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Let G, be a finite group of Lie type defined over a field of
characteristic p. The results of this paper represent an attempt to achieve
a better understanding of the subgroup structure of G,. It is somewhat
surprising how limited our knowledge is, in this regard. For example,
while centralizers of semisimple elements (i.e. p’-elements) of G, have
been studied in detail and are fairly well understood, very little has been
written about subgroups of G, generated by such centralizers. Even in
explicit examples the analysis of such subgroups can be very difficult, the
difficulty stemming from an inability to relate the generated group to the
Lie structure of G,. To deal with these situations and others we set up a
framework that allows us to effectively study a fairly large class of
subgroups of G, (those containing a maximal torus), by studying sub-
groups of the corresponding algebraic group. Essential to the develop-
ment is a theory of root subgroups for arbitrary maximal tori of G,.

1. Introduction. The theorems we establish have as their origin
Lemma 3 of [22], which was later extended in [7] to show that if ¢ = 5 and
if H is a Cartan subgoup of G, normalizing the p-group V, then V is the
product of root subgroups of H. This result is quite useful and provided
the starting point for the result in [21] which showed that with further
field restrictions one could determine all H-invariant subgroups of G,. For
example, if H < L < G|, then it was shown that L could be generated by
N,(H) together with certain of the root subgroups of H. Hence, L is
determined by a subset of the root system of G, together with a subgroup
of the Weyl group of G,. One wants to extend these results to cover the
case of an arbitrary maximal torus, not just a Cartan subgroup. Therefore,
one would like to develop a theory of root subgroups that makes sense for
an arbitrary maximal torus and then establish results like those above.
The present paper carries out this program.

The group G, satisfies 0”(G,) < G, < G,, where G is a connected
simple algebraic group over the closure of F,, and ¢ is an endomorphism
of G whose fixed point set, G,, is a finite group. Set G = G, and
G, = 0°(G,). A maximal torus of G, is a group of the form TN G,,
where T'= T, and T is a o-invariant maximal torus of G. The group G has
a root system, =, and for each root @ € 2, there is a T-root subgroup U,
of G. These root subgroups are permuted by o. If A is a ( o )-orbit of such
root subgroups, let X = O7({A),), a subgroup of G,. Such a group is
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154 GARY M. SEITZ

called a T-root subgroup of G,, and these groups are the groups we wish to
consider. The T-root subgroups of G are either p-groups or themselves
groups of Lie type, and even when they are p-groups their structure can be
complicated. Nevertheless, the situation is manageable, as we indicate in
the sample results below.

Write G, = G,(q), where ¢ is a power of p and fix a maximal torus T’
of G=G,.Set T,=TnN G,

THEOREM (6.1). Suppose q>7, T is a maximal torus of G, and
I, <Y =G, with Y solvable. Then Y = O,(Y)Ny(T;) and O(Y) is a
product of T-root subgroups of G,.

As a consequence of (6.1) we see that for ¢ > 7 any Tj-invariant
p-subgroup is a product of T-root subgroups; the exact analogue of the
result in [7]. When one considers arbitrary subgroups invariant under (or
containing) a maximal torus, additional field restrictions must be made. In
addition our proofs depend on the classification of finite simple groups.

In each of the following results assume that p > 3 and g > 11.

THEOREM (12.1). The map X — )?a is a bijection between the collection
of all closed, connected, o-invariant subgroups of G containing a maximal
torus of G, and the collection of all subgroups of G generated by maximal tori
of G.

The inverse of the map X — X, is given in §12; it involves the T-root
groups described above. We remark that a group of the form X, has
known structure (see (2.5)), so by (12.1) we can describe the structure of
any subgroup of G generated by maximal tori.

The next result contains parts of (10.1) and (10.2), and concerns those
subgroups of G containing a maximal torus of G,. The result establishes
part of the conjecture in [24]; the full conjecture follows from (10.1).

THEOREM. Let Ty < Y < G. Then
(i) The normal closure, {T,} ), of T in Y, is generated by T, and those
T-root subgroups of G that are contained in Y.
(i) If T, is any maximal torus of G, with T) < Y, then (T,' Y= (T\").
(ili) 7, can be chosen so that Y = (T} Y Ny(T,).
(iv) O,(Y) <(Ty') and 07 (Ty"))/OY) = E(Y/O,Y)) (the prod-
uct of all quasisimple subnormal subgroups of Y/O,(Y)).
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In view of the above results it is clear that subgroups of G generated
by T-root subgroups are of particular importance. The next result indi-
cates such subgroups can be studied by studying G and subsets of =.

THEOREM (12.9). Let T be a maximal torus of G and X,,...,X, T-root
subgroups of G corresponding to (o )-orbits A,,..., A, of T-root subgroups of
G. Then { X,,..., X, )= O ({A,,...,A,),).

The following are applications of some of the above results. The
second theorem should be compared with the main results in [23].

THEOREM (12.10)(ii). Assume G is simply connected and let S be an
arbitrary set of p’-elemenis of G. Then G, = (C;(s): s € S) if and only if
G = (Cs(s): s €S).

THEOREM (12.12). Let T, be a maximal torus of G, and R < T). Then
G, = (E(C;(R))): R, = R and R /R, cyclic).

The paper is organized into three chapters, each containing several
sections. The first chapter is the basic development of 7-root subgroups.
In the second chapter we begin the consideration of subgroups of G
invariant under a maximal torus, although the classification of finite
simple groups does not enter in. The last chapter contains the proofs of
several of the main results and it is here where we apply the classification
theorem.

The author would like to thank R. Steinberg for communicating a
proof of the main result in §5 much shorter than the original, and M.
Kaneda for several helpful comments.

Nortartion. Throughout the paper G will denote a connected simple
algebraic group over the algebraic closure, K, of the prime field F,. As
before, o is a surjective endomorphism of G with G, finite. Then G=
G =G, -(q), where g is a power of p. If T is a maximal torus of G, let
U, denote the T-root subgroup corresponding to the root a € 3, the root
system of G. Let W = N, &( T) / T, the Weyl group of G.

If X is a finite group, Fit(X) denotes the unique largest normal
nilpotent subgroup of X and F*( X) is the product of Fit( X) and E( X),
where E(X) is the (commuting) product of all subnormal quasisimple
subgroups of X. O,(X) denotes the largest normal p-subgroup of X and
O”'( X) is the normal subgroup of X generated by all p-elements of X. If d
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is a positive integer, then let ®,(x) be the corresponding cyclotomic
polynomial of degree ¢(d). Some additional notation is given at the
beginning of §§2, 3, 5, 9, and 10.

We label Dynkin diagrams as follows

1 2 3 n—1 n
C, —»—e *————o
1 2 3 n—-1 n

E DR  Se——Y _678
" 1 3 4 5 n-1_
2
F —ea o —o
4 1 2 3 4
G, «e—»
1 2

1. T-ROOT SUBGROUPS

2. Preliminaries. In this section we establish a number of basic
results concerning maximal tori. In addition there are results on sub-
groups of algebraic groups generated by root subgroups and a somewhat
curious number theoretical result.

The group G is as in §1 with root system = and Weyl group W. We
assume that 2 is indecomposable, so that G can be regarded as a
Chevalley group over K. o is a surjective endomorphism of G and G = G
is finite. Then G is of Lie type and associated with a field F, of
characteristic p. The number g will be specified below; in nearly every
case it is the order of the center of a root subgroup of G for a long root.
Write G = G(gq). Usually we will regard o as an element of the semidirect
product G(¢); hence o acts on G by conjugation.

By (10.10) of [26] we may choose a o-stable maximal torus, H, of G
contained in a o-stable Borel subgroup of G. Let T be a fixed o-stable
maximal torus. Then T = H# for some g € G. Therefore, H2° = HZ so



ROOT SUBGROUPS FOR MAXIMAL TORI 157

H®°¢"' = H, gog~'o"! € Ny(H), and we write go = nog for n € N. This
shows that the diagram

H > H
gl lg

-
a

commutes. Hence we will identify the action of ¢ on T and on the
character group X = X(T) with the action of no on H and on X(H), the
identification being made via conjugation by g. Now, n induces an
element w € W on X(H) and, except for the Ree and Suzuki groups, o
induces gy on X( H), where v is a graph automorphism of . If G is a Ree
or Suzuki group, then setting ¢, = /7, ¢ induces ¢,y on R ® X{( H) and v
is an isometry (which interchanges long and short roots). So o induces g7
or ¢, on R ® X(H), where 7 = wy is an isometry of R ® X(H) of finite
order. We now carry this over to T and X, regarding w € W = NAT)/T
and w, y acting on X. We then have

(2.1)(i) If G is not a Suzuki or Ree group, then o induces g7 = gwy on
X.

(i) If G is a Suzuki or Ree group, then o acts on X and induces
;7T =qwyonR ® X,

(i) 7, = X/X(o — 1).

(iv) | T,|=|/(9)| (| f(g,)] in the Suzuki or Ree groups), where f(x) is
the characteristic polynomial of wy on R ® X.

Proof. This follows from the above identification and (1.7) of [25].

The following lemma explains (2.1)(iv) and can be used to obtain the
structure of 7= T in certain cases.

(2.2) Let Y be a free Z-module and 8 an endomorphism of Y. Suppose
that R ® Y is a Euclidean space and 6 induces ¢, on R ® Y, where ¢
is an isometry of finite order and |g,|=1. If ¢, = =1, assume that
Cy(8) = 0. Then

(i) rank ,(Y) = rank ,(Y,), where Y; = Y(6 — 1).

(i) | Y/Y,|=|f(q,) |, where f(x) is the characteristic polynomial of
ponR® Y.

(iii) Suppose that g, is an integer, (Y)e = Y and Y has a free basis
in which the matrix of ¢ is in rational form. Then Y/Y, =
Zay X XZg (), Where fi(x)|--|fi(x) are the invariant factors
ofponR®Y.
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Proof. Let V=R®Y. If q, = =1, then we are assuming that
Cy(80)=0. If |g,|>1, then use the fact that ¢ has finite order to
conclude C,(#) =0. In either case C,(8) =0 and 6 — 1 is injective.
This proves (i).

For (ii), choose a basis {v,,...,v,} of Y and positive integers z,,...,z,
such that z,| -]z, and {z,v,,...,2,0,} is a Z-basis of ¥, = Y(6 — 1).
For i =1,...,n let (v,)( — 1) = 2 a;;z;v;. There is an integral matrix
(b;;) such that

Zy Zy

(bij)(aij) = .
zn Zn

Then (b;;)(a;;) = 1, det(b;;) = =1, and det(§ — 1) = *z, - - - z,. Passing
to ¥V, we have z, ---z, =|det(§ — 1) |=|det(q,¢ — 1)|. Since ¢ is an
isometry of ¥, @ and ¢! have the same eigenvalues with equal multi-
plicities, hence ¢ and ¢~! have the same characteristic polynomial,
say f(x). Since det(p) = det(p~')= =1, we have |det(q,p — 1)|=
| det(g, — 9~")|=|f(q,)| , proving (i).

For (iii), suppose Y = ¥, © --- @Y, , where ¥, = (Y;)p = (B;) and B,
is a Z-basis of Y, in which the matrix of ¢ is the companion matrix of
fi(x). Here, fi(x)| - - - | fi(x) are the invariant factors of @. Fix 1 =i<k
and let B, = {B,,...,B,). Write f(x)=a, +a,x + - +ax'7' + x\.
Then Y, = (B)®{(q:B,— B-1)® - &(q\8, — By). Also, ¢,8 — B,
=B,_(q9 — 1) fori=1,...,/ — 1. Thus,

Yi(%q? - 1) ={q\B, = B, B — B+ <B[(‘I1‘P - 1))

Now,

B(gp—1)=-aig,B, — - —a,_,9,8, —(a,9, + 1B,
= alQ](qIBZ - B) ‘I‘(al%2 + 02‘11)(‘1133 - B,)
+e +(—1)(a1q{ +o-tag + 1):31-

Therefore, Y,/Y,(q,p — 1) = (B,)/(8(¢,)B,). where g(x) = a,x’
+ -+ +a,x + 1. Now g(x) = x'f(1/x). Since | ¢ |< o0, f(x) is a prod-
uct of cyclotomic polynomials, hence the roots of f,(x) and g(x) are equal
and also a; = *=1. Thus, g(q,) = *f(q,) and Y/Y(q¢ — D) =Z,,,
From here (iii) is immediate.

(2.3) Let 7: G —>_5 be the natural surjection, where_G~ is the universal
covering group of G, and let T be the preimage of 7. Then ¢ can be
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viewed as an endomor_phism of G. Also,
@) (G)7 = 07(G,) = 0*(G).
(i) T,/(T,)m = G/ 07 (G).

Proof. The first fact is standard (see (12.6) of [26]). The second
assertion is proved as in (2.12) of [23] (or see 5.10.1 in [10]).

(2.4) Let G be as in (2.3), | Z(G,) |= d and | Z(0?(G,)) |= d,. Then
) 1G,: 07(G,)|= d/d,.
(ii) If T,= TN O”(G,), then | T,|=(d,/d)|A(q)] (f(q)) in the
Suzuki and Ree groups), where f(x) is as in (2.1)(iv).
(iii) If G has Lie rank r, then

(=1 "=[flg)|=(qg+1)
((g, — 1)"=|f(¢,)|= (¢, + 1)" for Suzuki and Ree groups).

Proof. With notation as in (2.3), (Z(G,))m = Z(0”( G,)). By (2.1)(iv)
| T,1=IT, . so |f(q)|=|T,|= (d/d))|(T,)7|= (d/d\)| Ty| (similar
equations in the Suzuki and Ree cases). Then (i) and (i1) follow. For (iii)
use the triangle inequality and the fact that the roots of f(x) are roots of
unity.

(2.5) Let D = D’ be a closed connected subgroup of G with T < D.
(i)D =R (D)L where L = L° is reductive and T < L.

(yL=LTand L’ =[L, L] is semisimple.

(111) R (D) is a product of T-root subgroups of G and L is generated
by T-root t subgroups, corresponding to a subsystem of 3.

(iv) D, = OP(D )T, = R (D),07(L)T,.

v) 07 (L ) is a commuting product of groups of Lie type and T
contains a maximal torus of each factor.

Proof. Set Q = R (D) and let A be a Borel subgroup of D with
A = T. Embedding 4 in a Borel subgroup of G we see that R (A4) and Q
are both products of T-root subgroups of G (one can modify the argument
of Lemma 3 of [22] to establish this). Let A, be those roots « € S with
U, < Q and let A be all roots « € = such that U, =4 and U_, < D. We
then have Q =1l U, and (D/Q) = (U..|a €AYQ/Q (from the
structure theory of reductive groups).

Let E=(U.,|a E “A). From the Bruhat decomposition and the fact
that A is a subsystem of = we conclude that L = ET is reductive, and then
E is semisimple. Then L' = E, and since D/Q = ETQ/Q, we have
established (1), (it), and (iii).
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Since Q is connected, Lang’s theorem implies that (D/Q), = D,0/0.
As D is the semidirect product of Q and L, (iv) will be proved once we
know that L, = 07(L’)T,. We first note that L, = E_T,. To see this let
J = E N T, a maximal torus of E, normalized by 6. Suppose e € E,r € T
and (et)’ = et. Since E and T are both o-stable, we have e’ = ¢ and
t° = ¢~ for some j € J. From Lang’s theorem ((10.1) of [26]) there is an
element j, € J with j? =j,j~'. Then e = (¢j,)(j; 'j) represents e as an
element in E,T,. The proof of (iv) has now been reduced to the semisim-
ple group E, where the result follows from (2.12) of [23] (that result
concerned a simple adjoint group, but these conditions were never used).

For (v), apply (11.7) of [26] to get the structure of 01"(1:’,). The
remaining part of (v) is obtained by considering orbits of (o) on the
simple factors of L’.

(2.6) Let T, = T N O”(G) and assume g = 4. Then C;(T,)° = T.

Proof. From the Bruhat decomposition of G (with respect to a Borel
subgroup B = T') we see that the result holds unless T, < C(l7a) for some
root subgroup U, of G. Let A = {a € = |[T,, U,] = 1}. Then A is closed
under taking negatives and we set D = (U, |« € A).

We have D° = D and by (2.5) D = D, - - - D,, a commuting product
of quasisimple groups D,, where each D, is generated by certain of the root
subgroups, 17‘,, for « € A. Each D, is a Chevalley group with indecom-
posable root system. Reorder so that {D,,...,D,} is a (o )-orbit. Then o*
normalizes each D,, 1 <i <k, and (D,),« = D,(¢*), a group of Lie type
associated with F_« (see (11.6) of [26] and the proof of (2.6) of [23]). Also,
(D, ---D,), is obtained as a diagonal copy of D(g*) (except for
amalgamation of centers). Let T, = T NO”((D, - - - D,),). Then T, < T,
< C(U,) for each a € A, and projecting to D,, we see that T, =
T N0 (D)) < Z(07((Dy),4))-

By (2.4)(ii) and (2.4)(iil) | T3 |= (e,/€) | /(4¥) |= (e,/e)(q"* — 1) (re-
place ¢ by ¢, if (D)), is a Suzuki or Ree group), where e, =
| Z(OP((D))4+)) | » € is the order of the center of the universal covering
group of (D,),«, and r is the Lie rank of D,. But | T, |< e, (which is 1 in
the Suzuki and Ree cases), whereas ¢* — 1 = 3 (V3 in the Suzuki and Ree
cases). Then 3" < e (or (V3)" < 1), a contradiction.

An immediate consequence of (2.6) is

(2.7) Letg =4 and set T, = T N O7(G). Then N(T,) < Nz(T).

For g > 5, we also have control over Cy;(T;).

(2.8) Let ¢ > 5 and set G, = O*(G), T, = T N G,. Assume that G is
adjoint. Then
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) C(Tp) = T.
(i) If G, # PSL(2,9), S«(8), or 2F(8), then Cypyq,(Tp) = T.

Proof. G is adjoint, so Z(G) = Z(G,) = 1. Let a € Aut(G,) and
suppose a € C(T,) — T. Replacing a by a power of a we may assume that
a® € T for some prime s. Extend a to an endomorphism of G commuting
with 0. By (2.6) T is a-invariant, so a acts on X. Cy(a) is G-invariant and
both Cy(a) and X = X /Cx(a) are free Z-modules.

Let X, denote the annihilator in X of T;. Since T, < Cj(o) N
Ci(a) we have [X,a]l < X,=[X,0] Also |X,:[X,06]|=|T:Ty|=d,
where d =|G:G,| (see (2.3)ii). Both [X, a]/([X,a]N[X, 0]) and
[X, a]/([)f', a)] N [X, o]) are isomorphic to sections of X,/[ X, o]. In par-
ticular, each has order a divisor of d and exponent dividing that of
X,/1X, o]

Write A = Aut(G) and let 4, be the subgroup of A4 generated by all
inner, diagonal, and graph automorphisms of G,. The elements of 4, are
precisely the automorphisms of G, that can be extended to automor-
phisms of the algebraic group G (elements of A — A, can be extended to
surjective endomorphisms of G).

Let Y be the subgroup of Aut(G) normalizing 7 and let F be the
Frobenius morphism with respect to 7. Then ¢ and F commute in their
action on X, so oF and Fo differ in their action on G by an inner
automorphism induced from an element of T. Using Lang’s theorem, we
modify F so that it commutes with o. For convenience we postpone
discussion of the cases where G has type C,, G,, F, and p =2, 3, 2,
respectively. Then there is a power n such that ¢ € YF”. Consequently,
g = p" and o induces #p” on X, where ¢ is an isometry of R ® X. Similarly,
there is an isometry ¢ and power p”, m = 0, such that a induces ep” on X.
Let f(x), f(x) be the characteristic polynomials of 7 on R® X, R ® X,
respectively. Similarly, let g(x), g(x) be the corresponding polynomials
of &.

Assume a & A,. The group 4 /A4, is cyclic of order n and generated
by yA4,, where y = F|; . Replacing a by a suitable power, we may assume
that a € A,-y"/S. That is, a € Y- F"/* and so a induces ep"/* on X. By
22)a) |f(p")|=|X:[X, 0]| which divides | X:[X,0] N[X, a]]|.
Another application of (2.2)(ii) and previous remarks show that the latter
number divides d | g( p"/*) | . So (2.4)(iii) yields the inequality (p” — 1)" <
d( p"/* + 1)". Using this together with the inequality d < r + 1 we calcu-
late and obtain r = 1, p” = 9, s = 2. But then G, = PSL(2,9), which is
excluded in (ii). So a € 4, and a induces ¢ on X.



162 GARY M. SEITZ

One checks that Cg(a) = 0, so by (2.2)(ii)) we argue as above that
|f(q)|<d,|&1)|<d|g()|, where d, is the order of

[X, a]/ ([, a] N[X,0]) = D.

Then (2.4)(iii) yields (g — 1)" < d,2" < d27. Since d < g + 1, we are led
toF=1f(x)=x=1,gx)=x+ l,and6 <¢g — 1 <2d, <2d.

If G = D,, then T/T, is a subgroup of Z, X Z,,* so D is isomorphic
to a cyclic (as 7= 1) subgroup of X,/[X,0]=T/T,. Hence d,=<2,
against the above inequality. Suppose a is an inner automorphism. Then a
centralizes T/T, and hence a centralizes D. However, a inverts X (since
g(x) =x + 1) and X is cyclic. We conclude | D|=<2, so again d, <2,
giving a contradiction. At this point we have a in the coset of an
involutory graph automorphism of G, and the inequality of the previous
paragraph shows that G is either of type E¢ (and ¢ = 7) or of type 4,.
Also, (i) has been proved (except for the excluded possibilities of G)

Write W = N/T and consider the action of @ on W. Then N(a)=
N{b), where N(b) /T = W X (bT'), b sends each root to its negative and
inverts X. a acts as w,b for w, € W, and the eigenspace of w, for
eigenvalue —1 has codimension 1 in R® X. If W =S, ,, use the cycle
decomposition of w, to see that no such involution exists for r > 3. If
r =2, then G,=PSL(3,7), while if r= 3, then G, =PSL(4,9) or
PSU(4,7). If G, = PSL(3,7) or PSL(4,9) we can take w; to be s, 5,5,
respectively. If G, = PSU(4, 7), take w, to be 5,53, (5,535,)?, OF 5,5,555,. In
all cases we can explicitly compute [X, a], [X, o], and contradict the
earlier observation that [ X, a] /[ X, a] N [ X, o] has order dividing d.

Suppose W = E,. Then w, has determinant —-1. Now W =
Aut(PSU(4, 2)) and by (19.5) of [1] W — W’ has two classes of involutions,
represented in W by reflections and the product of 3 commuting reflec-
tions. This contradicts the condition on eigenvalues.

At this point we have proved the lemma for all cases except G of type
C,, G,, F, and p =2, 3, 2, respectively. We indicate the necessary
adjustments in the previous arguments. First note that d = 1 in all cases.
As in (2.1) o acts on R ® X as ¢4, with ¢ an isometry and § = q or /g. If
a € A,, proceed as before to get the inequality | f(§) |< d | &(1)|=]&(1)] .
By (2.4) we then obtain (§ — 1)" < 2’, a contradiction. So a & A4,

Let F be the endomorphism of G such that F2 = F is the Frobemus
map (with respect to T). If § = /g = p'*'/2, then A /A, is cyclic of order
21+ 1, with quotient generated by a field automorphism. Since F|g
induces a field automorphism of order 2/ + 1, we argue as before that a

*Added in proof. If r is odd, T/ T, could be Z, with ¢ = 7,9. In this case multiplying a by -
an element of 7 one can assume a € PO™ (2r, q) and argue within the linear group.
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can be taken in YF"/*. Now argue as before to get a contradiction (recall
that G, # Sz(8), 2F,(8)). Finally, assume § = q = p". Here y = F |, has
order 2n and 4 /4, = ( A,y). We may then assume that a induces ep"/**
on X, for & an isometry (n/2s need not be an integer). The usual
inequalities give a contradiction and complete the proof of (2.8).

