) is
a maximal torus of Go (by (9.1)), and we set T2 = Q^Γj)0, a maximal
torus of G. Then Γ2 < G(Δ)Γ0 < G(Δ)Γ and we claim that T2 normalizes
a σ-invariant maximal torus of G(Δ)Γ. To see this first use (5.16) of [25]
to get T2 < N(AX), where Ax is a σ-invariant maxial torus of G(Δ). Then
let Λ~ = AXZ(G(Δ))° and check that J"is a maximal torusof G(Δ)f. This
proves the claim, so by (6.3) and (2.8) we must have A — T2.

Set 7 = G(Δ) and note that G(Δ) < Ϋ(T0). Since G(Δ) < G(Δ) and
since each Γ2-root subgroup contained in G(Δ) is a/?-group, the argument
in the second paragraph of the proof shows that Y(T2) < G(Δ). On the
other hand, (9.1) shows that Ϋ(T2) = 7(Γ0), so we now have G(Δ) =
Ϋ(T0). By definition, ^ < F(Γ0), so ^ < G(Δ) as required.

(12.4) Let To < Y < G. Set Δ = 2(7). Then Δ is the unique f-closed
subset of Σ satisfying G(Δ)Γ0 < 7.

Proo/. Let Δ = Σ(7). By (10.1), 7(Γ0)Γ0 < 7 and y(Γ0) =
Op'(Y(TQ)σ). From the definitions we have Y(T0) = G(Δ), so 7(Γ0) =
G(Δ), which proves G(Δ)T0<Y. From (12.3), it follows that Δ is
f-closed. For if Xέ < G(Δ), then Xt < 7 and % C Δ. Hence Δ = Σ(G(Δ)).

For the uniqueness of Δ argue as follows. Let Ω C Σ with Ω = Ωσ and
G(Ω)Γ0 < 7. If Xέ is any Γ-root subgroup of G, then (Γ0

Λ;>= X7Γ0 (see
(6.7) and (7.1)). So if Xt < 7, we have Xt < G(Ω). This implies that
Σ(G(Ω)) = Σ(7). If, in addition, Ω is Γ-closed, then (12.3) yields Ω =
Σ(G(Ω)) = Σ(Y) = Δ, and Δ is unique.

(12.5) Let Γo_< 7 < G. Then
(i)7<JV(G(7));

(iii) G(Σ(Y))T< YT.

Proof. Let Δ = Σ(7) = Σ(7, Γ). By (12.4), G(Δ)Γ0 < 7 and Δ is
Γ-closed. As in the proof of (12.4) we have G(Δ) = Y(T0). Let T2 be a
/7-complement of the normalizer of a Sylow /?-subgroup of Y(T0)T0. By
(9.1), T2 is a maximal torus of Go, so T2 — CQ{T2)

0 is a maximal torus of
G.

By (10.2) and (9.1) we have 7(Γ0) = 7(Γ0)(Γ2). If D is any Γ2-root
subgroup of G, then (Tf)= DT2. As (Γ2

y>< 7(Γ0)Γ0, we conclude that
7(7^) < 7(Γ0), and hence Y(T0) = 7(Γ2). From (9.1) we also have Ϋ(T2)
= 7(Γ0) and 7(Γ 0 )Γ= 7(Γ2)f2. The Frattini argument yields 7 =
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Since G(A) = Ϋ(T0), we have G(Y) =Ϋ(T0)f= Ϋ(T2)f2. By (2.5)
G(Y)σ = (G{Δ)T)σ = G(Δ)Γ and also G(Y)σ = Y(T0)T = Y(T2)T3,
where T3 = (T2)σ._

As Y(T2) < Y(Γ2) and Nγ(T2) < N(Y(T2)) Π iV(Γ2), we necessarily
have Y = Y(T2)NY(T2) < N(G(Y)), proving (i). By the above, Y<
N(G(Y)a) = N(G(Δ)T), so this will prove (ui), once (ii) is proved.

Now, Y<N(G(Y)), so Y normalizes G(Y)σ = y(Γ0)Γ = y(Γ2)Γ3 =
Γ(Γ0)Γ3. The group NY(T2) also normalizes Γ3, so [NY(T2), T3] <
Γ3 Π Go = T2, and [iVy(Γ2), Y(T0)T3] < Γ(Γ0)Γ2 = y(Γ0)Γ0. Letting ~
denote images modulo Y(T0) we use the above to conclude [Y~, T~] —
[Nγ{T2y , T~) = [NY(T2)~ , 77] < Tζ< Y~ . This proves (ii) and com-
pletes the proof of (12.5).

(12.6) Let TQ<Y<G. If Γ, is any maximal torus of G with T2 =
Γ, Π Go < 7, then G(Y, Γ,) = G(Y, T).