(2.9) Let x € T. Then C;(x) contains normal subgroups Y, and Y
such that

1) Y=Y,T.
(i) Y,=D,---D, X, a commuting product, where for each i =
1, ...,k there exists a power, g", of g such that D, = D,(¢q") is a quasisim-

ple group of Lie type defined over F ... Also Z(Y)) = X < T.

(iii) If each ¢" = 4, then D,,...,D, are the components of E(C,(x))
and X = Cy(E(Cyz(x))) = T.

(iv) C4(x)/Y is isomorphic to a subgroup of the center of the
universal covering group of G,,.

Proof. Since x € T<T, Czx) can be computed from the Bruhat
decomposition of G (with respect to the root subgroups of T'). We have
T < Cz(x)? and C5(x)° = Y, - - - Y,Z, where the product is a commuting
product, each Y, is a Chevalley group defined with respect to an indecom-
posable subsystem of =, and Z <T. Let Y = (Cs(x)°),. Since
Y, --- Y, is connected, Lang’s theorem (see (10.1) of [26]) implies that
Y=(Y, - ¥),T,

Let R =Y, ---Y,. The argument in (2.13) of [23] shows that R, =
O” (R, )T NR),. Moreover, the proof of (2.6)(ii) of [23] shows that
O”(R,) = D, ---D, has the required structure. So setting Y, =
O”(R,)Z,, we have (i), (ii), and (iii) holding. For (iv) see (4.4) of
Springer-Steinberg [25].

The following number theoretical result will be needed in §7.

(2.10) Let p >3 be prime, x =12, ®,(p), and y =1}, P, (p).
Suppose that

(a) x| y;

(byd, <---<d,,; and

(©) Zo(d,) = Z(f).

Then m = n and {d;|1 =i=m} = (f;|1 <j = n}. In particular, x = y.

Proof. Suppose false. Factoring out common factors we may assume
d; # f; for each 1 =i <m and 1 <j < n. Suppose it is not the case that
d,=2 and p a Mersenne prime. Then by Zsigmondy [28], for each
1 <i<m there is a prime r, such that r,|p% — 1, but r,tp? —1 for
d <d, We call these primes primitive divisors. In the exceptional case,
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®,(p) =p + 1is a power of 2 and we set r, = 2. If this case occurs and
d;, =1 for some i’, then d, = d, and @, (p) is divisible by some odd
prime, which we may take to be r,. Therefore, r, # r, for i # i’. Choose
r, # 2, if possible.

In the primitive divisor situation, d; is the order of p modulo r,. So
d\r,—1 and ¢(d,)<d;,<r,— 1. Fix 1=i<m. There exists j €
{1,...,n} such that r,| @(p). Then d,|f;. Set g(t) = (th =1/ =1
and expand g(t) in powers of t%. Letting ¢t = p and using the congruence

= 1 (mod r;) we have r;| (f,/d)) | ;-

We estimate 2 @( f;) as follows. If 1 <j <m s fixed and 7, ,...,r, are
the primes satisfying r, | (I>fj( p), then, by the above, ¢( f) is divisible by
(r, =1 ---(r, = 1. If ¢>1 and d>1 are integers, then ¢d =c + d.
Suppose that no r, = 2. Using these facts we have 2(r, — 1) = 2 @( ).
This inequality combined with our hypothesis and the remarks of the
previous paragraph yield

(*) Yo(f)=2e(d)=2d, =3 (rn—1)<Zo(f).

Therefore all inequalities are equalities. In particular, ¢(d,) = d; for
= 1,...,m. But this forces d, = 1, and so 1 = d,; = r, — 1, against our

supposition. Therefore, either d;, = 1 and r, = 2 (p a Fermat prime) or

d;=2=r,fori=1or2(paMersenne prime).

To deal with these cases we slightly modify the above argument. Say
d, = 2 = r,. Choose j with r, |<I>f(p) and f; # 1. Then r,|f,/d,, so 4|f. If
Fiseoosl;, are the other primes among r,,...,r,, that are factors of f;, then
(p(f) = 2( — 1) -+ (r,, — 1). So we again have the inequality 2(r, — 1)
= E o( f)- So we will again obtain (*) provided X d; < 2(r, — 1). Suppose
thisfailsandlet l<k=m,k+#iSinced,=(r,— 1)+ landd, |r,— 1
we necessarily have d, = r, — 1. So d, is even and ¢(d,) < 4d,. On the
other hand, if we add 1 to each of the last two terms in (), the resulting
inequalities hold. Thus ¢(d,) = d, — 1, which is impossible. We conclude
that no such k exists, m=1, d,=d,, and Zo(f) =Z¢(d;) = 1. So
n=1,f=1andp + 1|p — 1 (as x divides y). This is absurd. Therefore
(*) holds and X ¢(d;) = 2 d,. This is a contradiction.

Finally, suppose d, =1 and r, = 2. Then d,|r, — 1 for each i =
1,...,m. If () holds, then m =1 and 2 @(f;) = 1. Therefore, n = 1,
fi=2,and p — 1|p + 1, a contradiction. So we suppose (*) to be false.
Then the inequality (7, — 1) = 2 ¢( f;) must fail to hold. Let notation be
as in the previous paragraph. Then 27, - - -r, is a factor of f; and @( f) is
divisible by (r, = 1) ---(r, = 1. So o(f) =(r;, = D)+ -+ +(r, — D).
Combining this with the other values, ¢(f,),...,9(f,), we do have
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2(r,— 1) = Z¢( f;) + 1, where the 1 corresponds to r, — 1. In view of our
assumption, equality must hold. The previously used inequality, cd = ¢ +
d, is strict unlesss ¢ = d = 2, and this forces fj = 2r, for some r;, while for
k # j, fx = Tixy OF 21y With 1,y € {r,,...,r1,,}. However, we have seen
that Tiky | (fo/dicry)- So the only p0531b111t1es are m=1orm=2=d,.
That is x =p— 1 or x = (p — 1)(p + 1). Considering the possibilities
for y, we have a contradiction.

The next several lemmas concern subgroups of G generated by T-root
subgroups.

21 Let SC =, X =(U,|a €S),and A = {8 € Z| U; < X}. Sup-
pose AN -A = &. Then X = [[5., Us and X is unipotent.

Proof. Let S, X, A be as in the statement. It will be convenient to
exclude the case = of type G,. This case can be handled by a direct check.
For a fixed ordering on 2, let AT=AN3Z", AA=AN3", X" =
(UJa€A™), and X =(U,|a €EA™). Then X* < U and X < (7-
where U~ is opposite to U. We then have X" =1I,.,+ Uy and X~
sea- Ua

If = has two root lengths, let =, be the subsystem of long roots. Then
G,= (U, |a €Z,) is proper in G, so by induction (on |=|) we have
YO = (U,|@ € AN Z,) unipotent. So, in this case, we may use a differ-
ent ordering, if necessary, so that A N =, C =~ . Thatis, X, < X .

We claim that X = X+ X~ = X~ X" . It will suffice to show X~ Xt C
XX . Leta E A* and B € A~ . The Chevalley commutator relations
give [Uﬁ, Ul=<I, >0 U, +pe 1f U, +g 18 contained in the commutator,
then ia + jB € A. Suppose this occurs. If i > 1, then since = is not of type
G,, ais short and ia + jB long. By our convention this gives ia + j8 € A~
and U, 5= X~ . Ifi=1,either Uy, y=X ora+jB=ia+jBEA",
but ht(ia + - jB) < ht(a). From these remarks we conclude that for u, € U,
and uy € UB’ Uglt, € U up X~ OT u u,,U X, with y € A" and ht(a) >
ht(y). To prove the claim, let « € A* and show X~ U, C X* X~ by
induction on ht(a). Therefore, X = X* X~

Let 7 be a field automorphism of G with respect to 3, T, U, and such
that G_T = G(q,), where g, > 4. Repeat the above to show that Y =
((U),|a € Ay=T3c4(Us),. Therefore, Y is a p-subgroup of G, normal-
ized by the split torus H = I_’T By (3.12) of [4] we embed YH in a proper
parabolic subgroup P of 5, such that ¥ = O,(P). Embedding YH in a
Borel subgroup of P, we see that in some new ordering of =, each root
0 € A is positive. In particular, X is unipotent, proving the result.
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(212) Let SC= and X =(U,|a €S). Let A = {a € 2| [, = X}.
SetA; = {a €A|-a&A}and A, = {a € A|-a € A}. Then

1 X, = (U |a € A)) = Il,ea, U, is unipotent.

(i) X, = (U, | a € A,) is semisimple.

(i) X = X, X, with X; < X.

Proof. (i) follows immediately from (2.11). Consider the set A,. Let
AT=A,NZ" and X; = (U, |a €A ). Then X, < U, so X; is uni-
potent and X; = Il s U,. It is easy to verify that A, is a root system. It
follows from the Bruhat decomposition that X,7 is a group with a
(B, N)-pair and X, T is a Borel subgroup of X,7. This implies (ii).

For (iii) it will suffice to show [U,, (73] = X,, whenever « € A, and
B € A,. Suppose Y =[U,,U,] and Y 7 1. If &, B are long roots, then
Y= Uﬂg and U_, [U*(aﬂi)’UB] Soif @« + B € A, we have a € A,,
which is not the case. Now consider the general case, but exclude = of
type G,. Then U, g=7Y and the only possible difficulty is when
[U_ (a+B) %] = 1. This forces « + B and B to be short, K of characteristic
2 and «, B fundamental roots in a system of type B,. But here X =
(U.p,U. (asp),U,) and a direct shows the latter group contains Uu_,.
Again we have a contradiction. Similar arguments work if = has type G,,
and we omit the details.

(2.13) Let §,,...,8, € =" and assume that for each i # j, (Z§, + Z8, )
N = is a root system with {8, d,} as a fundamental set of roots. Assume
that the corresponding graph (with vertices §,,...,6,) is a Dynkin dia-
gram. Then X = ( U. 8y UL 5,) 1s a Chevalley group associated with
the same Dynkin diagram. Moreover, {§,,...,0,} is a fundamental system
for the root system of X.

Proof. For each 1 =i < k let ¢, denote the reflection associated with
d;, and let W, = (¢,,...,t;). The roots §,,...,0, are pairwise obtuse, so a
standard argument implies that they are linearly independent. Comparing
the action of W, on the Z-span of {§,,...,8,} with the action of
the appropriate Weyl group on the underlying lattice we see that A =
{8/°:i=1,...,k} is a root system with §,,...,8, as fundamental system.

Since each #; can be realized by conjugation by an element of (U. , ),
we have X = ( U.;:8 € AY. We claim that A is a closed system of roots.
We have A locally closed in the sense that the root subsystem of A
spanned by *§;, *4§; is closed in S for all i, j. On the other hand, any pair
of roots in A can be conjugated by an element of W, into such a local
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system. This proves the claim. At this stage the result follows from the
Bruhat decomposition and the classification of reductive groups.

In view of the claim we see that I' is a root system and {§,,...,0,} a
fundamental set for I'. This completes the proof.

The following lemma shows that the maximal tori of G are defined
unambiguously and will be used implicitly throughout the paper.

(2.14) Let L be of Lie type over F,. Suppose L, L, are semisimple
algebraic groups over F and 7, T, are surjective endomorphisms of Ll, Lz,
respectively, such that L= 0" ((L) ) for i=1,2. For i=12 let J,
denote the set of maximal tori of L defined with respect to T-invariant
maximal tori of L,. Then J, = J,.

Proof. Write L, = L, Lm , where the product is a commuting
product of simple algebra1c groups. Then ( 7,) acts transitively on
(Ly,....L,} for i=1,2. Let X, = (l"---I"""": 1 € L,). Then X, X,
are T, -1nvar1ant images of L, L21, respectlvely, so are connected simple
algebraic groups. Moreover, L < X,Z(L,) for i = 1,2. On the other hand
L= 0%(L),so L <X fori=1,2and we may now replace L,, L, by X,
X,

Next argue that we may assume X,, X—z are simply connected. It then
follows that there is a surjective endomorphism y from )71 to fz satisfying
T,y = y7,. Then y induces a bijection between the set of 7 -invariant
maximal tori of X, and the set of 7,-invariant maximal tori of X,. It
follows that v |, is an isomorphism with J = J,. On the other hand, any
isomorphism of L can be lifted to an endomorphism of L—l commuting
with 7,. It follows that J)Y = J|, proving the result.

(2.15) Let A be an abelian p’-group acting on a commuting product
Y, ---Y, where for 1 <i <k, Y, is a group of Lie type over a field of
order p*. Assume that p = 5. Then 4 normalizes a maximal torus of
Y, - - - Y, (the product of maximal tori, one from each Y;).

Proof. Argue by induction on | Y, --- Y, ||A4|. Clearly we may as-
sume that A4 is transitive on {Y,,...,Y,} and that Z(Y,---Y,) = 1. If
A, = N,(Y)) and 4, < A4, then 4, = N,(Y,) for 1 <i < k. Inductively,
there is a maximal torus 7, of Y, with 77" = T,. Then 4 normalizes
T=(T{:a€A4) and T is a maximal torus of Y, ---Y,. So we now
assume k = 1.
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Regard 4/C,(Y,) as a subgroup of Aut(Y;) and let 4,/C,(Y}) =
A/C(Y) N 171, where f’l denotes the subgroup of Aut(Y;) generated by
inner and diagonal automorphisms. Assume A4, > C,(Y,) and choose a
subgroup B of A, with B < 4 and | B/C,(Y,)| a prime. Then B central-
izes maximal tori of Y; and we let D be the subgroup of Y, generated by
all such maximal tori. By (2.9) we have D = D, - - - D,I, where the D, are
commuting groups of Lie type over extension fields of F,., and I can be
taken as any maximal torus centralizing B.

By induction we may assume A < N(J, ---J,), where for l =i <1, J,
is a maximal torus of D,. Write ¥, = O”(Y,), where Y is the correspond-
ing adjoint algebraic group and 7 an endomorphism of Y. Then 4 can be
extended to a group of endomorphisms of Y (automorphisms of the
abstract group Y). Hence A normalizes the group C = Cy(B)°. Write
C=L,--- LI, where the L, are commuting quasisimple algebraic groups
and I is the 7-invariant maximal torus of Y containing . We may assume
J = Ifori=1,...,I. Each of the groups D,,...,D,is the group generated
by all p-elements fixed by 7 in a particular orbit product of (7) on
(L,,...,L,). Using (2.6) we see that I = C~(J, - - - J,)°. Hence, 4 < N(I)
and so 4 < N(I N Y,) = N(I). Consequently, we may now assume 4, =
C,(Y)).

Now 4/C,(Y;) = (a) X (b), where no element of (a) is in the coset
of a nontrivial graph automorphism of Y, and |b| = s* fors =2 or 3. If
k > 0 then (b) contains the coset of a graph automorphism (either a or b
could be trivial). By Lang’s theorem ((10.1) of [26]) a induces a field or
graph-field automorphism of Y,. It follows from the fact p =5 that A
centralizes an element c of Y, with | ¢|= 2 or 3. Consequently, 4 normal-
izes Cy(c) and we can argue as in the preceding paragraph, replacing B by
{c¢). This completes the proof of (2.14).

3. Basic properties. In this section we begin the discussion of
T-root groups. We maintain the notation of §2 and introduce additional
notation and terminology as follows. Set G, = 0”(G) and T, = T N G,,.
If G, <G, =G, then a group of the form T N G, is called a maximal
torus of G,. Let A = {U |a € 2} the root subgroups of G with respect to
T. Set U= (U,|a €2*) and B= U-T, a Borel subgroup of G (not
necessarily o-invariant).

For a € 3, regard U, as a 1-dimensional K representation of T. Let
¢, denote this representation (¢, equals « if we regard a as a character
of T). N

Since A is the set of minimal T-invariant unipotent subgroups of G,
A=A so A=A, U---UA,, a union of (o)-orbits. Correspondingly,
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we set =, = {a|U, € A,}. For i=1,...,0 we set X,=(A,) and X, =
01"((X,.)o). The groups Xj,...,X, are the T-root subgroups of G. We note
that fori=1,...,0, X; < OP(G) G,. For 1 <i <, there is a unique
JE{1,...,v} suchthatE =—2 WesetX X* X, = X7, and A, = AY.

The first result is that a T -root subgroup is elther a p- group or a
group of Lie type defined over an extension field of F,.

(3.1) Fix i = 1,...,v. The group X, is either unipotent or semisimple.
Correspondingly, X; is either a p-group or X is a group of Lie type defined
over an extension field of F,.

Proof. Consider the group X,. We may assume that X is not uni-
potent. But X X, X° and X is T-invariant. Let X T=0Q-L, where Q =
R(X,) and L is the product of T with those root subgroups U such that
U and U_ . are both contained in X (see (2.12)). We have L NQ = 1.
Also, each root subgroup of X, is contained in either L or Q. Since o
normalizes each of L and Q, we conclude that (A,)<L, hence X, = L.
Write L= L, --- L,, a central product of the components of L. For each
U €A, U, = L for some j. Therefore (o) is transitive on {L,,...,L,}
and X/Z(X) = OP((L )ot)/Z(0P((L,),«)). The argument in (2. 6) of
[23] shows that X;/Z(X;) is associated with F,«, completing the proof of
(3.1).

Order the T-root groups so that X,. .., X, are p-groupsand X, , ,,..., X,
are groups of Lie type. We note that if T is contained in a o-stable Borel
subgroup of G, then ¢ = v and {X,,...,X,)} are the usual root subgroups
of G. We also point out that there may be containments among the X,’s.
This even occurs when T is a Cartan subgroup of G. For example, in the
case of PSU(n, q) with n odd, there is a non-abelian root subgroup E of
order ¢* and Z(E) is also a root group.

The next result gives bounds on the nilpotence class of the groups
Xy, ..., X,. First, we require the following (temporary) notation. Let H=
H° be a maximal torus of G with H < B, = Bl, where B, is a Borel
subgroup of G. Let 3 be the root system of G, with respect to H, and
{&,,...,&,) a fundamental set of roots. For « € 2, write & = 3 1,4, and
let ¢(i,@) = Zn;, the sum ranging over those j with a; € a<"> Let
¢ = max{c(i, &): aEZ l=i=<n}.

(3.2) If 1 =i =, then X, has nilpotence class at most c.

_ Proof. By either (3.9) of [3] or by [4] there exist a parabolic subgroup
P, < G such that X, < R (P,) and Nz X;) < P,. Moreover, P, is obtained
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canonically from X, = X?, so P, = P/. Therefore, we may assume that
B, <P,

Let P, < P,, where P, is a maximal parabolic subgroup of G. Let
P = N, P{'. Notice that B, < P and P has size 1, 2, or 3, with the latter
case possible only for G = D,(K). Now R (P) < R (P,). Indeed, R (P)
=T R(PS). R(P)) is a product of root subgroups for 7. Choose P,
such that some element U, of A, is such that a has non-zero coefficient of
the fundamental root defining P,. It follows that U, < R (P), and hence
X. < R (P).

We now know that X; has nilpotence class bounded by that of R ( P).
R ( F ) is also the product of root groups of G with respect to the maximal
torus H. Viewing R (P) in this way and using the Chevalley commutator
relations, the result follows.

The table below gives bounds on the nilpotence class of the groups X,,
1 <i <1, for the various groups G. This bound is ¢ except for the cases of
G = Sz(q), 2G,(q), and ?F,(q). In the latter cases the bounds are less
than c. This is because the characteristic restrictions needed to define G
force the appropriate parabolic subgroups of the above proof to have
unipotent radicals of smaller nilpotence class. In these cases direct compu-
tations give the bounds. Otherwise, the number c¢ is computed easily once
the root system is given; for ¢ induces a (possibly trivial) graph automor-
phism on the root system for H.

TABLE 1
G,/ Z(G,) bound on class X;

PSL(n,q)
Psp(n, q)
PSU(n, q)
PO~ (n, q)
E¢(q)
E;(q)
Ey(q)
G,(q)
Fy(q)
BDA(Q)
2E6(‘I)
Sz(q)
2G2(‘])
*Fy(q)

fa—y

N WA WA WP WNDNDDN
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It will be a consequence of later work that the above bounds are best
possible. Also, we will discuss the embedding of T-root groups in G, and
for the classical groups we describe the action of 7-root groups on the
natural module.

Our next two results concern the embedding of X; in G and the
embedding of )?, inG,fori=1,...,t

(3.3) Let 1% C be a unipotent group generated by a subset of
{X,,...,X}, and let C be the subgroup of G generated by the correspond-
ing subset of {X,...,X;}. Then C is a p-group. There is a parabolic
subgroup P = P° = Tof G, such that C < R (P). The group P, = Pis a
parabolic subgroup of G satisfying C < O,(P), and T is contained in a
conjugate of a Levi factor of P.

Proof. Since Cis _unipotent, there is a canonical parabolic subgroup
P<Gwith C<R (P) (Borel-Tits, (3.9) of [3]). Then P=Pand T<
N—(P) P. To see that P = P is a parabolic subgroup of G first use
Lang’s theorem to get a Borel subgroup J of P (hence of G) stabilized by o
and then use (2.12) of [25] to conclude f is a Borel subgroup of G. This
forces P to be a parabolic subgroup of G. Clearly C <R AP), <0 ,(P).
Choose x € P such that 7 < J*. Then R (J *) is a product of some of the
root subgroups U, for « € = and the Levi factor of P is generated by T
together with those U, < P such that U__ < P. So o stabilizes the Levi
factor and the result follows.

(34) Leti € {1,...,1}, let X=X, and X = X,. Choose j € {1,...,1}
SO thatE = -3, and set X* = (X) Then
® Y (X,, X, )= D, Dk, a commuting product of (o )-con-
jugate, semisimple groups, each generated by certain root subgroups of T.
(i) Y = (X, X;), = Y(¢*), a group of Lie type defined over F..

(iii) There ex1sts a unique T (o) -stable parabolic subgroup P of Y
such that X < R (P ). Also, T < N—(PO)

(iv) P, is the intersection of a (o)-orbit of maximal parabolic sub-
groups of Y. If ¢ induces a field automorphism of G, then }70 is a maximal
parabolic subgroup of Y.

(v) Suppose g = 4. Then P, = (P,), is the unique parabolic subgroup
of Y normalized by T and satisfying X < O,(F,).

(vi) Suppose ¢ = 4. Then T N Yis amaximal torusin ¥, TN Y/Z(Y)
is cyclic and there is a Levi factor of P, in which 7N Y is a minisotropic
torus.

Proof. Let Y = (X,, X, ). Then Y is normalized by 7. Let T be the
collection of all roots a € 2 such that U.,<7Y. Then I'° =T and by
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(2.12) (U |a €T) is a semisimple subgroup of Y. Since 21, 2 =TI we
have Y = (U,|a €T) and ¥ can be expressed Y = D, --- D, w1th each
D quasisimple and generated by certain of the root subgroups in[.As T
is connected, T < Ng(D,) for i =1,...,k. Also, each y € 3, satisfies
U =< D, for some I. As U_ L= D, as well we conclude that (o) is
transmve on {Dl, ..»Dy}. ThlS gives (1). The argument in (2.6) of [23]
shows that (ii) holds.

We may write Y-T= D, --- D, Z, where Z is a subtorus of T and
Z = Z(Y-T)". Now o* stabilizes each of D,,...,D, and we observe that
for the purpose of proving the remaining parts of (3.4) we may replace
(G,T,0) by (D]/Z(D ), TﬂDl/Z(D ), 6%). Therefore, we now assume
that Y = G. In particular, C7( X) = 1.

Let P be a parabolic subgroup of G such that X <R (P) <P=P°
= T(see (3.3)). Conjugating, if necessary, we may assume that X< B <P,
where B is the Borel subgroup T(U, |a € ). So P = (B,U., |a, & S)
and S = {a,,...,q, } is a subset of II = {a,,...,a,}. Now we may write
o= wy, where weEW=N / T and Yisa fleld or graph-field automor-
phism of G defined with respect to S, B, T. Then P° = P** = P and so
P*=P* ' Since BY' =B, P 'is also a standard parabolic subgroup
for B. Thus P, P* are both parabolics containing B and this forces
P = P*, whence w € P. Also, y € N(P). We claim that the permutation
of X associated with v is transitive on S.

If G is a Suzuki or Ree group, then this is clear from P = P, unless G
is of type F,(K) and P a Borel subgroup. But in this case X is an ordinary
root group of G, contradicting ( X, X, »= G. We now exclude the Ree
and Suzuki groups for purposes of estabhshmg the claim. For a € 2,,
U, < R (P) and we let («), be the coefficient of «; in a. Since w € P,
(a), =(a”), foreacha € EJ,. '

‘Write S = S, U---US,, where the union is disjoint each §, is a
(v)-orbit, and suppose m > 1. For a € f let a(k) = 2, €5, (a) Then
a(k) = B(k) foreacha, B € E Choose x(a ) =1 for eacha e S us,,
x(e;) = ¢ for each a, € §), and x(a;) =7 for each o, € S2 Considera-
tion of the numbers a(l) and «(2), for & € A,, shows that it is possible to
choose 1 7 x such that x(a) =1 for each a € f,.. But then A(x) €
CH( X) = 1, a contradiction. This proves the claim.

The claim gives (iv), once (iii) is checked. So suppose P is another
T{o)-stable _parabolic subgroup of G with X < R (P)). Then P, = P§
where B<P,. So T, T# < P§ and, conjugating, we may assume that
ge N—(T) N. So P = P2 for some w € W. But now consider P DPW
This group is T( ¢ )-invariant and we apply the results in §2 of [8]. Write
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P= P and P, = P where J, J, C I, and w = w,w'w;, where w, € W,
w, € W and w' € W, s the dlstmgulshed set of double coset repre-
sentatlves Then P ﬂPZW = (P N Pw )", and we consider the group P; N
Pw Let K=J, ﬂJ2 By (24) of [8] PK——(P ﬂPW)R (P ), SO X<
P ﬂPW = (P N P'” "= PW‘ and PK is a parabohc subgroup of P = P.
Since Py is T(o) -stable we apply the above claim to conclude that
Py ~13' = P. Thus, w, € Py, P =P,, and J, CJ,". By (2.6) of [8],
L, = Ly, where L; and Lj are the standard Levi factors of P and PJ,
respectlvely Reversmg the roles of P and PY we have L 5, = Lj = Ly and
J, =

Fix a; € # — J,. By (2.4) of [9] we see that W} is transitive on the set
of roots, a, such that « has a; coefficient equal to 1 and a; coefficient 0 for
each o, # a; E 7 — J,. Usmg this together with the fact that # — J, is a
(o} orblt we have Wy (o) transitive on those roots B € 3 satisfying

2, ¢ (B); = 1. For the remainder of the proof, if 8 € 3, let (B) s, denote
the integer 2, ¢ ; (B);- Leto = {B|(B),, = 1}, a Wi(o)-orbit of roots.

We claim that 3. C o. For suppose a € 3, and (a); =c>1LetTl
be the collection of all y € = with (y) )g, @ multlple of ¢. It is easily checked
that T is a closed root system of = and this contradicts the fact that

= (X, X) So 3, C 0. Now, Py = PW = wa' PJW, since w; € Ly =
L‘” So, by symmetry, there is a WK<O>-OI'b1t o’ such that =, C O’ and
(w—J)W C o’. But then, 0 = o’ and we have 7¥" = J,*' U (77—]2)”
J, U o C 2% . Therefore, (E+)W =3+ and w’ = 1. We now have P, = P
= PW = PW "= =Py = P““l = P = P. This proves (iii).

Suppose X= O ,(P;) and q =4, where P, is a T-stable parabolic
subgroup of G. Then P, = Ng(O,(Py)), so by (3.9) of [3], there is a
canonical parabolic subgroup P, of G such that P = P and O,(P) =
R (P ). Then T < P and we clalm T< P To see this first note that if
h(x) € T, then x° = x and hence given a, 8 EA,, ¢, = (pg for some
integer k (a slight change is required for the Suzuki and Ree groups).
Therefore, C(U,) = (UB) for each &, 8 € 3,, and since Cx(X) = 1,
we necessarily have T cyclic. Write 7 = (¢). Then ¢ is semisimple and is
contained in a maximal torus T, of P, Then T, < CAT )° = T by (2.7).
So T= Tl and P —P0 by (iv). Therefore, P, <(P) = (PO) =P, If
equality failed to hold then O,(P)) > O,(Fy). However O,(P)) =R P)
= R(P,), so this is 1mposs1ble This proves (v) and (vi) follows from (v)
and the above argument.

In §4 we will describe the T-root subgroups of the classical groups
and also the groups Y and P, of (3.4). One additional result of interest is
the following.
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(3.5) The set {El,...,f,} can be partitioned as {Em---’i’k} U
{Z,,-.-,2,} in such a way that each of (X, ,...,X, ) and (X,,..., X, ) is
unipotent.

Proof. Let P, be the canonical parabolic subgroup of G such that
X, <R (P,) and NX X,) < P, (see (3.9) of [4]). Then P, = P{ and T < P,.
For each a € I, either U, or U_, is a subgroup of P,. So for each
1 <i=<1, either X, or X* is a subgroup of R P)) or both of X, and X*
are contained in the Levi factor, L,, of P Inductively, we can partition
the roots in the root system for L, so that the result holds in L,. Now we
obtain {2, S .} by taking the (o)-orbits in one of the partitioning
sets for the root system of L,, together with those =, such that X, < R ,( P,).
Passing to the opposite parabolic subgroup of P,, we see that the result
holds.

In the notation of (3.5), the group <)?,.I,. .. ,)Zk>oT can be regarded as
a replacement for a Borel subgroup. However, there may be several ways
to obtain partitions as in (3.5).

(3.6) Assume g = 4 and that Y is a group acting on G, and normaliz-
ing T,. Then Y permutes the set of T-root subgroups of G.

Proof. We may assume Z(G,) = 1, Y acts faithfully on G,, and
Y = (y) for some automorphism y of G,. There is an endomorphism 7 of
G such that [7, 0] and 7|;, = y. So 7 normalizes T, and (2.6) implies that 7
normalizes T. Consequently, r permutes the set of (o )-orbits of T-root
subgroups. The result follows.

4. C(lassical groups. In this section we determine the 7-root sub-
groups X,,...,X,, when G is a classical group. Choose notation as in §3
and fix | <i<t.Set A=A, X=X, X = X,, X* = X*. In addition, we
set Y = ()?, )?*>, Y= }70, and P, P the parabolic subgroups of Y and Y,
respectively, as described in (3.4).

To make the statements and proofs less cumbersome we will assume
throughout the section that G and G are the appropriate linear groups.
However, it is easy to pass from these results to those for other forms of G
and G.

(4.1) If G, = SL(n, q), then there exist positive integers r, s, y such
that the following hold:

@) (r,s)=1.
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(ii) X is elementary abelian of order g¢" .

(1) { X, X*)= SL(r, ¢”).

(iv) (X, X*y=D, - -- D_y a commuting product of copies of SL(r, K),
permuted transitively by (o) and each generated by T-root subgroups of
G.

(V) X= O,(P) and P is the stabilizer of an s-space of the usual
module for SL(r, ¢*).

(vi) The projection of X to D, is the unipotent radical of a parabolic
subgroup of D_l obtained by deleting the (sth) node of the Dynkin
diagram for D, (which has type 4,_,).

Proof. Write ( X, )?*>— D, --- D, with (o) transitive on {51, ..,D)}
(see (3.5)(1)). Let y = o”, so that y stablhzes each of Dl, ..,D, . Since the
root system of each D is a subsystem of 3, and since = has type 4,_,,
there is an integer r such that D = SI(r, K), forj = 1,...,t. So (iv) holds.

We first observe that y 1nduces a field automorphlsm on D—l, .,D—y.
To see this write ¢ = 7¢ as in (2.1). Since o is a field automorphlsm of G,
T=wE W, so y=wq”. Now if we set W, = WﬂD then NW(W)

WCW(W) It follows that w” induces an inner automorphlsm on D ;

hence (DJ)Y = SL(r, g”). At this point (iii) will follow from (v) and (2.3)
of [23].

If we can verify (i) and (vi), then the remaining parts of (4.1) will
follow, by projection, from the known structure of parabolic subgroups of
type 4,_, and the connection between parabolic subgroups of D, and
( D, 1),- Hence we have reduced the problem to the case of G = SL(r, K),

= SL(r, ¢”), and { X, X*)—

By (3.4)(iii), X < R (P) Regard P as the stabilizer in G of an s-space
of the usual module for SL(n, K) (here we are using (3.5)(iv)). Then
F/Ru( P) is a central product of SL(s, K), SL(r — s, K), and a 1-dimen-
sional torus. Each of these groups is stabilized by 6. From the uniqueness
of P we conclude that T is a minisotropic torus of P /O,(P), so T contains
the central product of cyclic groups of order (¢** —1)/(q¢” — 1),
(¢ —1)/(g” — 1), and q” — 1 (see Carter [5]).

Let « €A, Then T induces a cyclic group on U, and induces
algebraic conjugates of ¢, on the other root subgroups in 4,. Since R (P)
is abelian, X is the direct product of the groups U,, a € 2 and T induces
a Cychc group on X. Then Cx(G) = Z(G) implies C (X) Z(G) (as

= (X, X*) and C;(X*) = C;( X)) and so T/Z(G) is cyclic. From this
and the above description of 7 we have (s, r — s) = 1. Forif (s, r — 5) =
d>1, then Z, X Z,<T/Z(G), where a=(q’*—1)/(q’ — 1). This
proves (i).
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The group R ( P) is the product of s(r — s) T-root subgroups of G.
Since T is a minisotropic torus of P, ¢ acts as w,w,q where for i = 1,2, w,
is a Coxeter element of the corresponding component, SL(s, K) or
SL(r — s, K), of the Levi factor of P. Thus |w, |=s, |w,|=r—s and
(w,,w,) is transitive on the set of T-root subgroups in R (P). By (i),
(wy, wy) = (ww,), s0 X = R (P) and this proves (vi). This completes the
proof of (4.1).

A result quite similar to (4.1) holds when G is replaced by an arbitrary
classical group, although there does exist one ambiguity (which is cleared
up in §12, but under additional hypotheses).

(4.2) Suppose that G is one of the groups: Sp(n, q), SU(n, q), or
SO*(n, q)'. There exist positive integers r, s, y, such that the following
hold:

(i) Either (r, s) = 1 or r = 2s.

(i) If r 2s, then X/X’ is elementary abelian of order q”(’ 2s)
2ysr=29) if Yis a umtary group).

(iii) (X X *) Dl Dy, a commuting product of copies of one of
the groups SL(r, K), Sp(r, K), or O+(r K)'. Also, (o) is transitive on
{Dl, ..,D ).} and each D, is generated by T-root subgroups of G.

@iv) If r#2s, the (X, X*)=SL(r, q”), SU(r, q”), Sp(r,q”), or
0~ (r,q”).

(v) If r # 25, then X = O,(P) and P is the stabilizer of a totally
isotropic (singular) s-space of the usual module for { X, X*).

(vi) If »r = 25 and ¢ = 4, then X is elementary abelian of order ¢”°
(g** if Y is a unitary group), P is the stabilizer of a totally isotropic
(singular) s-space of the usual module for Y, and X =< O,(P), equality
only if s = 2 and ( X, X*) a unitary group.

(q

Proof. We first make reductions as in the proof of (4.1). Let
()? X* (*) = D_1 5 a central product. From (3.5)(i) we get (iii). Then
each D, is a cla551cal group, although perhaps of a different type than that
of G. As before, the element ¢” stabilizes each D;, but it need not be the
case that ¢’ induces a field automorphlsm on each D,. Possibly o’ induces
a graph-field automorphism on D, i=1,. .,y. In any case, we now
project to D,, as before. That is we assume (X X*Y= G and G is defined
over F,. If G = SL(r, ¢”), then we are done by (4.1). So suppose this is
not the case. Then G = Sp(r, ¢”), SU(r, ¢”), or O~ (1, ¢*)".

Consider the group G = Sp(r, K), SL(r, K), or O" (r, KY. Then P is
the stabilizer in G of an s-space, V;, and (r — s)-space, V,, of the natural
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module V for G, satisfying ¥, < V,. In the symplectic and orthogonal
cases V; is totally singular with V, = Vit. Let O=R (P) so that
Q =0, = 0,P).

First suppose that r = 2s. One checks that Q is abelian and that the
Levi factor of G contains SL(s, g”) (SL(s, ¢?) if G is a unitary group). It
follows from (3.5)(v) and ¢ = 4 that T contains a cyclic group of order
g —1/q” — 1 (qzy’ 1/¢” + 1 if G is unitary). Since x=e,.0
Cr(X) = Cp(X) = Cp(X*). So Cp(X) < Z(G) and | X|= q”° (¢*” in
the unitary case). On the other hand, 0 = wrq”, where w is an s-cycle in
the Weyl group, S,, of a Levi factor of P and r is a graph automorphism.
It is easily checked that 7 = 1 unless G is unitary, in which case |7|= 2
(for this use the fact that G # O~ (r, q¢')’, since V] is singular). Therefore
| A|<s (25 in the unitary case) and so | X |< g”* (resp. ¢>”*). Therefore
(vi) holds.

From now on assume r % 2s. Let Z be the subgroup of Q that is
trivial on ¥, and on V/V,. Then Z<1Q.IfGis ‘symplectic or orthogonal
then Q is the product of those root subgroups UB having positive coeffi-
cient of a, (temporarily we label the Dynkin diagram starting at the stalk
of the dlagram of type 4,) and Z is the product of those root subgroups
UB such that B has a,-coefficient equal to 2. If G is unitary, P is the
intersection of two maximal parabolics (conjugate under the graph auto-
morphism of G) and Q is the product of root subgroups corresponding to
roots having positive coefficient of a, or a, = a’. Moreover, Z is the
product of root subgroups for roots having both a, and «, coefficient
positive.

Now X < Q and since G = ( X, X*) we cannot have X < Z. Another
observation is that G # Sp(r, K) with char(K) = 2. Otherwise, X is
generated by roots with a -coefficient equal to 1, these being short roots in
the root system of type C, ,. But char(K) = 2 implies that the collection
of all root subgroups for short roots generates a proper subgroup of G
having type D, ,,. Consequently, from the description of Z and Q we can
conclude (using the commutator relations) that Z = Q’ = Z(0).

We claim that X = Q. In view of the above it will suffice to show that
XZ = Q Let I' denote the set of root subgroups Uﬁ, < Q such that
U< Z Then Q/Z =@ erUﬂ Similarly XZ/Z = ®ﬁeAUﬂ’ so we must
show A =T. That is, we require that (wr) be transitive on I. We
illustrate the method with G = Sp(r, K); the other cases follow the same
argument with only minor changes. The Levi factor L of P satisfies
L’'=L, X L, with L, =SL(s, K) and L, =Sp(r — 2s, K). Write w =

wiW, w1th w, E W, the Weyl group of L;, for i = 1,2. As T is minisotropic
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in a Levi factor of P (with respect to o = ww,q), we necessarily have w,
an s-cyclein W, = §,. Letj =|w,|,d = (s, j), s = ds;, and j = dj,.

Let I',,..., T, be the orbits of I" under {w,). Each orbit has the form
I'={B8,B+ta,_,,....0,+a,_, +--- +a;}, where B, is the element of
I'; having minimal height, and we order so that ht(8,) < --- < ht(8)).
Then 8, = a,, B, = a, + a,,,, etc. and / = r — 2s5. Let M be the (/ X s)-
matrix with rows I';,...,I,, and let C,,...,C, denote the columns of M.
The direct sum of the root subgroups in a given row or column affords the
usual representation of L,, L,, respectively. For the rows this is easy. For
a column C; one checks that for each B € C,; there is a unique y € C, such
that 8 + y = § is a root. Moreover, § depends only on j. Hence, we obtain
the natural module for L, by letting the root subgroups UB be singular
1-spaces and realize the form via commutators. (If G is an orthogonal
group then root subgroups corresponding to a given column commute.
However, by taking two adjacent columns we obtain a nondegenerate
symplectic form, via commutation, and since L, is represented equiva-
lently in the two column spaces we see that L, necessarily preserves an
orthogonal form on each.)

Let E = 69’_1 Uﬂ , viewed as the natural module for L,, and let E, be
the subspace spanned by those U[, such that AN T, # &. Then E| is
T (w,)-invariant. As T, = T ﬂL is minisotropic (W1th respect to w,), we
conclude rad(E,,) = 1. Suppose E;, < E. Then C7( E,) has positive dimen-
sion, which implies C7( X) has positive dimension. However, C( X) =

Cr( X*)and G = (X, X*). This is impossible, hence E, = Eandj =/ =
r— 2s.

If j, is odd then (T,), has order divisible by ¢?/2 + 1, as does (T}),.
Hence | T/Z(G) | is not cyclic. It follows that there exists a € T — Z(G)
and B € A such that a € C(Uy). But then a € C;(X) = CH(X*) =

C+AG) = Z(G), a contradiction. So j, is even and w{/2 € (wf). On the
other hand, (w*)= (w1)= (wy), hence w{/? € (w*) the latter group
leaving each C invariant. The element wy/? sends each % € C, to the
unique root y € C, with B + v a root.

Let A,,...,A, be the orbits of A under (w?)= (wiwf)= (w, wi)
(a group of order s, ). Fix % € A, and suppose (B} =T, N C,. Let I,
be the image of T, under w;/2. One checks that if y € A and @5 +yisa
root, then y € I; U C, U T, It follows that y E_Am. Setting G, = <U:B~
% € A,;) we conclude that the groups G,...,G, commute and generate
G. This forces d =1, (s,1) =1, and (w) transitive on I', as required

(T|= sl = sj).

As X =0 we have X = X Q, = Q = O,(P), proving (v). ()
follows from this and (2.3) of [23]. Also 1 = (5,]) = (s, r — 25) = (s, 1),
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proving (i). Finally, one checks that Q' = Z_G, so X/ X' = Q;/Z, =
(Q/Z), which has order given in (ii). This completes the proof of (4.2).

5. The action of T on root subgroups. In this section we are
concerned with the action of 7 on the nilpotent 7-root subgroups
X,,...,X,. The results are fundamental to the rest of the paper and are in
the spirit of Lemma 3 of [22].

We adopt the following notation. For 1 =i =<1, let Y, =(X, X *)

Y, = (Y) P, the T{o)-stable parabolic subgroup of Y, sausfymg X =
R AP (see (3. 4)), and P, = (P,),. In addition, set ¥, = X,R (P,)’ /R (P,)
and ¥, = X,R(P,) /R (P,). Except for the cases where =, has roots of
different lengths (G a Suzuki or Ree group), we see from (2. 1) that ¥, can
be regarded as an F-module of dimension | = .

GDLletl=i=rt
(i) V, is T o)-isomorphic to the external direct sum of the root

subgroups X fora € 2 Also, V. = (V)

(i) If Gisnota Suzuk1 or Ree group, then the representation that 7T
induces on K ®g V; is the direct sum of the representations @, |, @ € 3.

(iii) If ¢ >3, the T, acts irreducibly on the elementary abelian
p-group, V.

Proof. Let 2, = {v,,...,7,}. The group R (P,Y = D, is the product of
certain of the root subgroups for T and the proof of (3.4)(iii) shows that
U $Dforj~— 1,...,k. Therefore, V, = X, X - - XX,.LetJ; = X, N D,
Then Jis a product of T-root subgroups so J, is connected and Lang’s
theorem implies that ( X,/J;), = X,J,/J;. So (i) holds. From here we have
(ii). For the Suzuki and Ree groups one can obtain (iii) from a direct
check of the possible configurations. So we now exclude these cases.

Let denote images in R (P,)/D,. So V, = X Xoeee XXYk. As A;isa

(o )-orbit, o* stabilizes each of the groups X =1,...,k, and 0 = g,
where 7 is an automorphism of G. Then 7% mduces scalar multiplication
and we see that (Xv,)o « is elementary abelian of order g*. By (3.5)(i), Y is
the commuting product of a (¢ )-orbit of quasisimple groups, so taking
projections we may assume that Y, is quasisimple. By induction on dim(G)
we may assume G= )_’ Also, we may assume Z(G) =1, so CT(X ) =<
C7(Y;) =1, and T acts faithfully on X,. On the other hand, the represen-
tations of 7 on X . X are algebraic conjugates of each other. We
conclude that T acts falthfully, as a cyclic group on X fori=1,...,k.
Taking projections it is clear that it will suffice to show that (iii) holds for
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the action of T;, on ()?Yl)ck = V.Wehave | V|=¢" |T|=4d|T;|=2,(q)
-+ ®,(q), where @, (x) is the cyclotomic polynomial of degree ¢(n;) and
d is the order of the center of the universal covering group of G,. In
particular, d | ¢ = 1. We may assume G is an adjoint group.

First suppose 7T, = T. By (2.1) ®,(x) --- ®,(x) is the characteristic
polynomial of 7 in its action on R ® X(T). So |7|=1, where /=
Lem.{n,,...,n}. In particular, k | /. By Zsigmondy [28], for j = 1,...,s,
@, (¢) has as a factor a primitive divisor of ¢”» — 1, unless ¢, (¢) =p + 1
='2¢or 9. We claim that » / | k for all j. In view of the abovej, this is clear
unless there is a unique j with @, (¢) = @,(¢) = 2°0r 9. But g,(q) | ¢* — 1
forces k even. So the claim holds. This implies that /| k; hence / = k. As T
acts faithfully on ¥ we also have T acting irreducibly on V (viewed as an
F,-space). So (iii) holds.

For the general case we first note that an easy check gives the result if
|T|=¢,(q) = q=*1.1f n; # 1,2, then each primitive divisor of ¢" — 1
divides | T, | . Setting /, = L.c.m.{n,| n; 7 2} we see that T, cannot act on
Vy < V with | ¥, |< g'. So supposing T, reducible on V, we have /, odd,
I =2l,, V="V, + V, T acts irreducibly on ¥, and V), and | V) |=| V; |=
g". Since p)(q) || T|, d| g + 1 and any primitive divisor of g + 1 (if such
exists) divides d. If G, is a unitary group, then | T'| is a product of terms
q° — (1)¢ (see Carter [6]). So /, odd forces / = 2, and since T is cyclic | T'|
divides ¢* — 1, and we contradict the fact that ¢ > 3. From now on we
have d < 4. Since T is contained in a proper parabolic subgroup of G we
necessarily have ¢ — 1|| T'| and so | T; | is divisible by 4(g — 1)(g¢ + 1).
However, | T, | divides g’> — 1 = (¢ — 1)x with (x, ¢ + 1) = 1. This forces
d = q + 1 = 4, a contradiction.