Proof. Let Δ = Σ(Y, T), so G(Δ)Γ0 < Y by (12.4). Also, G(Δ) =
Γ(Γ0), by (10.1). By (10.2), Y(T0)/Op(Y) = E(Y/Op(Y)), so Y(T0) =
Y(T2). Also, Y(T0) = G(Δ, Γ) and Y(T2) = G(Δ,, 7\), where Δ, =
Σ(Y, T^.By ^12.5)(iii) Y normalizes G(Y, T) = G(A)T. In particular,

f
We claim that Γ, < G(Δ)Γ, where T^CβiT^. Let. β_= Λu(Gί(Δ)Γ)

and Z / β the connected center of G(Δ)T/Q. So G(Δ)T/Z is semisimple
and (5.16) of [25] shows that T2 normalizes a σ-invariant maximal torus of
G(Δ)T/Z. So there is a σ-invariant maximal torus A of G, withΛ < G(Δ)T
and Γ2 < N(AQ). Let ^ = J σ and Q = Qσ. Then T2 normalizes (AQ)O =
^4β and T2AQ/Q is a solvable^'-group. By Hall's theorem T2 is contained
in a Hall //-group of T2AQ, so Γ2 normalizes Ax, for some x G Q. But Λ*
is a maximal torus of G, whence T2 — Ax Π Go by (6.3). Then (2.6) gives
Ax - Tx, and_the_claimisproved. Therefore^G{Δ)f - G(Δ)fx.

Let Ω = Σ(G(Δ), f,) so that G(Δ) = G(Ω, f,). Clearly Ω is f.-closed
and G(Ω, Γj) = G(Δ). By (2.5)(iv), G(Ω, Γ,)2^= G(Δ)Γ0_^ 7, so (12.4)
forces Ω = Σ(Y, Γ,). At this stage we have G(Y, Tx) = G(Y, T), as de-
sired.

(12.7) Assume that Y is generated by G conjugates of maximal tori of
G. Then Y = Xσ for a unique closed connected, σ-invariant subgroup X of
G such that X contains a maximal torus of G.

Proof. Let Tu T2 be maximal tori of G with TX<Y>T2. Let
Δ, = Σ(Y, 7]) for i = 1,2. Then G(Δ,, 7̂ )7) < y for / = 1,2 (see
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(12.5)(iϋ)). By (12.6), G(7, Tx) = G(7, Γ2), so taking fixed points (and
applying (2.5)) we have G(ΔX, TX)TX = G(Δ2, T2)T2. Fixing Tx and letting
T2 vary over all maximal tori of G contained in 7, we conclude that
7 = G(Δ,, Γ,)Γ, and this gives the existence of X.

Now suppose Y — Xσ9 with X closed, connected, σ-invariant, and
containing a maximal torus 7̂  of G. We may take Tx to be σ-invariant. Set
Tx = (Tx)σ. Let Δ, = Σ(X9 Tx)9 so X= G(Δx)fx. Hence G(ΔX) < Y and
Y/G(ΔX) is a //-group. This implies that each Γ,-root subgroup of G
contained in Y is actually in G(ΔX). That is, Σ(G(ΔX)) = 2(7, T ^ But Δx

is fΓclosed. Thus (12.3) shows that Δ, = 2(7, Tx) and then X = G(7, Tj),
proving uniqueness.

At this point all parts of Theorem (12.2) have been established, with
the exception of (v). Suppose X is as in (12.2)(v) and let X — Xσ. By
(10.1), X{T0)T0 = {T*)<X. Also, X{T0) = O*\X{T0)9)>O>XXa).
Since X = Op\Xσ)T9 we have the result.

We close this section with some results on generation. From now on,
T is fixed. We thus delete mention of T and T from the earlier notation
and say Δ C Σ is closed if it is Γ-closed.

(12.8) Let Ωj,... 9Qk be closed subsets of Σ. Then

Proof. Let Ω = Σ((G(Qx),...,G(Qk))). Then G(Ω) > G(Ω,) to / =
1,...,* and Ω is closed. Let Y= <G(Ω1),...,G(Ω*)> and set Δ = 2(7).
By (12.4) we have G(Δ)T0 < YT0 and it follows_that_7 = G(Δ).

Suppose Σj_Q Ω^OΓ some i and7. Then JTy < G^Ω,) and jς < G(Ωf)
< 7, proving 2 y C 2(7) = Δ.^We conclude Ω7 C Δ for / = 1,... 9k.
Therefore, G(Δ) > (G(Ωx)9...,G(Ωk)). Since Δ is closed (by (12.4)), we
have Ω C Δ. Hence, G(Ω) < G(Δ). On the other hand, G(Ω) > 0(0,.) for
/ = 1, ,Λτ, so G(Ω)>(G(Ω 1),...,G(Ω^))= Y= G(Δ). This proves
G(Ω) = G(Δ) = 7, which proves the result.