The next two lemmas were communicated to the author by R.
Steinberg and lead to a much shorter proof of (5.5) than our original one.

(52) If « € 2 and if @ is a nonzero weight of 3, then |a|<2| w|,
with equality precisely when = has type C,, a is a long root, and w is W
conjugate to 3a.

Proof. Since W acts irreducibly on Q ® X(T') and preserves the form,
we may assume (w, a) > 0. Combining the fact that w is a weight with the
triangle inequality, we have

1=2(w,a)/(a,a) <2|w|/|a].
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This gives the desired inequality. If |« |= 2| w |, then the second inequal-
ity implies & = ca with ¢ > 0, while the first inequality shows that ¢ = 1.
Finally, for {a to be a weight we must have a long and 2 of type C,.

(5.3) Let a # B € Z, ¢ > 5, and assume G # S(8) or *F,(8). Then
@ |7, 7 Pp |7,- This holds for g = 5 unless 2 is of type C,, 8 = —a a long
root, and a° = Sa.

Proof. We may assume G is simply connected. Then X = X(T) can be
identified with the lattice of weights of =. Let ¢, = /7 if G is a Suzuki or
Ree group; otherwise set ¢, = ¢. As in §2 o acts on X, inducing ¢,7 on
R ® X, where 7 is an isometry. Also the argument of (1.7) of [25] shows
that X(g,7 — 1) is the annihilator of T, = 7,. Then « — 8 = w(q,7 — 1)
for some 0 # w € X. Then

|o(gr— 1) |=|a— B

(1) <|a| +| B] (triangle inequality)

@) <4w|(by (52)

() = (@~ Dol (4,25

(4) =<|wq,7| —| @[ (7 is an isometry)
(5) =<|w(g,7 — 1) | (triangle inequality).

Therefore, we have equality at each stage. From equality in (1) we have a,
B dependent. Hence 8 = —a. From (2) and (5.2) we conclude = has type
C, with a a long root. Equality in (3) yields ¢, = g = 5, while equality in
(5) gives wqT = cw with ¢ > 0. As 7 is an isometry, ¢ = ¢ and w7 = .
The equation a — 8 = w(g,7 — 1) now gives a = 2w, so a’° = 5a and the
proof of (5.3) is complete.

(5.4) Assume G # Sz(q), *F,(q), or °G,(q) and assume q # 2, 3, 4, or
9. If a, B € 2 with a”'|;, = B|. for some 1 sP"<q, then a |, = B|r.
This also holds for ¢ = 9, unless p' = 3, G is of type C,, and B = —a, a
long root.

Proof. As in (5.3) we may take G to be simply connected and we may
write p'a — B = w(g7 — 1) for 0 # w € X and 7 an isometry of X. Set
q = p’, so thatj > i. Then w = B + p'(p/“'wr — a), so write @ = B + p'§
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with § € X. As j>i we have § + 0. Replacing w by B + p'd in the
equation p'a — B = w(gt — 1), we obtain a + 8 = (¢é + p’ 'B)7. Then
|a| +]8|=]gd + p/~B|=¢q|8| —p/~'|B|, which together with (5.2)
yields(p/ — 1)|8|=2(1 + p/ )| 8| . We conclude that p/ (p' — 2) < 3.

For p = 5, this is impossible. Suppose p = 3. Here the only possibility
is ¢ = 9 and i = 1. Moreover, all inequalities must by equalities. Using
this and (5.2) one checks that 26 = a = —8 a long root and G is of type
C,. Finally, assume p =2. Here i =1 and (¢ — 1) |w|=|gqwT| —|w|=
|w(gr — 1)|=|2a — B|=2|a| +|B|= 6| w| the last equality by (5.2).
Hence g = 4, completing the proof of (5.4).

THEOREM (5.5). Let 1 =i <j <t and assume q > 5.

(1) V, and V, are inequivalent irreducible F,[T,]-modules unless G =
Sz(8), 2F,(8), or ¢ = 9 and G is of type C,.

(i) If (X, X)) is a p-group, then V, and V, are inequivalent irreducible
E, [T ]-modules.

Proof. We may assume G is simply connected. Write ¢ = p®. By
(5.1)(iv) each of ¥; and V; is an irreducible F,[T}-module. For the moment
exclude Suzuki and Ree groups. Then F, ®F,, V=V,eVvre. . .ovy
the direct sum of the Galois conjugates of V, (which is regarded as an
F,[T,]-module on the right side of the equation). Similarly for V,. Assume
that V; and V; are equivalent F,[7;]-modules and tensor the equations with
K. Then (5.1)(ii) implies that there exist 1 < p*, p' < p“ and roots @ € =,
B € =, such that o' |, = B'|.. By (5.4) and (5.3) ¢ = 9, G has type C,
and B = —a is a long root of 2. So (i) holds in this situation.

_ Suppose ¢ =9 with 8= —a a long root and 3 of type C,. Then
(X X) (X, X*>— yes (U, U,y> It is easy to see that (X, X) =
SL(2 q°), where s =|2,| and that (X, X)= (X, X> Therefore we
have proved (5.5) for all but the Suzuki and Ree groups.

The Suzuki and Ree groups are handled by direct calculation, which
we leave to the reader. We observe that for G = Sz(q), *G,(q), T = T, is
necessarily a Cartan subgroup of G. If G =?F,(q) with T a Cartan
subgroup, then as in Lemma 3 of [22] C,(V}) # C(V)) unless X, = X*. In
this case (X,, X,)= L,(q) or Sz(q) and we are reduced to the above.
Assuming T not a Cartan subgroup it follows that T is necessarily the
direct product of Z,_, with a minisotropic torus of L,(q) or Sz(q).

We remark that the exceptions in (5.5)(i) are real. If G = Sz(8) and if
T is a Cartan subgroup, then T has equivalent representations on U/Z(U)
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and on Z(V), where U, V are the unique Sylow 2-subgroups normalized
by T. This example carries over to 2F,(8). Similarly, SL(2,9) is an
exception, which carries over to Sp(2#n,9) for alln = 1.

We conclude this section with the following result.

(5.6) Assume that g = 5, G # Sz(q) or 2F,(q), T is a Cartan subgroup
of G, and that X; # X; are nilpotent T-root subgroups of G. Then ¥V, and
V; are inequivalent F,[T;]-modules unless ¢ = 5 or 9, G is of type C, and
X, X; are opposite long root subgroups.

Proof. The proof is just as in the first paragraph of the proof of (5.5).

II. T,-INVARIANT SUBGROUPS

This chapter will be concerned with general results concerning Tj-
invariant subgroups of G.

6. T;-invariant solvable groups. In this section we consider Tj-
invariant solvable subgroups of G and show that for ¢ > 7 each such
group is the product of a normal 7-invariant p-group and part of the
normalizer in G of T. Moreover, we show that each Ti-stable p-subgroup
of G is a product of a set of T-root subgroups of G.

We maintain the notation in §2. So T=T,, G,= 0*(G,), and
T, = T N G,. The main result of this section is the following theorem,
although there are several other results that will be useful in other
sections.

THEOREM (6.1). Suppose ¢ > 7 and T, < S < G, with S solvable. Then
(1) S = O,(S)Ns(Tp);
(1) O,(S) is the product of T-root subgroups of G.

This theorem will follow from the other results of this section, several
of which are of independent interest.

(6.2) Suppose ¢ > 7 and A4 is a T-invariant, abelian, p’-subgroup of
Aut(G,). Then 4 < N(T).

Proof. Suppose false and take a counterexample so that | 4| -| G, | is
minimal. Then 4 is an r-group for some prime r # p, 4 > N(T,), (by
(2.7)), and 4 /N (T;) is an irreducible F,[T;]-module. Also, Z(G,) = 1.
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Suppose C(A4) # 1 and let 1 # ¢t € C(A). We consider the groups
Cz(t) and C,(2). Since T < Cz(t)°, we have T < (C5(#)°), = Y < Cy(2).
Let Y, < Y be as described in (2.9). That is ¥, = E(Y)X and X = Z(Y,)
=C,(E(Y)). Then by (2.9) Y = Y, T with only diagonal automorphisms
induced on each component of E(Y). Write E(Y) = D, --- D,, a central
product of components.

We claim that A < N(D;) for i =1,...,k. For suppose a € 4
and Df =D, for j#i If x ET,N D, then x~'x* €4 < C(4). It
follows that D = D, and x“= (x~')* (mod Z(D,;D;)), which forces
(T, " D,)Z(D,;)/Z(D,) to be an elementary abelian 2-group. So D; is
neither a Suzuki or Ree group. Suppose D; is defined over F, and the
overlying algebraic group has Lie rank s. Then by (2.1) T, N D, has rank
at most s (as an abelian group). On the other hand, (2.4)(iii) shows that

|T,n D,|=—~( b—1)szﬁ( b— 1)
0 i di q qb+1 q

2 _ 5V, .
>(1+;;7—_F—1-)6S 1>(z)6s ! (asq>7)
This forces s = 1, so d; =2, and we obtain a contradiction. This proves
the claim.

Fori=1,..,k,let K,=D,---D,---D,X and C,= YA/K,. Then
E(C)=D,K,/K; and Z, = (T, " D,)K,/K, is a maximal torus of E(C,).
By minimality Z; is A-invariant. So if T, = (T, N D,) --- (T, N D,) we
have [4, T\] = N K, = X. Therefore, A normalizes T;X and hence 4
normalizes Cy(T,X) = T (see (2.8)(i)). This contradiction shows that
Cr(4)= 1

Let 4, =[A4, T;], so A, = G,. Suppose A, <A. By induction 4, =
N(Ty), so [4,,T,]1=A4, NT,=<C(A)=1. By (2.8) A, =T,, whence
A, = C;(A) = 1. Hence A4 = A,. The same argument shows N (T;) = 1.
Therefore, T; acts faithfully and irreducibly on A. In particular, AT is a
Frobenius group and 4 < G,,.

Consider the action of AT; on the Lie algebra, M, of G. Viewing M as
a K[AT;,}-module and using Clifford’s theorem we see that M |;. contains
the regular representation of T,. So if G has Lie rank n we have the
inequality dim(M) =|Ty|=d (¢ — 1)" (by (2.4)). Use the fact that
q — 1 >6 and the known values of 4 to obtain a contradiction. This
proves (6.2).

(6.3) Assume g > 7 and let 7, be a maximal torus of G. Suppose
T, N Gy < Ny(T,). Then T, = T. In particular, T;, is weakly closed in
Ne(Ty).
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Proof. We may assume Z(G,) = 1. Suppose T, # T, =T, N G, =
Ng(T). By (6.2) Ty = N(T;). Hence [T;,, ,1 = T, N T, = Z(T, T,). If T,
N T,=1, then T, = C;(T,) = T, by (2.8). Similarly, T, = T,. So we
assume T, N T, # 1.

Let C= CHT,N T,)°. ThenT,T, < C and C = DZ, where T, =

CAHT))° (a maximal torus), D= E(C), and Z = Z(C) = TﬂT Note
that T % T, forces D # 1. Let D = 0”(D,), T, = T, D,and T, = T, N
D. By (2.5) T, and T, are maximal tori of D. Since T, = N(T;), we
conclude, inductively, that 7, = T;. But then T, = I, = T, N T, < Z(C),
which contradicts (2.8).

A useful consequence of (6.3) is the following

(6.4) Assume g >7 and let T; =< P = P°, where P is a parabolic
subgroup of G. Then T < P.

Proof. Suppose T = P = P° By (5. 16) of [25] there is a o-invariant
maximal torus T of P such that T < N(T) Then 7;, = N(( Tl) ) and (6.3)
implies T, < (T,),. But then T, < CHT,)° = T. Therefore, T = T, < P.

(6.5) Suppose ¢ >7 and T, < N;(S), where S is a solvable p’-sub-
group of G. Then § =< N;(7;).

Proof. Let S be a minimal counterexample and S /S, a chief factor of
STy. Then Sy =< N(Ty). If [T, S] =< S,, then S T, < ST;. But ST, <
N(T,), so (6.3) implies that S =< N(7;). Thus, we may assume that
[Ty, S/S;]1 = §/S,, and by minimality, {T;, S] = S. In particular § = G,,.
If S, =1 then S is abelian and we are done by (6.2). Suppose then, that
S, # 1 and let S, be a minimal normal subgroup of ST, with S, < §,. By
(6.2) S, = N(Ty), so [S,, T;,, T,] = 1. Say | S, |= r¢, with r a prime. Then
0,(Ty) = C(S)).

We claim that Z(ST,) # 1. Suppose otherwise. If O,(T;) £ C(S/S,),
then [O,.(T;), S] covers S/S, and by minimality, [O,(T;), S] = S. Then
S < (0,(Ty)**)y< C(S,) and T acts irreducibly on S,. Then [S,, Ty, Ty]
= 1 implies Z(ST,) # 1. Therefore, O,(T;) < C(S/S,). This means that
0,(T)S, < O0,(T;)S, and since O,(T,) =< O0,.(S,T;), we conclude that
either O0,(T;) = 1 or O,(T;) < O,(ST;) # 1. In the latter case, let Y be
minimal normal in ST; with Y an r’-group contained in O,(7;)S,. Then
Y, Ty, Ty, T,1 =[Sy, Ty, Tyl = [S; N Ty, T,] = 1. Thus, C(Y) =
(O(T;)%™). But T,/Cr(S/S,) is an r-group, and this forces C(Y) = S.
As above, this yields Z(ST,) # 1. Therefore, we assume that O,.(7;) = 1
and T; induces a cyclic r-group on S /S,.
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Since [S), T;), T;] = 1 we apply Theorem B of Hall-Higman (see p.
359 of [13]) and conclude that T,/Cy(S;) has exponent 2 or 3. In
particular, T,/C(S/Sy) = Z, or Z;. Let T} = Cr(S/S,). Then T| <
O(T,S,) and TS, < ST,. Since S, is minimal normal in S7; we have
S, =Z(0[(T,S,)) and [T, S,]=1. If r=2 let g be a 2-element in
STy, — SyT,. If r =3, then S/, is an elementary abelian 2-group (this
follows from the proof of Theorem B of Hall-Higman) and we let
g €S — S, In either case (S, Ty, g) = ST. Therefore, T, N T§ < ST,
If T) N T§ # 1, then we may take S, = T, N T§ and obtain T, = C(S,).
This would imply ST;, < (T3%) < C(S,), a contradiction. Therefore, T; N
T¢E=1land [T, TE]=T,NTE=1.

Letb=|T¢|.Thenb=r""|T,|= (dr)”'(q — 1)", where n is the Lie
rank of G (here we use (2.4)(iii) and note that the numerical restrictions
rule out Suzuki and Ree groups). On the other hand, Tf < N(T;), while
T, N T§ = 1. So by (2.7) we may regard Tf as an abelian r-subgroup of
W, the Weyl group of G. We leave it to the reader to check that the
assumption g > 7 leads to a contradiction. (In this check the following
inequality is useful. For 4 an abelian r-subgroup of S,,, we have
| A |<r™*D/7 To see this let o,,...,0, be the orbits of 4 with |o;|= rk
Then m + 1 =Zrk and |4 |< Il r* (as 4 is abelian). Since r* = rk, we
have m + 1 = 2 rk; = r(Z k;), and the inequality follows.) This proves the
claim, hence Z(ST;) # 1.

Choose 1 # x € Z(ST;) and consider ST as a subgroup of C;(x). By
(2.8) x € C(T,)) = Ty, and so T < (Cx(x)°), = Y. Also, Y = Y, T, where
Y, = E(Y). Since [S,T,]=S we have S<Y,=D, - --D,, where
D,,...,D, are the components of Y,. Fix i € {1,...,k} and let bars
denote images in ¥,7; modulo D, - D, - ** Dy Then | S is normalized | by
T,, hence e by T T, N Y, By induction, = N(TO N YO) Therefore, S <
N(Cyr, (T N Yy))= N(]})) and [S,T,] =D, - D -+ D,. Repeating this
for each i we conclude S =[S, T;] = Z(Y,), and finally [S, T;] = 1. This
is a contradiction proving (6.5).

The next result completes the proof of (6.1)(i).

(6.6) Suppose ¢>7 and let 7y, < S < G, with S solvable. Then
S = 0,(S)N5(T,).

Proof. Let S be a minimal counterexample. Suppose L <IS with
T, <L and let X be a Hall p’-subgroup of L with 7, < X. Then S =
LNs(X) = LNs(T;) by (6.3) and (6.5). By minimality, L = O,(L)N,(T),
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50 S = O,(L)Ng(Ty) = O,(S)Ng(T;)). We conclude that S = (T7). In
particular, S < G,,.

Let NO,(S)/0O,(S) be minimal normal in S/0,(S), where N is a
p’-group. Then § = O,(S)Ng(N) and we may assume T < Ng(N) (take N
in a Hall p’-group containing 7;). By minimality, we conclude that
S = Ng(N). Let C = C4(N). Suppose, C =S and let 1 # x € C. Then
x € Cs(T,) implies x € Ty, so T < (Ca(x)°), = Y. We have Y = YT,
where Y, = D, - -+ D, Z asin (2.9). Since S = (T} ), we conclude S < Y, T,.
Fix 1 <i < k and let bars denote images in ¥ modulo D, --- D, --- D, Z.
Set T, =T, N\ D, ---D,Z and S, = (T°). By minimality and (6.3), S, =
O,(8,)Ns(T)) = O,(S)X(T,). It follows that S;<J, where JZ/Z =
0,(8,Z/Z). Therefore, S, = 0,(S,)T, and § = S§Ny(T)) =
O,(S)Ns(Cy(T))). Since Ng(Cy(T))) = TyNsay(Ty) = Tp, we obtain § =
0 ,(81)Ty = O,(S)T;, which we are assuming false.

In view of the above, it will suffice to show that C = S. So assume
C < S. Since T, =< Ng(N), we have [N, Tj, To] = 1, by (6.2). Therefore,
T,C # S. Since S = (Ty ) we may choose C<K<L<SwithK, LIS
and such that LT, = S, L /K is a chief factor of S and T, N L < K. (For
example, set L/C = (S/C) and K/C any maximal normal subgroup of
L/C). Minimality of S implies K7, = O,(KT)Ng7(T) = O,(K)Ngr(T5).

Let X be a p’-Hall subgroup of K W1th Xo=Xand set T, =T, N
K=X LetY=XNO,,(K). Then § = O,(K)Ng(Y), so minimality of
S forces Y < S. Since KT, = O,(K)Ngr(T,) we conclude that 7} <J K.
At this point we are in a position to use the argument in the proof of (6.5).
We have seen that 0,(Z(S)) = 0,(Z(LT,)) = 1. Replace the groups S,
Sy, S, of (6.5) by L, K, N, respectively. Arguing as in (6.5) we first obtain
(via Hall-Higman, Theorem B) that T,C/C = Z, or Z,, and then argue
that 7; is an r-group for some prime r. Finally we obtain a numerical
contradiction. This completes the proof of (6.6).

To obtain (6.1)(i1) we must consider Tj-invariant unipotent subgroups
of G,. A key result is the following.

(6.7) Let ¢ > 5 and assume that ( X,, 5(;} is unipotent. Then [ X,, )_(—j]o
=[X, X;].

Proof. LetL—[ X]andsetL [ X X] SoL<L As L is
T-mvanant Lisa product of T-root subgroups of G, and since L is
o-invariant these root subgroups fall into (o )-orbits. The first observation
implies L = L°. If L = 1, then the result is trivial, so we assume dim( L)
>0.Set X = (X, )71-).
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Suppose there is a normal subgroup, Aof X,suchthat 4 = A4° Aisa
product of root subgroups of T, and 1 # LA /A = Z( X/A) X, A /A for
some w € {1,...,t}. We claim that L, A/4 = LA/A. Let ~ denote i images
in X/A Then L =X, and X is T-isomorphic to V, =
XwRu( P,)/R,(P,). Hence L,= Xw (Lang’s theorem) is 7-isomorphic to
V,,.By (5.1) T acts irreducibly on V,, so it will suffice to show that L+#1.
For this it will suffice to check that there exist elementsa € X, and b € X
such that [a b] # 1.

Since L = X it is not the case that [U;, L{B] = 1foreach § € A, and
B € A,. Therefore, choose § €A, and B €A with 1 # [U};, UB]
Interchanging § and B, if necessary, we may assume that there is an
integer d = 1,2, or 3 such that § + df € 3, (d = 1if §, B are both long
roots) and [UB, UB] = UHdB Let |A,|= l and |A |=m. Then A, =
{6),...,8)) and A = {B,,...,B,), where 8, =8, B, =B, §, =48 lfor
2=<i</[,and B,=fB,for 2=<i<m (here 7 is the permutation of 3
associated with o). B

From Lang’s theorem we have (X,/X’), = X,X!/X’ and (X;A/in),, =
X, X’/X’ Moreover, the 3-subgroup lemma shows that 1 = [X > Xj] =
[Xl, X’] Leta € X;and b € X,. There are elements x, y € Kand CorevesCyy
d,,...,d, € K* such that a = Us(x)l/'glz(c2 7 . Ua(c,xq ) (mod X))
and b = UB(y)Uﬁ(dzyq) UB(d y? ) (mod X’) (shghtly different for
the Suzuki and Ree groups). There are ¢’ choices for x and g™ choices for
y.

For each §, € A, there exists at most one 8, € A, such that [Us , UB ]
= U8+d/3 The projection of [4, b] to U8+d,8 is UHdﬁ(h) where h =
S ze,dix? yd" "', and the sum ranges over the pairs (u, v) for which
[UB,UB 1= U$+dﬁ’ and z is an integer with (z, p) = 1 (z = =11if §, 8 and
0 + B are all the same length). Fix y 0 and for each pair (u, v) let
e, = zc,d?y% " Then h = f(x), where f(¢t)=3,e,9 ', a non-zero
polynomial of degree at most ¢/ ~'. There are ¢’ choices for x, so we may
choose x with & = f(x) # 0. So for suitable choice of x and y we see that
[4, b] has nontrivial projection to X We have now proved the claim.

We now claim that if 4 = A4° is a product of root subgroups of X with
A < X, then LA/A = L A /A. This is proved by induction on dim( X /4).
If this dimension is O the claim is obvious. So assume the claim holds for
all A, with A, satisfying the conditions that A satisfies and dim(X/4,) <
dim( X /A).

Suppose that for i = 1,2 there exist A <A,=A°<X such that
A/A <Z(X/A) and 4,= A4 X for ¢, € {1,...,t}. Also, suppose A, #
A,. By the induction hypotheses LA, /A =1L, A /A, for i = 1,2. Con-
51der A,A,/A. Then 4,4,/4 = V XV, (a T{a) -isomorphism). By (5.5)
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and (5.1) T has inequivalent irreducible representations on ¥, and ¥,
Moreover, for i = 1,2 ¥, is T-isomorphic to (/T,[_X)ﬂ = X,IA_ /A (for the
equality use Lang’s theorem and the fact that X, N 4 is a product of

T-root subgroups, hence connected). Therefore,
LA/ANAA/A=LA/A N (4)),(4,),4/4
= (LA/ANX A/A)(LAd/ANX,A/4).
Now,
LA,/4, = LA, /A,,
L=L, |LA/A|=|LA/4| |L,A/ANA/A],

and L,A/ANA,/A=1or X, A/A If the claim is false, we must have
the latter case, but LA4/A4 ﬂX A/A4 = 1. Passing modulo 4, we have a
contradiction. We now suppose that no such groups 4, A, exist.

Let Z/A = Z(X/A). Then Z°=Z and Z is a product of root
subgroups of 7. By the above, Z = A4 - X for some w € {1,...,¢}. By the
first claim we may assume L-A/A+Z/A. As dim(X/Z) < dim( X/4)
wehave LZ/Z=L,Z / Z. Also, the usual arguments show that (Z/4), =
X,A/A. So either L A, /A NX,A /A =1, and we are done by order
considerations, or X, 4 /4 =< L,A, /A. We assume the latter holds. Then
L>X and so LA > Z. Let A, <XT<o) be such that Z<A <1 and

A,/Zis an XT( o)-chief factor. Since 4, is a product of T-root subgroups
we must have 4, = X, Z for some k. Since X, A/A £ Z(X/A) either
[X,, X, «] or [Xj X, ] 1s not contained in A. With no loss of generality we
suppose [ X,, X;] % 4. Hence [X,, X, ]A/4 = X, A/A.

Now dlm([X,, Xk]) < dlm(L) so by induction [X,, X, o = 1 X5 X, )
Moreover, X, < L implies that X, Z/Z < L _Z/Z = LZ /Z. Therefore,

LA/A =[ X, L]4/4A 2[ X, X]4/A =X, X,] A/4 = X,4/A.

At this point the equality LZ /Z L,Z/Z and order considerations,

imply that LA/4 = L A /A, proving the claim. The result follows by
setting A = 1.

(6.8) Suppose g > S and 1 <i =<t Then
() X; = X, N R(P).

(ii) X’ = X, N R (P,).

() V, = X,/ X asE[T]- modules.

(iv) V X/X’ as K[T] modules.
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Proof. By (6.7), [X;, X,] = [X, _, Xi]o, so it will suffice to show that
[X,X]=XNR,(P). Let Y=[X,X ,]- Then Y, is T-invariant, hence a
product of T-root subgroups. The group X, ./ Y is then K[T)- 1somorphic to
the direct product of those root subgroups of X not contained in Y,. These
root subgroups fall into orbits under (o). By definition X, is generated by
one such orbit. This ¥, = X—, M Ru(ﬁ, ), proving the result.

1

The next result will complete the proof of (6.1).

(6.9) Let A = A™ be a p-subgroup of G, and assume g > 7. Then

(1) A 1s a product of T-root subgroups.

(i) Let {C,,...,C,} be the composition factors in a fixed 47-com-
position series for 4. For each i there exists a unique n, € {1,...,7} such
that C, = ¥, as F,[T]-modules. '

(111) Let ny,....,n, be as in (i)). Then 4 = X, --- X, and if A=
X, - X then A is a subgroup of G with A, = 4.

n

(1v) Let ny,...,n; be asin (it). Then {nl, congy ={Jj| X, =4).

Proof. Let 1 # A be a p-subgroup of G, with 4 = A%. By (3.9) of [4]
there is a canonical parabolic subgroup P of G such that A <Y = R (P)
and N (A4) < P. ThenTOSP so by (6.4) T < P. Also, P = P°.

Letl = Y0 <Y, <---< Yk Ybea T(o) -composition series for Y.
Then each Y, is a product of T-root subgroups of G, and for i = 1,...k,
M,=Y,/Y,_, is T{c)-isomorphic to the external direct product ¢ of the
root groups in some (o)-orbit of roots, say S, . Hence, Y, = X, Y e

1

Recall that for i = 1,...,k, V =X, R AP, )/R (P ). Then M, = V'

Also, Lang’s theorem implies that (M,)o = X,Y,_1 /Y| = V, . By order

consideration we have Y = Y, = X, o+ X, This shows that X, ,.... X,

are T-root subgroups satisfying the followmg conditions: (i) A =X,
X, =Y@X, X, <YandX . X <Y fori=1,. k(lu)

Hp

X, - X/X---X ~V and X, X/X---X ~Vforz—
1,.

n, n,

.,k. Among all sets of T-root subgroups { XX } that satlsfy (1),

(ii) and (111) choose one such that | X, --- X, |is mlmmal We claim that
A=X X .

Let L= X X and L= - X, for 1 =i=m. Similarly, set
L= X X and L =X X,{ Suppose A < L. Then for some i4 N

L = L_l (1e A avoids the LT composition factor L,/L, ;). Choose i
maximal for this. By minimality of |L|, i <m. Also, AL, = L. Now,
L/L,_,=AL,_,/L_, X L,/L, | and this will be a contradiction to
minimality if we can show that AL,_, is a product of root subgroups
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satisfying the necessary conditions. To see this consider L/L,_,. Suppose
J» k=i and consider [X, , X, 1N L, =1I. The group I either covers or
avoids the L-T(o) composmon factor L,/L,_, and I is a _product of
T-root subgroups. So if I covers L,/L,_,, then X, =[ X, , X,] Conse-
quently, (6.7) implies that X, < [X, » X, ] But AL, =L and L J L =
Z(L/L;_;). So this forces. L/L, y =X L,_\/L,_, =sAL_,/L,_,,
whereas we have assumed that 4 avoids L,/L,_,. Therefore, I avoids
Ly/L,_,.

Letting /, = I, = I, | we see that L., /L  is abelian. Since L,Jrl isa
product of root subgroups we have L, /L, l——(X, Loy /L,_)) X
(X, L, /LiZ) (consider the action of T T{o)). Letting [, =1, and [,
vary, we see that L,_ ,X,'+1 < L. Consequently, the m- tuple
(X s X, s X, 5 X,..., X, ) satisfies conditions (i), (ii), and (iii).
Notice, also, that L,+1/L,._1 =(X,, Li/Li-) X (X, L,_,/L,_,), and
T, acts irreducibly on each factor with inequivalent representations. Since
A is Ty-invariant we conclude that (4 N L, \)L,_,/L,_, =
X, . L\/L;_,. Therefore, a rearrangement of X,,...,X, also satisfies
conditions (i), (ii), and (iii) with an avoided factor nearer the end of an
LT, composition series of L. Repeating this a sufficient number of times
we obtain a contradiction to the minimality of | L |, because at the last
step we have A contained in a proper subgroup of L which has the correct
form. This proves the claim and the result follows.

We complete this section with one additional result that is useful in
computations.

(6.10) Let X, ,..., X, be T-root subgroups. Suppose that either g > 5
and (X, ..,Xnk) is unipotent or ¢ >7 and (X, ,...,X, ) is nilpotent.
Then

(a) <an7“ "Xnk>a = <Xn|"' "Xnk>'
®) (X, ... X, 1, = [X,,....X, ]

Proof. Suppose ¢ > 7 and ( X, ,...,X, )= D is nilpotent. By (3.9) of
[4] there is a canonical parabolic subgroup P of G with D <R (P) and
Nz(D) < P. Hence T, < P and, by (6.4), T< P The argument of (6.9)
shows that X <R (P) forl=i< k. Hence ( X, ,.. X ,) 1s unipotent.
So in either case we have X = (X,,....X, D a umpotent group.

We may assume k > 1. Suppose (b) holds We prove (a) by induction
on the number of (o) -orbits of root subgroups in X = (X, ,.. X,,>- We
have X’ = ([X,,.. X, 1: (i, 50} € {ny,...,n}) and since X’ 1S in-
variant under both Tand (o), X' = ( . X ) for some {j,....j;} C
(1,...,t}. Inductively, ( X), = (X, X ) Also X /X' is the product of
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the groups M, = X, X’ /X X'.Fori=1,...,k, M, is either trivial or M, =

so (5.1)(1) implies that X /X’ is the dlrect product of the nontrivial M
Consequently, Lang’s theorem implies X, = (X, e nk>X; =
(X5 X, )(X;5. .., X ). We may choose j,...,j; such that for each j,
X, =<[X,....X;] for some {i,...,i;} C{ny,...,n.}. So by (b), X, =<
[Xis- s X1 =(X,,...,X, ) and (a) follows. Therefore, it will suffice to
prove (b).

To prove (b) argue by induction on k. For k = 1 the result is trivial
and for k = 2 apply (6.7). So suppose k = 3 and that the result holds for
k—lSetY [X,.,... ]Y—[ .. L D=1[Y, X,], and

=17, X, ) Let P = {z | X <D} Then (6 9) 1mphes that D = H,EFX
Also (6. 9)(m) shows that D; = I[,cr X, is a group with (D )e =

Suppose 4 € {1,...,t} and X, < Y. By (6.7), [Xh, X Jo = [Xh, n]
=[Y, X,,]1= D. Then [Xh, X, ] <D.If7Y,X, .= Nz(D, ) then lettmgh
vary we have D= [Y X, J= Dl, whence D, < (D ),=D=D,, proving
the result. So let X = Y or X;= X It will suffice to show that X =
N—(D) Since Y, X . = N(D), wehave[ » X ]=<Dforeachi €T. Thus
[X, X]is a product of certain of the groups X,, fora €', CT. Then
(5.5) and (6.8)(iii) imply [X; X]= Iaer, X, < D,, as desired. This com-
pletes the proof.

7. Nonsolvable T -invariant subgroups. In this section we maintain
the previous notation. In addition, let Y be a Tj-invariant subgroup of G
such that Y=7Y,---Y, a central product of groups of Lie type in
characteristic p. For 1 <i < n write Y, = O7(Y,) = Y,( p®). The goal of
this section and the next is to relate Y to the Lie structure of G and to the
root system of G. Throughout this section we assume p = 5 and ¢ > 7.
The main results of this section are as follows:

(7.1) T, contains a maximal torus of Y.

(7.2) Suppose Ty =T)<Tand T, =N(Y).For1 <i<n,letJ,be a
Cartan subgroup of Y,. Then J = [[_; Cy7(J;) is a maximal torus of G,T;.

These results will be used in later sections to characterize such groups
Y. The difficulty is that, at the outset, the groups Y; are not known to have
any connection with the existing Lie structure of G. In particular, p¢ is not
known to be a power of q.

We will prove (7.1) and (7.2) together, in a series of steps. Suppose
that one of (7.1) or (7.2) is false and choose a counterexample (for some
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choice of T;) with | Y| -| G, | minimal. Then Z(G,) = 1. First assume that
(7.1) fails for Y and set S = Nz(Y)).

(7.3) (i) T, is transitive on {Y},..., 7, }.
(i) S £ C(Y).

Proof. (i) is trivial from the minimality of Y, since otherwise we could
replace Y by the products of the Tj-orbits on {Y),...,%Y,}. For (i),
suppose S < C(Y) and let x € Y; — Z(Y,) be a p’-element. Then 4 =
(x™) is abelian and Tj-invariant. Therefore, (6.2) implies that [4, T,] < 4
NT,<ANS=<C(Y). Letting x vary we have [Y, T;] =< C(Y), hence
Y, T,] = Z(Y). But this forces [Y, T;] = 1, contradicting (2.8).

(14) Y =7,

Proof. Suppose n>1 and let I, <Y, be an S-invariant abelian
p’-group. Then I = (I¢) is a Tyinvariant abelian p’-group and as in the
last result we apply (6.2) to obtain [/, T,] < T, N I =< Cy(Ty). It follows
that 1, Z(Y,)/Z(Y,) is an elementary abelian 2-group (also 7, /S = Z,).

By (2.14) we may take I, to be a maximal torus of Y;. Suppose the
overlying algebraic group of Y, has Lie rank / and set g, = p*. By
(2.1)(iii), Z, has rank at most / (as an abelian group). So |I,/Z(Y;)|< 2"
On the other hand |I,/Z(Y,)|= e 'f(q,), where e <[+ 1. By (2.4)(iii)
we have e 'f(q,) = e (g, — 1)) = e~ '4 (since g, = p = 5). Therefore,
2'=e7'4" = (I + 1)7'4/, forcing / = 1. The only possibility is Y, /Z(Y,) =
PSL(2, 5). However, here one can argue that 7, N Y, < Z(Y,) and that [,
can be chosen as a subgroup of order 3. This is a contradiction.

By (2.14) we may choose a maximal torus I of Y with /7 = I. Let
I,=1INT,.

(7.5) (i) C(Ty) = I, = [T, 1]
i) Z(Y)NTy=1.
(iti) [T, I] is cyclic.

Proof. We first use (6.2) to obtain [Tj), I1 =T, N I = I,. Also, I, <
C,(T,) = T, by (2.8). Thus (i) holds.

Suppose 1 #z € Z(Y) N T, and let E(Cy(z)) = X, --- X,, a com-
muting product of groups of Lie type over extension fields of F, (see
(2.9)). By (2.9)(v), T, N X, is a maximal torus of X for i = 1,...,s. Since
Y= 07(Y)wehave Y < X, - - - X,, so (2.8) implies that Y £ C(T, N X))
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for some i. Therefore, Y = [Y, T, N X;] = X;, so minimality of | Y| -| G, |
shows that T; N X; contains a maximal torus of Y. This is a contradiction,
proving (ii).

Suppose (iii) false and choose Z, X Z, = E <|[T,, I], where r is
prime. Let 1 # e € E satisfy E(Cy(e)) ¥ 1. (It is not difficult to check
the existence of such an e. Consider E contained in a maximal torus 7 of a
suitable algebraic group. Then E acts on each I-root subgroup, inducing a
cyclic group.) Now apply (2.9). Write E(Cy(e)) = D, --- D,,, a commut-
ing product of components. Minimality implies that (7.1) and (7.2) hold
for the group D, --- D,. By (7.1) T, N D, contains a maximal torus of D,
for 1 =i < m. On the other hand, (2.5)(v) shows that I N D, contains a
maximal torus of D,, and T, N D,, I N D, normalize each other.

Fix 1 =i<m and let H, be a Cartan subgroup of D, By (7.2)
A; = Crg(H,) is a maximal torus of G,. We claim that each H,root
subgroup of D, is also an A -root subgroup of G,. We remark that the
argument used here will be quoted in the proofs of (7.8) and (7.9). By (3.6)
A, permutes the H-root subgroups of D, and centralizes H;. So (5.6) and
the assumption p =5 implies that either 4; normalizes each H,-root
subgroup of D, or there exist H-root subgroups R,, R, such that 4,
normalizes ( R,, R, )= SL(2,5) or PSL(2,5). In the first case the claim
follows since 4; < C(H; N (R;, R,)). So suppose the latter case holds
and let 4, = C,((R,, R,)). Then |4,: 4,|<4 and Cz4,)° is not a
maximal torus. Write Cz(4,)° = XZ, where X is semisimple and Z =
Z(XZ)°. Let /T, be the o-invariant maximal torus containing 4;. Then
Z <A, and 4, N X is a maximal torus of X. Now use (2.4) applied to X
and the fact that ¢ =25 (since p =5) to conclude |4,N X: 4, N
Z(X)|> 4. This contradicts X < C(4,) and proves the claim.

Since each A-root subgroup has Frattini quotient on F -module, the
above claim shows that D, is defined over a field of size at least ¢g. Thus
(6.3) and (2.8) both apply to D,. From (6.3) we conclude T;, " D, = I N D,
for each i. From (2.8) we see that if T, = (T, N D,) --- (T, N D,,) and
C=C(e) NC(D,---D,), then § = Cc ,(Tp,C/C) is an abelian sub-
group of Cy(e)/C. Since both T,C/C and IC/C are contained in S, we
conclude [T, I] = C.

Then E < C and, in particular, E centralizes a proper p-subgroup of
Y. By (2.3) of [23] this implies that Y is generated by the subgroups
D, ---D, as E ranges over E*. Hence, [T, [| = C(Y)NINT,<Z(Y)
N T, = 1, by (ii). Then (2.8) gives I =< T, which we are assuming false.
This proves (iii).
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(7.6) Let [T, I1 = (x).
(i) x # 1.
(i) I < Cx(x)°.

Proof. If x = 1, then I = C;(T;) = T;,, which we are assuming false.
So (i) holds. Let C = Cs(x)°. To prove (i1) we make use of the universal
covering group, G, of G. Let m: G — G be the natural surjection and
regard o as acting on G and commuting with 7. Then G, = G, maps, via
7, onto G,. Now (Y)7 ™! is the central product of part of Z(G) with a
covering group, Y,, of Y. Since Y, is also a group of Lie type, ()7~ ! is
abelian. Choosing % to be a preimage of x we have (I)7~' < C5(%X) =

Cz(%)° (see (4.4) of [25]). Therefore, I < (Ce(x))m = C5(x)°, proving (i1).

At this point we obtain a contradiction. Let C = Cx(x)° and C = C,
N G,. By (2.9) C = E(C)T, and by (2.5)(v) (T, N E(C)Z(C)/Z(C) is a
maximal torus of E(C)Z(C)/Z(C). Moreover, [I, T,] < I, < Z(C), so
I1Z(C)/Z(C) centralizes (T, N E(C))Z(C)/Z(C). 1t follows from (2.8)
that I < T, Z(C) = T,, a contradiction.

At this point we know that (7.1) holds for Y (and for all smaller
groups). Consequently, (7.2) must fail for Y. Recall, that T, < T, < T.

(7.7) Let Z = Z(YT))
HZ=T,.
(ii) Y = Y,, so Y is quasisimple.
(ii1) 7, N Y contains a maximal torus, I, of Y.

Proof. Suppose yt € Z, withy € Yandt € T,. Theny € Co(Tp) = T,
(by (2.8)), proving (i). (iii) is immediate from (7.1).

Suppose n > 1. By minimality of |Y|-|G,|, P = Cyr(J,) is a
maximal torus of G,T,. Also, P normalizes Y, --- Y, _,, so another appli-
cation of minimality together with (2.3) shows that

n—1

1= Gy vy pl)

i=1

is a maximal torus of GoP = G,T}. Now Cyp(J,) =Y, ---Y,_,P, s0
M;_, Cyr(J,) = I. Therefore n = 1, proving (ii).

(7.8) Z(YT)) = Cyr(¥) = 1,

Proof. Let Z = Z(YT)) and C = Cyp(Y). Clearly, Z < C. Also, CT,
is a solvable p’-group, so (6.1) implies C < N(T}). On the other hand,
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C =< YT,; we conclude that [C, T\]=CNT,=Z(YT)) = Z. If [C,T|] =
1, then C < G5 (T)) = T, and Z = C. Suppose C # 1. Then we conclude
cCNT #1.

Set Z, = C N T, and D = E(CxZ,)°). By (7.7) T, N Y contains a
maximal torus of Y, so Y is generated by conjugates of T, N Y. It follows
that Y<D. Let D= 0”(D,). Then Y <D and (2.5) implies that 7,
contains a maximal torus of each component of D. Let D, be a component
of Dand T, =T, N D,. Then T, £ Z(D,),s0 T, ¥ Z,and Y = [Y, T,] <
D,. Letting D, vary, we conclude D is quas151mple

Since 7D is connected we write 7D = DZ, where Z is a torus, Z < T,
and [Z, D] = 1. By induction, J, = Cyz(J)) is a maximal torus of D. Let
A be a maximal torus of DT with J, < A. Then Z <4 and A° = A. Set
J, = G,T, N A. By definition, A, is a maximal torus of G,, so J; is a
maximal torus of G,T.

At this point we apply the argument of (7.5) to show that each
nilpotent J-root subgroup of D is also a J;-root subgroup of G,. Similarly,
if we use the groups Y, J,, J,, and D we conclude that each J;-root of Y is
a J,-root subgroup of D, hence a J;-root subgroup of G. As in the proof of
(7.5) we have Y defined over a field of order at least q. Suppose yt € C
with y € Y and ¢t € T,. Then y € Cy(T, N Y), so by (2.8) (which now
applies to Y) we have y € T, N Y. This shows that C<T,, and so
Z=C=12,.

At this point we invoke Theorem (8.1), the proof of which is indepen-
dent of (7.1) and (7.2). Let X, ,..., X, be the J,-root subgroups contained
in a fixed J-invariant Sylow p subgroup, U, of Y. Set Y =
(X,».... X, X¥,...,X*). Then Y = 0”(Y,) (by (8.1)(iii) applied to D. If
D has [ simple factors apply (8.1) to a diagonal of O normalized by o,
then take projections.) Also, YA < DA = DZ.

AsT, < N(Y), YT, = Y(YT, 0\ N(J,)) < Y(N(D) 0 N(Y) 0 N(J,)).
But N(D) N N(Y) N N( J,) permutes the J,-root subgroups of Y, so
normalizes Y. Therefore, T, < YT, < YN(Y) = NQO Y).

Set V= Ci( Y)° a T,-invariant subgroup of D. By (2.14), T\ normal-
izes a o-invariant maximal torus L of V. We have AY = Z, Y, where
Z, = Z(AY)°, and Z, = Z(Z, N D) So Z, N D =<V and we see that
Z VY contains a max1ma1 torus of G. Therefore E=C;7#T,NY)isa
T,-invariant maximal torus of G. Now, T, = N( Eo N G,) and (6.3) implies
that T, = E, N G,, whence E < Cx(T,) = T. We conclude that E=T
and T < YVZ < N(Y).

By (2.5) (YT) = Y T = YT. Let C be a maximal torus of YT with
J, = C.Then YT = YCand YT = (YT), = (YC), = YC,.So YT, = YC,,
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where C; = C, N G,T,. But C, is a maximal torus of G,T; = G,C, (see
(2.3)) and Cypr (V) = Cy(4) = C(Cy(J) = CJ) = C,. We are assum-
ing this to be false, so this contradiction proves (7.8).

(7.9) (i)  is minisotropic.

(ii) There does not exist a subgroup D < Y such that D™ = D and D
a group of Lie type in characteristic p.

(iii) For 1 % ¢t € T}, Cy(t) does not contain a component of Lie type
in characteristic p.

Proof. For (i), suppose [ is contained in a proper parabolic subgroup,
K, of Y. The argument of (7.5) shows that each nilpotent /-root subgroup
of Y is also a T-root subgroup of G. So O,(K) is a product of T}-root
subgroups and K" =K (as K= Ny(O,(K))). If K° is the opposite
parabolic then T; < N(K?), so T, normalizes K N K° = L, a Levi factor
of K, containing I. We may assume J, < L. Let L, = L', so that L = L,J,
= LI.1f L, = 1, then J, = I =< T,. Since J,-root subgroups of Y are also
T,-root subgroups we have Y defined over a field with at least g elements.
Then (7.8) and (2.8) imply Cyr(J;) = 7}, a maximal torus of G,T;.
Suppose then that L, ¥ 1, and let J, = L, N J,, a Cartan subgroup of L,.
Minimality implies that R = C; 1(J,) is a maximal torus of G,T}. As
Jy = Cp () = Cpp()y) = R, we alsohave R < Cyp(J)) = J.

Replacing 7, by R in the above we have J;-root subgroups of Y being
R-root subgroups of G,. Again we conclude that the defining field for Y
has at least g elements. Then (2.3), (2.8), and (7.8) yield Y7, = YJ and J
Cartan in YJ. So J is abelian, and another application of (2.8) shows that
R = J, a contradiction. Thus (i) holds.

Suppose D' = D < Y and D is a group of Lie type in characteristic
p- Let 4, be a Cartan subgroup of D and A = Cp(4,), a maximal torus
of G,T,, by minimality. But now consider Y4. From (i) we conclude
J, = Cy(J,) is a maximal torus of G,A4. Since Y4 < YT, we also have
J, = J. As in the proof of (7.6) the J,-root groups of Y are also J,-root
subgroups of G,, so Y is defined over a field of at least g elements. So
(2.8) applies to YT, and shows that J is a maximal torus of YT7); in
particular an abelian group. But then J < C(J,) and (2.8) forces J = J,, a
contradiction to our supposition. This proves (ii) and (iii) follows.