The following results extend (6.10) to arbitrary collections of Γ-root
subgroups.

THEOREM (12.9). Let Xiχ9... 9Xik be T-root subgroups ofG. Then
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Proof. Set Y = (Xiχ,... ,Xik) and Δ = Σ(Y). Apply (12.4) Jo YT0 and
conclude that Y= G(Δ) and Δ is closed. For 7 = l,...,k, Σ ; c Δ, so
Xtj < G(Δ). Therefore, O*'((Xiι9... 9Xik)σ) < O*'(G(Δ)) = G(Δ) = Γ =
(X/i?...,X/fc). Since the other containment is obvious, the proof is com-
plete.

THEOREM 02.10). Let S be an arbitrary set of p'-elements ofG. Then
(i) // G is simply connected, then (CG{a) : s G S) = Gx Π
) S )

_ (ii) // G is simply connected, then Gx = (CG(s): s G S) if and only if
G ( C i ) S )j

(iii) IfG = (C^s)0 :seS), then Gλ = (CGι(s): s G S).
(iv) IfSC Twith T a maximal torus ofG, then Gx = (E{CGχ{s)): s G

S) if and only if G = ( i ( Q ( ) ) )

/. Set Z = (CGι(s): s G S) and JT = ( C ^ ^ ) 0 : s G 5). Fix s G 5
and Γa maximal torus of G with s G T. Then Γo = Γ Π Go and 7Ί = T Π
G, are maximal tori of Go and G1? respectively. Let T be the unique
maximal torus of G containing T. Then To < 7\ < Xand T < X

Let C = C^<5)0 and C = Cσ. By (10.1) we have X(T0) < X. Also T
normalizes X(T0). Let Z be the unique σ-invariant, connected subgroup of
G satisfying f < Γand Xσ = X(T0)T(use (12.1)). Then (H^XIV) implies
JT = G(X, Γ). Since CG(s) = CGχ{s)T, we have G(C, T) < G(X, Γ) = X
On the other hand, G(C, T) = C (thisJollows from (12.1) as both have
fixed point set under σ equal to C). So C < X and letting s vary we obtain
X < X

From X < X and Xσ = X(Γ0)Γ, we immediately have (iii). Suppose G
is simply connected. Then C^{s) = Q ( J ) ° for each s G 5. In particular
Xσ > (C G (ί) : s G 5 ) ^ X Letting s9 T be as before we have Xσ >
(X,T)>X(T0)T=Xσ>Xσ. Consequently, Xσ = Xσ and (12Λ) yields
X = X Also (X, Γ> = X(T0)T = XΓ. Therefore, X Π G, = X Π G, =
Xσ Π Gi = XT Π Gi =_X(Γ_Π Gx) = XTX = X, proving (i). If X = Gl9

then XT = G, forcing X = G. Hence X = G. Combining this with (iii) we
have (ii).

Finally, suppose S C Γ for T a. maximal torus of G. For purposes of
proving (iv) we may assume G is simply connected. For s G S, CQ(S) =
E(Cc(s))f and C G ( J ) = £ ( C G ( J ) ) Γ (by (2.9) and its proof). Hence X =
(E(CG(s)): s G S)TX. From the previous paragraph X = X, so Xσ = Xσ

= XΓ. (iv) now follows from (12.1).
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(12.11) Let Sl9...9Sk be subsets of Γ. Suppose^ that for each
α G Σ + , there is some / 6 { 1 <:} with Si C C(Ua). Then Go =
(E(CCύ(Si))\i=l,...9k).

Proof. For 1 < / < jfc, Q(S;.)0 is a reductive group and (C^S,-)0)' a
semi-simple group. Hence £(CGo(S,)) 2> O^C^S^)). By (12.4),
EiCςj.Si)) = G(Ω,) for a unique closed subset Ω, of Σ (if £(Qo(S;)) = 1,
set 0,°= 0 andG(Ω ) = 1).

with SA<C{Ua), then S. centraUzes (U±a)^(Cδ(Si)
oγ. So if α E Σj9 we

have XJ9 Xf < (Q(S,) 0)' and then ΛΓy., X/ < G(Ω, ). Since Ω, is closed, we
conclude ΣJ9 Σ* C Ω,.. These remarks and our assumption show that
(G(Ω,),... ,G(ΩΛ)> = G, and the result follows.

(12.12) Let T be a maximal torus of G and R < Γ. Then Go =
0 ^ ) ) I Λi ^ Λ and Λ/Λ1 cycUc).

Proof. Let R<T and α G Σ + . Then i? induces a cyclic group on Ua9

hence i?j = CR(Ua) has cyclic quotient group. So (12.12) follows from
(12.11).
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