(7.10) Write Y = Y(q,) and | T; |= 311 ®,(qy).
(1) d = 1 or d is prime.
(i) If Y = PSL(2, q,), then | T} | is odd.
(iii) T; is cyclic, I = T, N Y, and T, is a minisotropic torus of Y7,.
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Proof. Suppose t € T, is an involution and write Y = 0”'(Y,), where
r is an endomorphism of the algebraic group Y. If ¢ extends to an
involutory automorphism of Y commuting with 7, then Y° is reductive
and (7.9)(ii1) implies that Y° is a torus. Let U be the unipotent radical of a
t-invariant Borel subgroup of Y. Then ¢ inverts U, U is abelian, and
Y = PSL(2, q,). So if | T} | is even and Y = PSL(2, g, ), then some involu-
tion ¢+ € T, induces a field or graph-field automorphism of Y, against
(7.9)(iii). This establishes (ii). If ¥ = PSL(2, q,) then it easily follows that
(i) and (iii) also hold. Suppose then that ¥ = PSL(2, g,). Thus | T} | is odd.
(2.8) or its proof in case g, = 5 shows that elements of odd order in YT,
centralizing 7 lie in a maximal torus V of YT,. Hence T, = V. (iii) follows
from (7.9)(i) and the argument used to prove (7.5)(iii).

For (i) we note that for Y = PSO * (2k, ¢,), PSL(%, q,), or PSU(k, q,),
we automatically have d = 1, 2, or 3. For the other cases the result follows
from (7.9)(ii)) and (7.9)(iii). Namely, (7.9)(ii) shows that 7, must act
irreducibly on the underlying vector space so Y = O™ (2k, q,)’. Hence
| T,|= 2(g¢ + 1), gk — 1), or 4(g& + 1), respectively, with k odd in the
unitary case. In the latter two cases (7.9)(iii) forces k to be prime and since
d| k we are done here. In the remaining case d |4 and d|g¢ + 1. For k
even, g¢ + 120 (mod4), so d=1 or 2. If k is odd, 7, contains an
element 1 # ¢ with | ¢|| (g, + 1) and we contradict (7.9)(iii). So (i) holds.

(7.11) Let T, be a maximal torus of Y7} and write | 7, | = Il ®,(g,) =
r1ll ®,(p). Assume that d; #*d, forj, #j, and that 7, < 7, is a maximal
torus of G,T,. Then T, = T,.

Proof. Suppose | T, |= 11 ® ,(q) = 11 ®,(p). By (2.10) it will suffice
to show that d = e and Zq)(d )= Eq)(s) Write | T, |= 31 ®,(q,) =
e e(4)s viewing T, as a max1mal torus of YT, and G,T;, respecuvely
Set g, = p®and g = p°.

For m and c positive integers ®,(p°) =119, (p), the product
ranging over those divisors ¢, of ¢ such that (c/cy, m) = 1. Using this
and the two expressions for |7,| we have |7,|=3I, 11, @, . (p)=
'H L4, @0 P). Moreover, 2, . ¢(e;c;) = a-rank(Y) = Etp(dj), while

c a, P(C aO) b-rank(G) = Etp(s ). Consequently, it will suffice to
show that d = e and {e;c,} = {¢; aO}

Consider a term @, (p). By the primitive divisor theorem (see
Zsigmondy [28]) and our assumption p =5, either e,co =2 and p is a
Mersenne prime or there is a prime divisor r of ®, . ( p) with r{p* — 1 for
x <e;c, Since d|q,*x 1, (d,r)=1if ¢,>2. For such an r, there is a
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pair (c;, a,) with | @cjao(p). This forces (see the proof of (2.10)) e;c, | ¢;a,
and either equality holds or r divides c;a,/e;c,. Of course, we can reverse
all this, starting with a term @_, ( p).

By (7.10)(i) d is one or prime. Suppose G, & PSL(n, q) or PSU(~n, q)
with e > 3. Then e = 3 and e|p = 1. Using this and the remarks of the
previous paragraph, cancel off terms in the two expressions for 7, where
the subscripts e;c, and c;a, coincide. Starting from the largest e,c, and
c;a, we see that all terms cancel except those where e;c, or ¢;a, is 1 or 2
or possibly a single term ®, (p), where d is a primitive divisor of the
term (note that 7, minisotropic in Y7, forces each e, > 1). So we are left
with an expression j(p + 1)*=¢(p — D)’(p + 1)7 or 3@, (p)(p + 1)*
=+(p — 1)?(p + 1)°. Using the fact that T is obtainable from no proper
subsystem of the root system of the overlying algebraic group of Y (sce
(7.9)(ii)) we use the orders given in Carter [6] and extensions to cover the
twisted groups, to conclude x < 1. In the first case use the facts that § <
3, p=5, and (7.10)(ii) to conclude e = d and {e;c,} = {c;a,}. In the
second case note that d > 3 (otherwise, obtain a contradiction using a
primitive division of @, ( p)). This forces ¥ = PSL(k, q,) or PSU(k, g,)
and as in the proof of (7.10)(iii), d = k. But then | T, |= ®,(q,) or
1d,,(q,) and no e, = 2. This is a contradiction. Therefore we may now
assume that G, = PSL(n, q) or PSU(~n, q) and e > 3.

If G, =PSL(n, q), then |T,|= 1(1/(qg — )I(g™ — 1), with Zn, =
n. For the unitary group, replace ¢ by —g, taking absolute values, if
necessary. We obtain | 7\ |= 3(1/(q + 1))I(¢™ + DII(g™ — 1), where the
first product is over the odd n,’s and the second over the even n,’s.
Moreover, e is a divisor of (n,q — 1) or (n, g+ 1), respectively. If
Y = PSL(2, q,), then by (7.10)(ii), | 7} | is odd, hence there are at most
two terms in the product. In the unitary case, if there are two terms, then
both powers of ¢ must be odd.

Let y € Ny(T)) with | yT, |= r, a prime. By (7.9)(iii) and (2.9) Cr(y)
is an r-group with order dividing that of the center of the universal
covering group of Y. We also have N, r(T))/T, =11 Z, , the factors acting
on (by raising to powers of g or —g) the appropriate factor of T,
centralizing the rest. By (7.10)(iii), 7, is cyclic. Therefore, (n,, n;) = 1 for
n; #n;. So r divides n, for a unique i, centralizing a subgroup of the
appropriate factor having order }(¢™/” = 1) /(¢ = 1) with f a divisor of e.
It follows that n; = r. For each n; # n,, y centralizes a subgroup of T, of
order (g™ = 1) /(g = 1), where f| e. Suppose there exists an n; # n; with
n;>2. Then we can choose a primitive divisor, s, of g™ = 1, and find an
element in Cr(y) of order s. By the above, s = r and s is a divisor of the
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universal covering group of Y. But s >3, so this and (7.9)(iii) yield
Y = PSL(r, q;) or PSU(r, q,). Accordingly, | T, |= (g5 =1)/(q, *
Using the facts that n;|s — 1 and s = r we have n; <n, = r. Using the
earlier primitive dmsor argument in the two factorlzauons of | T | (com-
pare largest e;c, and c;a,) we conclude that ar = br, hence g = ¢g,. But
r|qo =1, so r cannot be primitive for ¢” =1 if n;>2. This is a
contradiction, proving that no such n; exists.

If Y =PSL(2, ¢,), then y inverts T}, r = 2, and n < 3, contradicting
e>3. So Y =PSL(2,¢q,), |T,| is odd, and by earlier remarks, there
are at most two n,. As n>3, r is an odd prime. At this point the
only possibilities are G, = PSL(r, q), PSU(r,q), PSL(r + 1, q), or
PSU(r + 1, q). We chose r to be an arbitrary prime divisor of
| Ny(T)/T,| and found that N;(7,)/T, = Z,. Checking Carter [6] we
see that this forces Y = PSL(r, q,) or PSU(r, q,), thus | T |= 2®,(q,) or
1®, (q,)- As above, a primitive divisor argument yields ¢ = g, and
(Gy, Y) = (PSL(r + 1, q), PSL(r, q)) or (PSU(r + 1, q), PSU(r, q)).

This leads to | T} |= 2((¢" £ 1) /(g = 1)) = ¢(¢" = 1), where we al-
ways take the plus sign in the unitary case and the minus sign otherwise.
Therefore, e = d(q = 1) and this forces d =1 and e=¢g*=1 = (r + 1,
q = 1). In particular, Y has trivial multiplier, so the preimage, D, of J; in
the corresponding linear group is abelian. Order considerations show that
D is a diagonalizable subgroup of the appropriate linear group, from
which it follows that J = J, is contained in a maximal torus of G, = G,T;
(a Cartan subgroup if G, = PSL(r + 1, q)). Comparing orders we con-
clude that J is a maximal torus of G, contradicting the original assump-
tion. This proves (7.11).

(7.12) Write Y = Y(q,) with g, = p*, and let T, be a cyclic subgroup
of YT, with | T, |= }Il ®,( p). Suppose that 2 ¢(d;) = a-rank(Y) (e.g. Ty
a maximal torus of Y7)) and that d; # d, for i # j. Then

(i) T, is a maximal torus of Y7, and of G,T;.
(i) YT, = YT,.
(iii) 7, is a minisotropic torus of Y7;.
(iv) T, consists of regular elements of Y7, (in the sense of (7.9)(iii)).

Proof. Since T, is cyclic, T, is contained in a maximal torus 7} of YT,.
By hypothesm and (2.10) we have 7, = T Now embed 7, in a maximal
torus T2 of G,T,. Then (7.11) shows T, = T This proves (i) and (ii)
follows from (2.3). Also, G,T, = G,T,. We can now replace 7, by 7,, and
obtain (iii) and (iv) from (7.9).
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The remainder of the proof consists of obtaining a contradiction by
constructing a certain maximal torus 7, of Y7 that contradicts (7.12).

First suppose Y = PSL(n, q,). Then Y7, < PGL(n, q,) and
PGL(n, g,) contains an isomorphic copy of GL(n — 1, q,) stabilizing a
1-space of the usual module. So Y7 contains a cyclic maximal torus, 7,
of order 4(g§~"' — 1), with T, contradicting (7.12)(iii). So Y = PSL(n, q,).
We remark that (7.10)(ii) shows that | 7} | is odd. In particular, | Y7, : Y|
is odd, so if Y is an orthogonal or symplectic group, then 7, < Y.

If Y is a classical group of dimension 2# in which the natural module
has a singular n-space, then the above remarks show that Y7, <
PSp(2n, q,), PSO™ (2n, q,)’, or PGU(2n, q,). We may then choose T, to
be a maximal torus of order 4(g5 — 1) (4(g3" — 1) in the unitary case)
with T, stabilizing a singular n-space. Again we have a contradiction. If
Y =PSSO~ (2n, q,)’, then T; < Y and we consider cases. If n is odd, then
Y = YT, contains a cyclic subgroup, T,, of order i(gj + 1) and T,
contains a subgroup of order divisible by (g, + 1)/(4, g, + 1) none of
whose nonidentity elements is regular. This contradicts (7.12)(iv). If 7 is
even, o~ (2n, g,) contains 0" (2n — 2, q,) X Z, .. Here T, can be taken
as a cyclic group of order 4(g7 ! — 1)(g, + 1) and contradicting (7.12)(iv).
The remaining classical groups are Y = Y7, = PSO(2n + 1, q,)
and PSU(2n + 1, q,). Here, use the containments GL(n, q,) <
PSO(2n + 1, q,) and GL(n, ¢?) = PGU(2n + 1, q,) to get a maximal
torus T, of order 4(g¢ — 1) or 4(g3" — 1), respectively. Again we con-
tradict (7.12)(iv). At this stage we take Y to be an exceptional group.

If Y = G,(q,), then Y = SU(3, q,) and SL(3, q,). Since p =5 one of
these has center of order 3, and we choose a cyclic group 7, of order
g5 — qo + 1 or g¢ + q, + 1, accordingly. This violates (7.12)(iv). If ¥ =
E.(q,), then | T, | odd gives T, < Y. By Table (3.3) of [23] Y =°D,(q,) X
PSL(2, q3) and we take T, as the direct product of cyclic groups of order
g8 — g + 1and $(g3 — 1). Again this contradicts (7.12)(iv). If Y = E(q,)
then Table (3.3) of [23] shows that Y = PSL(9, g,) or PSU(9, ¢,), accord-
ing to 3|g,+ 1 or 3|g,— 1. Here take T, to be cyclic of order
(95— 1) /(go—1) or (gj+ 1)/(qy+ 1), respectively, and contradict
(7.12)(1v). ,

Suppose Y = F(q,)- By Carter [6], Table (3.3) of [23] and (7.9)(i1) it
follows that T, is the Coxeter torus of Y7, = Y. Now F,(q,) contains
*D,(q,)- To see this use the argument of [23] in the verification of Table
(3.3) (note that the subgroup of F,( K') spanned by all long root subgroups
in a fixed system has type D,(K) and the triality graph automorphism is
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induced by a Weyl group element). Now 3D,(¢,) contains a cyclic maxi-
mal torus, T, of order g3 — g2 + 1. By (7.12), T, is a maximal torus of Y,
so we may assume 7, = 7). But this contradicts (7.9)(ii).

Suppose Y = E,(q,). We claim that T,Y =°D,(q,) X T;, where T; is
cyclic of order %(g2 + g, + 1). Given this, we take T, = T, X T, where
T, is a cyclic torus of 3D,(q,) of order g3 — g2 + 1. For existence of
’D,(qy) X T,, argue as in (3.3) of [23]. Namely, we first argue that there is
an element of the Weyl group of Y mapping the diagram

Q) a3 oy Qs O ra, a, a; a,

to

a; s

where r is the negative of the root of highest height. Since the Weyl group
is transitive on fundamental systems, we can either do this or map the first
system to the reverse of the second. In the latter case multiply by the
graph automorphism of Y to get a map as desired. However, the resulting
map induces an element of order 3 on ZZ so cannot involve a graph
automorphism. Now, complete the construction as in [23].

Next, suppose Y =2E(q,). Here, we note that if W is the Weyl group
of E(K) =Y, then for 7 the graph automorphism, W{ Ty= WX Z,
where the nonidentity central element sends all roots to their negatives. It
follows from the previous case that 2E¢(q,) contains *D,(q,) X T, where
T, is cyclic of order 4(g¢ — g, + 1). So we again get a maximal torus T, of
YT, that contradicts (7.12)(iv).

The final case to consider is Y =3D,(q,). Then Table (3.3) of
[23] shows that Y contains X = PSL(3, g¢,) or PSU(3, ¢,) according to
whether 3|g, + 1 or 3| g, — 1. Accordingly, Cy(X) is cyclic of order
g3 +qo,+ 1 or g3 — q, + 1. Therefore, we let T, be cyclic of order
(g2 — 1)(g3 = g, + 1) resp. and contradict (7.12)(iv). We have now con-
sidered all cases and the proof of (7.1) and (7.2) is complete.

8. T,-invariant groups of Lie type. In this section we continue the
analysis of §7. Let Y be a Tj-invariant subgroup of G, such that Y is a
commuting product of groups of Lie type in characteristic p. Assume that
p=5and ¢g>7. In (8.1) we assume 7, N Y is a Cartan subgroup of Y
and show that Y is related to the root system of G. In later sections we
will apply (8.1) and the results of §7 to determine Y in the general case.
Write Y =17, ---Y, a commuting product of groups of Lie type in
characteristic p.
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THEOREM (8.1). Suppose T, N Y, is a Cartan subgroup of Y, for i =
l,....k, and let U; € Syl (Y;) with U, invariant under T, N Y,. For each
1 =i<k, there exist Tyroot subgroups X;l,...,XJ’[ of G such that the
following hold:

Oy =X X
(1) Y, = Y(q )forsomee = 1

(iii) Y, = O7()),), for ¥, = (X!,..., X, (X} )*,....( X} )*).

(iv) Y, is the commuting product of a {(o)- orbzt of e, semisimple
subgroups ¢ of G, each generated l by T-root subgroups of G.

W) (Yy,...,Y,)=7, -+ Y,, a commuting product.

By way of example, say Y =2D,(g’). Then I_’will be the commuting
product of j copies of D,(K), the components of Y corresponding to a
subsystem of 2 having the structure of j orthogonal copies of D,.

The proof of (8.1) will be carried out in a series of steps. Assume the
hypothesis of (8.1). The idea of the proof is this. First we reduce to the
case where Y has just one factor. Next we consider the case Y = SL(2, p°)
or PSL(2, p°). This is the hardest case. After that we work through the
various rank 2 possibilities for Y as well as the 3-dimensional unitary
group. The general case follows by induction and an application of (2.13).

(8.3) (1) Each (T0 N Y)-root subgroup of Y is a T-root subgroup of G.

(i) U, = X --- X] for T-root subgroups X;,..., X of G.

(1) ¥, = Y(q )for some e; = 1.

(iv) Let Y, be as in (8.1)(iii). Then (Y,,...,Y,)=Y,---Y, is a
commuting product.

Proof. Since Ty = C(T, N Y;) for i = 1,...,k, T, normalizes each Y.
The argument in the proof of (7.8) shows that each (7; N Y;)-root
subgroup is also a Tj-root subgroup of G,. This proves (i) and (ii) follows
from this and (6.9). For (iii) note that the defining field of Y; has order
equal to the minimum of the orders of the root subgroups of Y,.

Fix i and a (T, N Y,)-root subgroup, D. Let E be the opposite
(T, N Y))-root subgroup of Y. We claim that E = D* the opposite
T,,-root subgroup in G,. By (5.5) and (6.8)(iii) it will suffice to show that
the representation of 7, on the Frattini quotient of E is inverse to the
representation on the Frattini quotient of D. To see this set Z = Z(Y,T}).
Then (T, N Y,)Z/Z is a Cartan subgroup of Y,7;,/Z and (2.8) shows that
T, induces diagonal automorphisms on Y,. As T, < C(T, N Y;), (2.3)
shows that T;,/Z is a Cartan subgroup of Y,T;/Z, and the claim follows.
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So for each i, ¥, = (X},..., X, (X} )*,...,(X])*), where {X],...,X]} are
the T-root subgroups contained in U,. To obtain (iv) we need only apply
(6.10).

In view of (8.3), we now assume that Y = Y. Write X, = le for
each j.

(8.4) Let j, #J, € {Ji»--- i}, With X, , X, root subgroups of Y
corresponding to fundamental roots.

(i) If V is the (T, N Y)-root subgroup of Y opposite to X, , then
V=X

(u) [X* X J=1

Proof. (1) was established at the end of the proof of (8.3). It follows
from (i) that X} is a root group of Y corresponding to the negative of a
fundamental root. Since the difference of fundamental roots is never a
root we conclude that [ X}, X, ] = 1. So (ii) follows from (6.10).

(8.5) Suppose G, is a classical group and Y = SL(2, ¢”) or PSL(2, ¢/).
Then (8.1) holds.

Proof. Here U = X, for some 1 =i =<1 and by (8.4), Y = (X,, Xr).
Let D = (X,, X*). By (3.5), D is a reductive group and D =D, --- D, a
commuting product of a (o )-orbit of reductive quasisimple groups, each
generated by T-root subgroups of G. We must show that m = j and that

= SL(2, K) or PSL(2, K). Suppose m > 1. Then O” (D ) is isomorphic
to 07(D,), w), modulo centers. Also, X, =1I,(X, N D,). Replacing G by
D,abye”, X,by X, N D,, Tby(T ND,),=, and Y by the projection of Y
to D,, we may assume that G = ( X,, X*). Then Y < G,.

By (4.1) and (4.2) X, SOP(P) for P a parabolic subgroup of G,
corresponding to the stabilizer of a singular /-space of the usual module,
M, of the appropriate classical group. In view of (4.1) and (4.2), we may
assume that G, = PSp(2s, q), PSU(2s, ¢) or PSO* (2s, ¢)". In all cases
s> 1.

It will be more convenient to deal with the appropriate linear group
G, = Sp(2s, q), SU(2s, q), SO* (2s, q)’, respectively. Accordingly, we set
G, = Sp(2s, K), SL(2s, K), or SO(2s, K'). Then G is a covering group of
5 and universal except for the orthogonal group. We replace G by G, and
by G ;» in order to consider module actions. We retain the other
notation, viewing X; and T; as subgroups of G,, X, and T as subgroups of
5 Let M = K ® M, the natural module for Gl, where in the symplectic
and orthogonal cases the form is extended naturally.

5 Q
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From (4.2)(vi) and (3.4)(vi), we see that under the action of T;,, M
decomposes into the direct sum of the two inequivalent, irreducible,
T,-submodules, M, and M,, each of dimension s. Moreover, the stabilizer
in G, of M, induces on M, either GL(s, ¢), a subgroup of index ¢ + 1 in
Gl(s, ¢*), or a subgroup of index 2 in GL(s, q), according to G, =
Sp(2s, q), SU(2s, q), or SO™ (25, q)'.

We claim that ¥ = (X, X*) acts irreducibly on M. First note that
T, = N(Y) and by (5.1) Cr(Y) = Cr( X)) = CH(X)) = CH(G)) = Z(G)).
Therefore, (T, N Y)Z(G,) has index at most 2 in 7;. Using primitive
divisors we see that 7, N Y acts irreducibly on M, and on M,. Also, the
assumptions p =5 and ¢ > 5 imply that T, N Y contains an element, ¢,
inducing scalar action for different scalars on M, and M,. So if Y acts
reducibly on M, then Y stabilizes either M, or M,. But this is inconsistent
witht € TyN Y <Y (ast & Z(Y)), and the claim holds.

View M as a K[Ty]-module. Since M, and M, are inequivalent, and
irreducible as (T, N Y)-spaces, M is the direct sum of 1-dimensional
K[T, N Y}-modules affording distinct linear representations of T, N Y.
As T < C( T,), each K[T, N Y]-submodule is also a K [T]-submodule of
M.

Since [M, X,] and [M, X}] are (T, N Y)-invariant, it follows that

=[M, X,] ® [M, X*]. Wiite M|, =V, ®--- @V, with each ¥, an
absolutely irreducible K[Y]-module. Then, for 1 =k =r, V, =
Ve, X1 © [V, X*]. It follows (see (13.1) of [26]) that V, is isomorphic to
the extension (to K) of an algebraic conjugate of the usual module for
SL(2, ¢’). By the previous paragraph, each V, is T-invariant. Therefore, V¥,
is invariant under (Y, T} But ( X, T)= X,T and ( X*, T)= X*T. Hence,
(Y, T)= (X, X*Y= G,, and thlS shows that r = 1 and G, = SL(2, K).
But this contradicts s > 1, proving (8.5).

(8.6) Suppose Y = SL(2, ¢/) or PSL(2, g’). Then (8.1) holds.

Proof. In view of (8.5) we may assume that G, is an exceptional
group. As in the proof of (8.5) we reduce to the case G = ()_(_ X; ), Where

= (X, X0). Also Cy(X) = Cy(XP) = Crl( X, X)) < Crf(X, )
= Z(G) so replacing G by G/Z(G) we may assume that CT(X )
Thus Y = PSL(2, ¢/) and T, is cyclic of order ¢/ — 1 or (¢’ — 1). An
argument with primitive divisors shows that G has Lie rank j (observe that
the assumption p = 5 excludes the cases G, = Sz(q), *G,(q), or *F,(g)).

Let P be the unique parabolic subgroup of G satisfying 7'< P and
X; = O,(P) (see (3.5)(v)), and let P = P for P = P°, a parabolic sub-
group of G. By (6.4) T < P and we may assume B < P. We will consider
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possibilities for P, locate T in P and T in P, and indicate the element of
the Weyl group of P that does the twisting. That is we present ¢ = rq and
determine the orbits of 7 on root subgroups in R ( P). We can then
determine X;, X,, and ( X,, X*). Order considerations show G, = >D,(q).

First suppose G, = G,(q). Then P = (B, 5,) or (E, s, ), and we may
take 7=y, or s,, accordingly. Since |A,;|=2, X, = (U,, U;), where
{a, B} is one of {a,, a; + a,}, {a; + 30{2,20(l + 3a2}, {a;, a; + 3a,}, or
{a, + a,, a; + 2a,}. But X, is abelian, and the commutator relations
show this to be false in the first, third, and fourth cases. In the second case
(X, X*)=(U.,, [7-1./3>§ SL(3, q) (the group generated by all long root
subgroups), contradicting ( X,, X*) = G. So G = G,(q) is not possible.

For the rest of the proof of (8.6) and for the proof of (8.8) it will be
convenient to introduce the following table, which indicates possible
choices for G, P, 7, and 2. In each case the containment T;, < P limits the
choices for P (usually just one possibility) and we choose an appropriate
representative for r = w or 1 = wd with w € W(P) and § a graph auto-
morphism (only relevant in the case G =2E¢(q)). The choices for 7 are
based on the facts: T; is cyclic, minisotropic in P of order divisible by
1(q — 1), 7 has an orbit of length j on X, (recall that | 3,|=j) and
(X,, X*y= G. The latter fact implies that 1f S has roots of different
lengths then =, is an orbit of short roots. Otherwise, ( X,, X*) would be
contained in the proper subgroup of G generated by all root subgroups,
U with « long. Similarly, if P = (B, s i+ ig) (P has this form, even if
G =E,(q)), then each a € 2 must have a; -coefficient equal to 1. These
conditions eliminate many p0551b1htles for 2

TABLE (8.7)
G i T orbit representative of 3,
F,(q) 1 (5,55)(8552%) (none possible)
4 (835,)(83%) (none possible)
Ef(q) | 4 | 5,850 (none possible)
E(q) 2 5154565355 (none possible)
1111 11111
E;(q) 2 515456535557 00(1)000 ) 001 , i !
E(q) ) §1545¢ 55535557 00(1)0009 11}1111, 11%1000,
0011111 1232111
| |
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To complete the proof of (8.6) one simply checks (with a bit of
calculation) that in none of the cases is X; an abelian group.

(8.8) If Y = SU(3, ¢’) or PSU(3, ¢’), then (8.1) holds.

Proof. Write U = X, and Z(U) = X,, for i, k € {1,...,t}. Then
|=,|=2jand |2, |=j.Set P = (X,, X*) and P = P, N G,,. Flrstassume
that G, is a classical group. Then the structure of P is glven in (4.2). Using
the notation of (4.2) we first note that X; nonabelian implies r # 2s. The
result then follows from (4.2)(iv) and (4.2)(v). We may now assume G, to
be an exceptional group.

Arguing as in the proof of (8.6) we may assume G = ()7,., )7;“> and
passing to quotient groups, if necessary, we may assume Z(G) = Z( Gy) =
1. Also, Z(YT,) < Z(G) N T, =1, so YT, = PSU(3, ¢’) or PGU(3, ¢’),
and T, is cyclic of order g2/ — 1 or 1(g%*/ — 1). As in (8.6) we conclude
that G has Lie rank 2 j. This immediately rules out the case G, =E,(9)
and 3D,(q) is ruled out by order considerations (namely, | Ty | divides
| P).

Suppose G = G,(¢q). Then Y =PSU(3, q). The remarks preceding
Table (8.7) show that 2, = {B1, B,) for short roots B, B, € S and (6.7)
shows that [X, L X 1= [UB g 1=U, for vy € 3. The only possibility is
P= N-(U ), w1th v a long root. We may take T = sq, where s € N;(T;)
and s is in the derived group of the Levi factor of P.Thens € C (( s U,,*)),
which gives s € Cg(( X}, X{)). Hence C;(s) =SL(2, g). On the other
hand, s normalizes ( X;, X}*) = Y, since s normalizes T;, X;, and X}. So s
induces a graph automorphism of Y =PSU(3, g), forcing C,(s) =
PSL(2, g). This is a contradiction. Therefore G, 2 G,(g).

The remaining cases are G, = F,(q), 2E¢(q), E¢(q), and Eg(q), where
we refer to Table (8.7). The first three are ruled out immediately. Suppose

G, = Eyq). Here |Z,|=j =4, so [X, X,] is the product of 4 T-root
subgroups of G. However, for each of thc possible orbits listed in (8.7) a
direct check with the commutator relations shows that [)?,., )?,.] is the
product of more than 4 T-root subgroups. This proves (8.8).

We have now proved (8.1) when Y has Lie rank 1 (noting that p =5
excludes Suzuki groups and Ree groups). Next, we establish (8.1) for
groups of Lie rank 2. We will use the following notation. For O a
representation of the abelian group 4 and n € Z, O" is the representation
given by O"(a) = O(a").

(8.9) Suppose Y = SL(3, ¢q”) or PSL(3, ¢/). Then (8.1) holds.
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Proof. Write U = X, X, X, with X, = [X;, X,], and regard these sub-
groups as irreducible F,[T;]-modules. Set g = p“. There are linear F, -rep-
resentations ¢;, @, ¢, of T, such that F; ®g X; = @7 D - DpP. “! Simi-
larly for X, X,. We have ( X;, X}) = (Xk, X*) (X, X*) SL(2, ¢7), so
by (8.6) each of (X, X*), (Xk, X¥), and (X, X?) is the commuting
product of a { a)-orbit of j copies of SL(2, K), each generated by a T-root
subgroup of G and its opposne Write X, = UB - X U;g, X, =
U X - ><U and X, = UB ><U By(67)wehave[X,,Xk]-X,

Let Z = Z(YTO) and let z=yt€E Z with y € Y and ¢ € Tj,. Then
yEC(YNT,)=YNT,by (28). So Z=T,. Passing to YI/Z and
applying (2.7), we conclude that Ny (Y N 1) = Ny(Tp) = Ng(T). Since
Ny(Y N Ty)is transitive on the (7, N Y)-root subgroups of Y, we see that
2,, Zk, and 2 are conjugate under N—(T) In particular, the roots in
3, U3, UZ, are all of the same length. Consequently, we may choose
notation so that[U/,] U 1= Us, _

Let ¢, ¢, @ be the K-representations of T afforded by U,;, UY], Us,»
respectively restricted to T,. The commutator relations show that (p:,b =40.
It follows from (5.1) that we may assume ¢ = <p, Y= (pk, 0 = ok We
claim that [T, B, Y] 1, for r > 1. Otherwise, [UB,U 1= Us for 8 =B,
+v,. Then 67 = @Y7 and since gy = 0 we obtain @“=y°, for

=g '—1and v=¢q"' — ¢°"'. This implies (¢*)* = (¢})*. Let T;
= T0 O ( X,, X*), a Cartan subgroup of (X;, X})=SL(2, ¢’). If ¢, and
¢, denote @, | T, and g, |, respectively, then computation within Y yields
@, = (¢ 2)7 for some 0 < ¢ < gj. Therefore, ()% = (¢ >*™*)* and so
@227 = 1. But this contradicts | §, |= ¢/ — 1, proving the claim.

Transforming the commutator relation of the previous paragraph by
powers of ¢ and using (8.4)(ii) we obtain the following commutator
relations:

() [0, U1 = Gy, for 1 <r <jj.
(i) [U.p, Uyl =1, for r #sin {1,...,j}.

Forl=r=<jlet 5, = <[_]tﬁr’ 1757’);Then 5, = SL(3, K) or PSL(3, K),
and the above relations give (D,, D] = 1 for r #s. Since (X, X*)=
D, - - D, the proof of (8.9) is complete.

(8.10) Suppose Y is a non-trivial image of Sp(4, ¢/) or G,(g”). Then
(8.1) holds.

Proof. The arguments are similar to those in (8.9), although slightly
more complicated. We consider only the (more difficult) case of G,(g’).
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Let a, B be fundamental long and short roots of the root system of Y, so
that the complete set of positive roots is {a, 8, a + B, a + 28, a + 38,
2a + 3B}. Say X; and X, are the (7T, N Y)-root subgroups of Y corre-
sponding to « and B, respectively. Let X,, X, X,, and X, correspond to
the compound roots a + B, a + 28, a + 3B, 2a + 38, respectively. Then
[X,, X,]= X, X,X,X,, s (6.7) implies that [ X}, X,] = X, X, X, X,.

Write A, = {Uﬁ’ . %} where UB UB’ ..,U,— U" Similarly,
write A, —{ . U}Setq p° andregardeachofX X X,X,X,
and X, as agj- d1mens1ona1 F,[T;]-modules. As in (8.9) we choose hnear

F [T, ] representatlons 0is Oys 0, 0y 0, 0, so that F, ® £ X =
of ®---®of" for l € (i, k, r,s,t,w}). We may assume that ok, of are
the K-representations that 7; induces on UB , U ,» Tespectively, and we may
assume[UB, 17 1

From the commutator relations for G,(g”) it follows that there exist
a,By,Sen,u,vE{l aj} andthato—o”o,{’ o, = oo}’ ,o,=
oF 0", and o, = 02""0,31'

Suppose [Up, U,] # 1 for 1 <I<. Then o¥(0? ™YK = ((07"0f")")K,
((0F'02")1™)K, ((o? 03”")" )X, or ((03P'03")1")X, for some 0 =m <j — 1.
There are elements ¢, v € T, N Y such that o,(z) = o (v) =1 (ie, 1t €
C(X,), v € C(Xy)) and |o,(v) |=|0(t)|= ¢/ — 1. If I = 1, evaluate at ¢
and v and conclude that the first possibility must hold and a = 8. Now
suppose / > 1. Evaluating at ¢ we again see that the first possibility must
occur and we obtain the congruence ¢'~' = p°q™ (mod p* — 1). Evaluat-
ing at v we have 1 = p°q™ (mod p% — 1), contradicting the other con-
gruence. Therefore, [UB , 7] =1 for each /> 1, and transforming by
powers of ¢ we have (X, X;) a central product of the groups
(I_JI;,I R (Lfﬁ, - By(84)(11) [UB’ _Y]—lfor1<g,h<], and
by (86) [Uﬂ, ﬂ] ~1[ LU Wl i 1<g#h<1 So letting D, =
<U+B , UJ,Y ) forl=g=<j, we have (X, X, , X*) equal to the central
product of the semisimple groups D,,. .,Dj.

The group lz has as its root system a rank 2 ' subsystem of =. On the
other hand, (X, X,)= (U, U, )X --- X<, U,) and (X, X,) has
nilpotence class 5. This forces D, to be of type GZ(K ) (it also forcesj = 1,
since G, is not a sub-root system of any other indecomposable system).
Since {D,,...,D;} is an orbit under (o), we have proved (8.10).

(8.11) Suppose Y is a non-trivial image of SU(4, ¢/), *D,(q’), or
SU(5, ¢/). Then (8.1) holds.

Proof. We will discuss the most difficult case where Y is an image of
SU(S, ¢’). Here U is the product of four root subgroups, X, X, X, X,,,
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where X; and X, are fundamental, { X;, X*)= SL(2, ¢%/), (X, X})=
SU(3, ¢7), X, is a conjugate of X;, and X,, a conjugate of X,. In addition,
each of X; and X, is a (7; N Y)-root subgroup. Say X, = X, and
X! = X,. Then each of X, X,, X,, X,,, X,, and X is a T-root subgroup of
G.

View X, and X, /X; as 2aj-dimensional F,[7;]-modules, where g = p°.

There are linear F.-representations ¢ and 1.[/ of ]}, such that F 2, ® X, =

p? D - Dpr and Fpo ® (X /X;) =47 @ - ©yr™. L t A,
{U;;, ,Up,} and A, = { ..»U, }. We may assume that ¢*, x[/K are
the K-representauons of T 1nduced on UB, Uy, respectively. We have
[X;, X,] = X,X,, (computation in Y) and so (6.10) implies [X,, Xk] =
X,X We relabel if necessary o that [L;, U J# 1 and for 1 =/=<j,
U,3 UB. "and U U o'

Let §, w be llnear F.-representations of T such that F. ® X,
F. ® (X, /X,,) are the sums of the Galois conjugates of §, w respectively.
Computations in Y imply that there exists a such that we may take
w = @y”". From the relation [ X, X,] = X/, we see that for some 8, y we
must have §¢?° = (&' *9)?" = (@y?") PP,

Suppose [(7/8.’ Uy[] # 1. Then by the above (px{z"l—l is a Galois conjugate
of one of 8§, w, w' 9", By the previous paragraph each of §, w, &' "9’ can be
expressed in terms of ¢ and . Make this substitution and consider the
resulting relation between powers of ¢ and . There exist elements ¢,, ¢, of
T, such that

o(t) =y(1,) =1 and lo() |=19(5) |= (¢ — 1)/ (5.9 + 1).

Substituting ¢,, ¢, into the above relations we see that such a relation can
hold only if the obvious equalities hold between powers of ¢ and powers
of . First substitute / = 1 and obtain ¢y = w and a = 0. Now let / > 1
and obtain a contradiction. Consequently [U;g U =1 for />1, and
transforming by powers of o, we conclude [UB , U J =1 for any u # v.
From (6.10) and the fact [X,, X,]# 1, we conclude that [X,, X, 7 1.
Therefore, [UB’ JF Lforl =v=2j

Consider the group D, = <U+B,’ 2y Usy, s Usp, ). The argument
of (8.9) shows that <U+y,U+yj+,) SL(3, K), with {y,,yjH} a funda—
mental system. By (8.6), [U_g,, Ut/?m] 1, and by (8.4)(ii) [UB, 1=
[U_ po U J=1lforl =u,v=2j

We claim that B, and y, are roots of the same length. Otherwise, the
commutator relations applied to [)_(_i, X, ] = )—(—,X—m shows that either (py?)%
or (¢*¢)X is a component of one of the representations F,®(X,/X,)
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F,® X, or F, ® X, The previous computations show that this is impos-
sible, proving the claim. There are three classes of (7, N Y)-root sub-
groups of Y (under Ny(T, N Y)), with representatives, X;, X, X,. Since
<U+w +HJ) SL(3, K) we conclude that the roots in 2 Uz, U 2 U
2, Uz, U 2, are all long roots. Hence <U+B.’ +yl) SL(3 K)=
(U ey Us B+1> We can now apply (2.13) and conclude that D, is an
image of 4,(K) w1th fundamental set {8y, vy, ¥,415 Bj+1}-

Let D, = D?", for 1 <i <j. Using the aforementioned commutator
information together with (8.6) and (8.8) we have ( Dl,. .. ,Dj> =

-+ D,, a central product. Thus, (8.1) holds, completing the proof of
(8.9).

(8.12) If Y has Lie rank at least 3, then (8.1) holds.

Proof. Let B,,...,B, be a fundamental system for the root system of
Y, with Up,...,U; the corresponding (7, N Y)-root subgroups, corre-
sponding to the labeling of the Dynkin diagram of Y (see §1). For
i=1...,nlet Uy = X,. Then [ X, X, ] = 1, while [X] , X,]+# 1.

Fix 1 =i=n and write A, = {Uﬂl’ . UB }, where k; =j or 2.
Arrange notation so that U" =, for each 1<k< k Set Z =
(X,..... X, . Xr.. . X ). Inductively, we know that Z=Z, --- Z,
commuting product of a (o )-orbit of Chevalley groups and 01’ ( o)
(Uwpye--sUsp, )

First suppose that Y is an untwisted group. Then k; = j for 1<i<n
and we may reorder, if necessary, so that Z, = (U.. B3 Usp,_ ). By
(8.9) there exists a unique k such that U _,, does not commute with UB ,
and we may reorder A, if necessary, so that k=1.SetD, = (Z,,U. B >
Fori<n—-1[0,,]=1, so by (6.10) [X,,X,]— 1, hence [UB ,UB N
= 1. This together with (8 4)(ii) yields [U.. g Usp, ]=1 for each i<nm
— 1. By (8.9), <U+B w»Usp,,)=8SL(3, K), so we can apply (2.13) and
conclude that D, has the same Dynkin diagram as does Y. Moreover,
(8.6), (8.4), and induction show that D_l . D_j is a commuting product.
The result follows.

Now suppose Y is a twisted group. The argument is essentially the
same as above, although slightly more complicated. We have Z= Z -Z g
and Z = OP(ZG) =(U.g,...,U.p ). To illustrate the charges we con-
sider the case Y =2E(q’), leaving the remaining cases to the reader.
Here, n=4, Z=0(8,¢’Y and so Z = ---=Z;=D(K). Each
(T, 0 Y)-root group of Y is abelian, so X;,...,X,, are each the direct

a
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product of the root subgroups in A,,...,A,, respectively. Moreover,
|A|=]A,|=j, while | A; |=|A,|= 2. _ _ _

Labeling roots as before, we may assume Z; = (U.p ,U.g,,
(75” l7+33 ..). Here, o/ interchanges the groups (ﬁ+531> <U+Bg,+1>
stabilizes the other two groups, and induces a graph automorphism on the
Dynkin diagram of Z Now, X, = UB Xoeee X UB« . and by induction
we have the structure of ( X, , X, , X, , X, , )7,*, X; /). We may choose our
notation so that [Uﬁ ,UB ] # 1. Set D = (U+B“, Zz, U+B4 ,» and argue,
using (2.13) and commutator 1nformat10n that Dl =F (K ) The argu-
ment is then completed by settmg D,= D! “for 1<i<j—1 and
observing that (D,,...,D, )= . D a central product. This completes
the proof of (8.10).

Theorem (8.1) follows from (8.6)—(8.12).

9. A technical result. In this section we apply the results of §7 and
§8 and establish a technical result that will be useful in §10. Continue the
assumptions p = 5 and ¢ > 7.

We introduce the following notation which will be used throughout
the rest of the paper. H Y is a Tj-invariant subgroup of G, set Y(T;) =
(X|X,<Y)and ¥(T,) = (X, | X,< Y).

Throughout the section we let Y < G with Y=Y and Y/O,(Y) a
central product of groups of Lie type in characteristic p. Let T, be a
p’-Hall subgroup of a Sylow p-normalizer of Y. Then T\0,(Y)/0,(Y) is a
Cartan subgroup of Y/0,(Y). This forces Cy7(T)) to be solvable and we
choose a p’-Hall subgroup, T,, of Cy7(T)). Then T, = T|. We call T, a
Cartan subgroup of YT,

(9.1) (i) T, is a maximal torus of Gy;

(i) Y= XT,) = OP(Y(T ))sand YT, = YTo;

(i) Y(T,) = Y(T) and Y(T,)T, = Y(T,)T, where T, = C(T,)° (the
maximal torus of G containing T});

(iv) T, can be chosen so that there is a 7,-invariant subgroup J < Y
and Y is the semidirect product Y = O,(Y)J and JT, = JT;;

(v) T, is a p’-Hall subgroup of a Sylow p-normalizer of YTj,.

We remark that a missing item in (9.1) is the assertion Y = Y(Tj,). At
this stage we do not even have G, = Gy(T,); that is we have yet to
establish the fact that G, is generated by its Tj,-root subgroups.
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The rest of this section concerns the proof of (9.1). We first show that
(i) holds, noting that this is just (7.2) in case O,(Y) = 1. So suppose
O, (Y) # 1 and let P be the canonical parabohc subgroup of G with
0 (Y)=R (P) and Nz(O,(Y)) = P. Then P is o-invariant and (6.4)
shows T <P. Let L be the Lev1 factor of P, with respect to the maximal
torus T. Set J =L NYR(P). Then J < O"'(l:,) =L and J is a Ty
invariant commutmg product of groups of Lie type in characteristic p.
Now let Tl be a Cartan subgroup of J and T = CJT(T) By (7 2), T2 is a
maximal torus of G,. But JR (P) = YR (P) 1mphes that T2 and T, are
conjugate by an element in R ( P),. Hence (i) holds.

Let T, = CAT,)°, a maximal torus. We claim Y = Y(T}) =
07 ((Y(T,)),)- Let ¥, and V, be Sylow p-subgroups of ¥ normalized by T,
and such that Y = (V, V,). The argument of (7.5) applied either to Y7
or to YT,R (P),/R (P), (according to whether or not O0,(Y) = 1) shows
that 7, = N(V;) N N(V,). By (6.9), V, and V, are each products of 7,-root
subgroups of G, and V, = V(T) fori=12.As Y= (V,,V,) we have
Y=Y(T,). f O,(Y) = 1, let K=G,andif O O,(Y) #1let P be as above
and K the Levi factor of P containing T,. So K K°.

If 0,(Y)+# 1, embed each V; in the unipotent radical of a (o)7,-
invariant parabohc subgroup of P and use (5.1) and (5.5) to conclude that
V(Tz) < P, for i = 1,2. Moreover, in this situation, each 7, »-Toot sub-
group of P is contained either in Ru(P) or in K. It follows that V(T,)
= 0,(Y)(T,)(V(T,) N K) for i = 1,2. By (6.10) O,(Y)(T,) is normalized
by V(T,) N K for i =1,2. Therefore, Y(T,) = 0,(YXT)Y(T,) N K),
and this also holds if O,(Y) = 1. Since V; = O(Y)(V,; N K), fori = 1,2,
Y N K complements O ,(Y). Hence, (8 1)(111) shows that Y(T,) =
OF( Y(T2) ). This proves the claim.

Set J = Y(T,) N K, J = 07(J,), and X = YT,. Then Y = Y(T,) =
0,(Y)J, a semidirect product. The Frattini argument gives X = YNy(T,)
= O,(Y)JNy(T}). Now, J = J(T,) is the group generated by all T,-root
subgroups of Y whose opposite root group is also in Y. Since N,(T,) <
N(T,), we conclude that Ny(T,) normalizes both J and J = J(T). Thus,
JN(T,) is a group and normalizes JT,. As JNy(T,) complements O,(Y),
we may replace 7; by a Y-conjugate that lies in JN(T}). In parncular T,
normalizes a maxial torus, T3 T3 , of J’ T2 Then T;, = N(G, N (T) ) s0
(6.3) implies Ty = G, N (T;),. But then (2.8) implies Ty < Cx(T;)° =
Hence, T = T; and JT, = JT. Then (2.5) implies JT, = JT,. Now Y—
7T,) = 0°* (Y( T,),) = O,(Y)J, therefore YT, = YT,, completing (ii).

From the above, Y = O,(Y)J, a semidirect product, and JTy = JT,.
This proves (iv). From ¥(T,) =0 (Y)(T )J and the fact that J’ T,=JT,
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we conclude Y(TZ)T2 Y(T2)T We next prove Y(Tz) = Y(TO) Let D
=0,(Y)(Ty), so that D, = O(Y), by (6.9). Earlier arguments imply
D < Y(Tz) so D < Y(T,)T, = Y(T,)T. Thus, T(o) normalizes D, and
since D, = O,(Y) we again apply (6.9) to conclude D = O, (Y)(TO) So it
will suffice to show J = J(T,) = J(T,). We have JT2 = JT, so each
component of J is T-stable and generated by certain T-root L subgroups of
G. If a € T, and if the T-root subgroup U, is contained in J, then X, < J.
Hence X, < O”(J ) = J. This shows J < J(TO)

For the other containment, suppose X, < J. If X, is a p-group, then J
contains a T(o) -invariant parabolic subgroup P with X, <R (P) Then
R (P) is the product of certain X,, 1 =/ =1t and (6.9) implies X =R (P)
Hence X <J.

Now suppose X; is of Lie type and defined over F.. Let C be a
o-invariant maximal torus of X T contained in a o-stable Borel subgroup
of X,T (see (2.9) of [25]). Set C = G, N C,. Then C N X, is a Cartan
subgroup of X;, while C is a maximal torus of G,. Moreover, X,T, = X,C
by (2.5). Therefore C = X, T, = JT, and replacing T; by C in the above we
conclude C < JT, = JT. Each C-root subgroup of X; is a p-group, so the
argument of the last paragraph gives X, <J. Therefore, J(T,) <J, and
(iii) holds.

It remains to prove (v). We have seen that 7, =< N(V)), so (v) follows
from this and (ii). This completes the proof of (9.1).

II1. THE MAIN THEOREMS

10. Classification. In this section and the next we complete our
analysis of subgroups of G invariant under a maximal torus. We show that
any such subgroup arises from a subset of 2. However, to carry out the
proof, we must invoke the classification of finite simple groups. Let K
denote the list of simple groups; the alternating groups, groups of Lie
type, and the 26 sporadic groups (see (11.1)). At one point we will need
the fact that any Tj-invariant simple section of G is isomorphic to a group
in K. Very little information about groups in K is actually required for the
proofs of the main results, but the author sees no way to avoid an
application of the classification theorem.

The fundamental result is (10.1) below, while (10.2) provides extra
information, which follows fairly easily from (10.1) and previous results.
To state (10.2) we require the following terminology and notation. For a
subset A C Zlet D= (U,|a €Ay and A = {BE Z| ;= D}. We say A
is closed if A = A, in which case we write D = G(A T). If A is a closed,
(o )-invariant, subset of =, we set G(A, T) = O7(G(A, T),).
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Throughout this section and the next we make the standing hypothe-
sis that p > 3 and ¢ > 11.

THEOREM (10.1). Let Y be a T-invariant subgroup of G.
() ¥(Ty) Q ¥ and (T )= Y(T)T;.
(i) Y(T) = 07 (X(Tp),)-

THEOREM (10.2). Let Ty < Y < G. Then

() O,(Y) 2 V(Ty) and Y(T,)/OLY) = E(Y/O,(Y)).

(1) Y(T;) is the semidirect product of O,(Y) and a Ty-invariant sub-
group J = J(Ty), and J is a central product of groups of Lie type over
extension fields of ¥,. Also, O,(Y) is a product of T-root subgroups of G.

(i) If T, is any maxzmal torus of Gy with T < Y, then Y(T,) = Y(T)),
Y(T,) = X(T)), and Y(T))T, = Y(T))T,.

(iv) There is a maximal torus T, of G, such that T\ <Y and Y =
Y(T,)Ny(T)). ~

(v) There is a unique { o )-invariant, closed, subset A of 2, such that
Y(T,) = G(A, T) and Y(T,) = G(A, T).

We will first show how to derive (10.2) from (10.1). So suppose

To =< Y and that the hypotheses and conclusions of (10.1) are satisfied. Set
= {a] U, < Y(Ty)). Clearly A is (o)-invariant, closed, and Y(T;) =
G(A T). Hence, Y(T;) = G(4, T) This gives (V).

By (2.5) Y(T) =R (Y(T )L, where L = L° is T-invariant and L is
semi-simple. Then (R (Y(T,))), = O (Y(Ty)), J = O0”(L,) is a central
product of groups of Lie type over extension fields of F, and Y(T;) =
O(Y(T))OP(L )- By (6.1) O,(Y) = Y(T;), so O(Y(T)) O0,(Y) and
(u) holds.

Since ¢ > 11, J = E(J) and so (10.1)(i) implies ¥(7;)/0,(Y) <
E(Y/O,Y)). Suppose equality fails to hold and let X/O/(Y) =
C(Y(T,)/0,Y)) N E(Y/O,Y)). Then [X, T;] = X, while (10.1)(i) im-
plies [X, T)] = Y(T;)T,. This forces [X, T;] = O,(Y), whence
O,Y)T, < I, where I = XT,. The Frattini argument implies I =
O,(Y)N|(Ty). Now, T50,(Y)/O,(Y) = Z(1/0,(Y)) and T, N O,(Y) = L.
Therefore, N(T,) = C,(T;) = T; by (2.8). But then I = O,(Y)T, a con-
tradiction. This proves (i).

Let T, be a maximal torus of G, with T; =< Y. Replacing T; by T; in
the above we have Y(T,)/0,(Y) = E(Y/O,(Y)), so Y(T}) = Y(T;). Let
T; be a Cartan subgroup of J and T, = C;(T;). By (9.1) T, is a maximal
torus of G, with L= J(T) = J(T,). Also, the proof of (9. .1) showed
J(T)T J(T)T, where T2 CAT,)°, a maximal torus of G. By (9.1)
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and (25)(iv), JT, = G, N (J(T,)Ty), = Gy N (J(T)T), = JT,. Since T,
<J(7}))T = Y(]B)T we have T =< N(Ru(?(]})))). From (6.9) and the fact
l_{_u(}—;(%))_a = 0,(Y) we conclude R ( () = O,(Y )(T;), and this proves
W(T,) = U(Ty).

The results of the last paragraph yield Y(T;)T, = Y(T,)T,. Since T; is
a Cartan subgroup of J we have Y = Y(7,)N,(T;). Now Ny(T;) normal-
izes C(T;) N Y(T,)T, and this group is solvable with 7, as a Hall
p’-subgroup. So the Frattini argument yields Y = Y(T,)N,(T,). Notice
that this gives (iv). In addition, the factorization shows Y < Nz(¥(T;)T;)
(since Y(T;) < Y(T, »))- In particular, T, =< N( Y(T )T ) so by (5.16) of [25]
T, normalizes a maximal torus T of Y(T )T By (6.3) we have T, = (T4)
N G, so (2.8) implies T is the unique maximal torus of G containing T;.
Therefore, Y(T )T2 = Y(T )T4 so (2.5) implies Y(7,)T, = Y(T,)T,. By the
above, Y(T,)T, = Y(T,)T, and Y(T;) = Y(T,) = Y(T;). Hence, Y(T))T,
= Y(1,)T;. Replacing T, by a Y(T,)-conjugate we may assume J7, = JT,.
Now replace T, by T, in the previous argument to get Y(T,) = Y(T)).
Hence Y(T,) = Y(T;) and this establishes (iii), completing the proof of
(10.2).

The rest of §10 and all of §11 concerns the proof of (10.1). Toward
this end suppose the result false and let G, be a counterexample of least
order for which (10.1) fails for some pair (7, Y). Then Z(G,) = 1. We
may assume T, < Y (otherwise replace Y by Y7;), and among all such
groups Y choose one with | Y| minimal. In other words, if T is a maximal
torus of G, and T, < Y, where | Y, |<| Y|, then (10.1) holds for the pair
(T}, Y)).

For X a finite group, let E(X), denote the product of all components
of X that are of Lie type in characteristic p.

(10.3) Suppose X is a proper, T,-invariant, subgroup of G, and
X/0,(X) = E(X/0,(X)),- Then (10.1) holds for the group XTj,.

Proof. Let T, be a p’-Hall subgroup of a Sylow normalizer of XT,. By
(9.1)(1) T, is a maximal torus of G,. By (9. 1)(iii) X(T) = X(T) and by
(9.DG1) X = 0”(X(T2) )= OP(X(T},) ). Since [ X, T;] = X, for any T-
root subgroup of G we have (T;*) = XT,. Therefore it remains to show
X = X(T,).

By (9.1)(iv) we have X = O,(X)J, a semidirect product, where J is
Tyrinvariant, JTy, = JT, and J = E(J),. By (6.1) O,(X) is a product of
T,-root subgroups, so we may assume X =J. By (7.1), T; contains a
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maximal torus of each component of X, so we may also assume X to be
quasisimple. Then (8.1) shows that X is defined over F,, for some j and
X(T) is the commutlng product of a (o )-orbit of j seml-s1mple groups,
say X(Tz) = D Let X, = O?((D,),,), a group of Lie type over F ”
having 4 = X N(T ﬂD 1),; as maximal torus. From the minimality of
| G|, (10.1) holds within X, and applying the result to the A-invariant
subgroup X, of X, we have X, = X(4). So X, is generated by its 4-root
subgroups (corresponding to (o )-orbits of (T ﬂD 1)-Toot subgroups of
D,). Using the fact that the map x, - xoxg - - xJ’ "is a surjection from
X, to X and mapping A-root subgroups of X, to T,-root subgroups of X
we have X = X(T;), as required.

(10.4) (i) Y # G,.
(ii) If O(Y) = 1, then E(Y), = 1.-

Proof. Suppose Y = G,,. Then (10.1) holds if Y(T;)) = G,. So Y(T;) <
Gy, and we set Y, = Y(T;)T, < Y. Minimality implies that (10.1) holds for
Y,. However, Y(T,) = G and Y(T,) = Y(T,) # O?(G,). This is a con-
tradiction, proving (i).

For (ii), suppose that 0,(Y) = 1 and X = E(Y), # 1. By (i), X < G,.
If X, is any Tj-root subgroup of G, then [ X;, T,] = X, (use (7.1), (5.5), and
(6.8)), hence X, =< (Tj%). So if we can show (7Y )< XT, then (7.1)
implies (7)) )= XT, = (T;*), and (10.3) shows that (10.1) holds for XT;,
and hence for Y. Since we are assuming this to be false, it will suffice to
show (T}V) < XT,,.

Let T, be a Cartan subgroup of X and let D = C,(X). The Frattini
argument shows Y = XN, (7)) and, of course D < C(T}) < Ny(T)). By
(72), T, = Cxy(T)) is a maximal torus of G,. By minimality of | Y|,
(10.1) holds for the group N, (T,), which contains the torus 7,. Also,
(10.1) holds for the groups DT, and Cy(T;), each of which contains 7,. So
applying (10.1) to DT, we have one of O(D)+# 1, E(D),#1, or
T, < DT,. As D 97, the first two situations are out. Hence T, < DT,.
Considering Aut( X ), we see that Cy(T))/D is a solvable p’-group. There-
fore, applying (10.1) to Cy(T;) we conclude 7, < Cy(T)). From (6.3) we
have T, < Ny(T;), and this proves XT, < NXy(T;) = Y. Now, (9.1)
shows XT, = XT,, so {T;Y )< XT,, as required.

(10.5) O,(Y) = L.

Proof. Suppose T, < Y = G and O,(Y) # 1. By (3.9) of [4] there is a
canonical parabolic subgroup P < G,Y with O(Y) = O,(P) and
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N4(O,(Y)) < P. In particular T, < P. By (64) P=G,YN P,, for P a
o-invariant parabolic subgroup of G containing 7. Write P = VL(T N P),
where V' = O,(P) and L is the derived group of the Levi factor, L(T N P),
of P.If L=1, then Y= 0,(Y)T N Y) and (10.1) follows from (6.9).
Since Y is a counterexample to (10.1) we have L # 1.

Set T, = T, N L, a maximal torus of L. One checks that the Tj,-root
subgroups of L are just the T-root subgroups of G that are contained in L.
Let ~ denote images in LV/V and set Y, = Y N VL. Then Y,(T,) < ¥,
and (Th) = Y(Ty,) Ty, (by minimality of | G, |). Set A/V = Y(T;,) and
X=YNA4. Then XY and X/O/(X) = E(X/0,(X)),. Also,
XT,, 97, i

Let T, be a p’-Hall subgroup of a Sylow p-normalizer of XT,. By
(9.1)(i) T, is a maximal torus of G, and (9.1)(ii) implies X7}, = XT,.

We claim XT;, < Y. First note that O,(X) = O,(Y) = O,(Y,), then
argue as in the proof of (10.2) that X/O,(Y) = E(Y,/0,(Y)). This shows
X <Y. Let V, be a Sylow p-subgroup of X with T, < Ny(V,) = D.
Suppose D < Y. Minimality of | Y| implies D(7,) < D and (T)=
D(T,)T, < D. As Y/Y, is an abelian p’-group, D(T,) < Y,. Also, Y =
XN,(V,) = XD implies XD(T,)T, < Y. Now D(T,) < LV and D(T}) is
generated by (T, N L)-root subgroups of L. Hence [D(T,),(T, N L)] =
D(T,) . On the other hand, X(T, N L) = XT,, < Y,. Therefore, D(T,) < X
and so XT, = XT, = XD(T,)T, < Y, as required. Suppose then that D =
Y; thatis X = V.

Let y€ Y. Then V|Tj, and V Ty, are normal in Y, and so
(N Ty, ViT$) = V| F, where F is a p’-group normalizing T,. Also, F is
generated by T;,, and T’ for some v € V;. Applying (6.3) to the maximal
torus Ty, of L, we conclude F = Tj,. As y was arbitrary, VT, < Y. So
Y = VNy(Ty,) which shows V,Cy(Ty,) < Y. But (2.8) implies Cy(Ty,) <
V(TNY), and V(TNY)<Y. Since XTI, =VI, =V(TNY)N
G, < Y, the claim is proved.

By the claim X7, = XT, < Y, so Y = XN,(T,). By (10.3) X = X(T;)
and by (6.1) X = X(T,). If E is a T,-root subgroup of G or a Tj-root
subgroup of G, then [E,T,]=FE or [E, T,] = E, respectively. Hence
X = Y(T,) = Y(T,). These remarks and (10.3) show that (10.1) holds,
which we have assumed false. The proof of (10.5) is now complete.

(10.6) Suppose F*(Y) = Fit(Y). Then

(i) F¥*(Y) is a p’-group;

(i) If Y, < Yand Y\T, < Y, then Y, < N(Tj,).
(iii) 7 normalizes no non-trivial p-subgroup of Y.
@) ¥ =(T).
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Proof. (i) is immediate from (10.5). Suppose Y, < Y and Y, 7, < Y.
Minimality of | Y| implies that (10.1) holds for Y,T;. Therefore, either
O,(Y)) # 1, E(Y)), # 1, or Y, < N(T;). By (i) the first possibility is out,
and our hypothesis rules out the second possibility. Therefore Y, < N(T;),
establishing (ii).

For (iii), suppose T; normalizes the non-identity p-subgroup, D, of Y.
Then R = FX(Y)DT, is solvable. By (6.1), R = O,(R)Ng(T;). Since
Cy(FXY)) = FXY) = O,(F*(Y)), we have O,(R) = 1 and D =< N(T,).
But then [ D, T;,] = 1, against (2.8). This gives (iii).

Finally, let ¥, = (7;¥) and suppose Y, < Y. Then Y, < N(T,) by (ii).
Therefore, T, = Fit(Y;) < Fit(Y). By (6.1) T;, < Fit(Y'), and (6.3) implies
T, QY. However, with T, 9 Y, (10.1) is a triviality, whereas we are
assuming it false. This is a contradiction. So ¥, = Y and (iv) holds.

(10.7) Suppose F*(Y) = Fit(Y'). Then F*(Y) = O/(Y) for some prime
r # p.

Proof. Suppose X = F*(Y) = Fit(Y) and X = O,(X) X --- X
0,(X), where p,,...,p, are distinct prime divisors of | X| and /> 1. By
(6.1) X=N(Ty),so[X, )] =T, N X. If T, N O,(X) = 1 for some i, then
[Ty, (X1 = T, N 0,(X) = 1 and 0,(X) = Cy(Ty) = T (by (28)). But
(10.6)(iv) shows Y < GO, whence O, ( X ) =< TN G, = T,, a contradiction.
Therefore, T, N O,(X) # 1 for i = 1,...,I. Suppose Ty < X. Then for
yE€Y,T¥ <X =< N(T,), so Ty = T, by (6.3). Hence T, < Y and (10.6)(iv)
gives the contradiction Y = T;,. Therefore, ] <T N X<T. Also, X is a
p’-group by (10.6)(i).

Fori=1,...,l the groups 0,(T,) and O,( X) normalize each other.
Hence, they commute. Set Y, = (O, (TO)Y) Then Y, <Y and Y, <
C(0,(X)). Suppose that for some 1 <i </we have ¥;T, < Y. By (10. 6)(ii)
Y, = N(T,), hence 0,(T;) = Fi(Y;) = Fit(Y) = X. Let C; = Cy(0,( X)).
Then O,(X) = C, <1 Y and T; < Y,C,. By (10.6)(iv), Y = Y,C; and since
Y, <N(T)and Y =(Ty') we have Y = C,T; = C/(0,/(T;)). Since both C,
and O,(T;) centralize Z = 0,(T;) we conclude Z < Z( Y).

Since O0,(T;) #1 we choose 1#z € Z and consider the group
Cs(z)= Y. Let D,,...,D; be the components of Cs(z). Then D, - --
D, T, 9 C;(z) with quotient group isomorphic to a subgroup of the
center of the universal covering group of G, (see (2 9)). Since Y = (Tj}),
Y=D, - DT, and we have Y = TY, where ¥ =Y N D, Dk If
1=j=<k, let Y. {4, ED|dgEonr some g €D, - D -+ D,}.
Then Y is a group and essentially the projection of ¥ to D, (note that the
pro;ecuon is not defined since the product may not be direct). Then
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Y=<VY,---Y, and I,ND,= }A’jforl =<Jj =k. Also, T, N D; is a maximal
torus of D), for 1 < j < k. Minimality of | G, | implies that (10.1) holds for
each of the containments T, N D, < Y =D,

We conclude that for 1 < < k one of the following hold: O (Y) # 1,
E(Y) # 1, or T,ND; 3 Y Since O (Y)=1= E(Y) we necessanly
have]})ﬂD<1onr1<]<khencel—(ToﬂD) (T, D)< Y.
By (2.8) T,=D, ---D,T, N C(I), so Y<N(T) We then have 7, < Y
=(T), so T = Y, a contradiction. We have proved that Y,T;, = Y for
1 <i=</ In particular, Y/, is abelian for 1 <i</ Set Y= N!_ Y,
Then Y/Y is abelian, so ¥ = (T;Y)= ¥YT,. However, ¥ < Cy(X) (as
Y, = C(0,(X))). Therefore, Y<X, Y= XT, = N(T,), and as Y =
(T,Yy=T,, this is a final contradiction.

(10.8) F*(Y) # Fiy(Y).

Proof. By way of contradiction, suppose F*(Y) = Fit(Y). By (10.7),
X =Fiy(Y) = O/(Y) for some prime r and r # p by (10.6). As in the first
paragraph of the proof of (10.7) we have 1 < T, N X < T,. Also, X <
N(Ty), so O,(T;)) = Cy(X) = X, and we conclude that Tj is an r-group.

Fix y € Y with Ty # T, and set Y = O(Y(T,, T¢). If ¥ <Y, then
minimality of | Y| shows that (10.1) holds for ¥. However, C,(X) < X
implies that E(Y), = O,(Y) = 1. Therefore, T, < Y. But (6.3) implies 7,
is weakly closed in its normalizer, whence 7y = T;, a contradiction.
Therefore, Y = ¥ = O(YXT,, T9).

Let A=TyNX, B=Ty NX, and V= (A, B). Both of A, B are
normal in X. If 4 N B # 1, then (T, Ty’ ) < C(A4 N B) so we can choose
1#z€ANBNZ(Y). Then Y < C,i(z) and the argument of (10.7)
gives a contradiction. Therefore, 4 N B = 1. This shows that V =
(A,B)y=AXB. Also, [V,)1<[X, I I=XNTy,=A=<V, so T, <
Ny (V') and similarly Ty < Ny (V). Hence V' < Y.

If t €T, then [X, ¢,¢t] <[A4,t] = 1. Therefore, ¢t centralizes each
Y-chief factor contained within X. But the intersection of the centralizers
of such chief factors is an r-group and hence X. Therefore, " € X and
Ty = XN T,=A. If (TY)" contains an element, j, of order r?, then for
t € T, we have [t", j] €[4, B] = 1. As VT, has nilpotence class 2 we
conclude 1 =[¢", j]=[¢, jI" = [¢, j']. That is, j* € Cy(Ty) = T, con-
tradicting 4 N B = 1. Therefore, T, and hence 7j,, has exponent at most
r2.

Say G has Lie rank 7, so that | Ty |= 1f(q), where f(2) = I ®,(?) and
2 @(d;) = n. By (2.4)(iii) | T |= (g — 1)" = 4(12)". As an abelian group
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T, has rank at most n (see (2.3)). Therefore, | T, |< (r*)* and d = (12 /r?)".
As d=<n + 1, we have r > 2. Also, X/A is isomorphic to a subgroup of
W, so n = 2. If r = 3, then the inequality forces ¢ = 13 and consideration
of primitive divisors leads to a contradiction. Therefore, r = 5.

Suppose G is an exceptional group. Then 7 || W| implies W is of type
Eg, E,, or Eg. If r =5, then | Wl, =r, r, r?, respectively, while if r = 7,
| W|, =1, r, r, respectively. In any case, r < 7. If | W|, = r, then X/4 =
Z,s0X=V=Z XZ and Y/X = SL(2, r). But then | Ty |= r?, against
| Ty|= 4(q — 1)". Therefore, r = 5, W is of type Eg, and | X/A | divides
r2. If |A|=r? then | B|=r? and X = 4 X B is elementary of order r*.
So Y/X=<SL@4,r), |Ty|<r*r*=5% again contradicting |Tj|=
W(g—1D"=(12)°% If |A|=r, then | X|<r’ and one argues | Tp|=<r*,
impossible. So G is not an exceptional group.

Therefore, G, is a classical group (*D,(g) is out as r || W| and r = 5)
and we let M be the natural module for the appropriate covering group,
GO, of G,. Let T, be the preimage of T, and B a Sylow r-subgroup of the
preimage of B. Write M = M, © - - - ® M,, a decomposition into irreduci-
ble To-irreducible submodules. If GO 2 SL(m, q) then M has a non-degen-
erate bilinear form and we can arrange M,,...,M, so that for some k </,
M,,...,M, are non-degenerate, while each of M, ,,...,M, is totally
singular. Moreover, M =M, L --- 1M, L (M, ., ®M,_ ,)L--- L
(M,_, ® M,), with T, inducing contragredient representations (con-
tragredient followed by a field automorphism, in the unitary case) on the
pairs {M,,, My 5},....{M_;, M;}. Set Ny =M, OM,,,... . N=
M, , © M,, where j =3(I— k). We now have M =M, L --- L M, L
N, L --- LN, and for G, = SL(m, q), M = M, ® - - ®M,, considering
j=0.

We claim that Tj, is not cyclic. Otherwise, 4 = Z, and T, = Z .. Then
Aut(T;) has Sylow r-subgroups of order r, which implies X/4 = Z,. Thus,
X=V=Z XZ and Y/X = SL(2, r). But then Y splits over V, forcing
T, = Z, X Z,, a contradiction. This proves the claim, which implies / > 1
and G, = PSL(2, q).

Next we show that k +j =2. If £k +j =1, then fb is cyclic, con-
tradicting the preceding paragraph. So k +j=2. If kK +j=3, then
letting T be the maximal torus in GL(m, q), Sp(m, q), SO=(m, q), or
GU(m, q) containing T, we have the Sylow 2-subgroup of T of rank at
least 3. Thus, the Sylow 2-subgroup of T, has rank at least 2, which forces
| Ty | to be even. However, T is an r-group and r =5. So k +j = 2, as
desired. Accordingly, write M = M’ @ M"”, where each of M’ and M" has
the form M, or N,.
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The representations of T, on M’ and M” have different kernels
(otherwise T, would be cyclic) and each of M’ and M” is either irreducible
or the sum of two inequivalent f})-submodules. So M is the sum of at most
4 pairwise inequivalent, irreducible, Tj-submodules, and since B < N(Tj)
and r = 5, B necessarily stabilizes each of these irreducibles.

Let I < M be an irreducible T;-submodule of M such that [T} |,, B|,]
# 1. Say dim(I) = d. Then T, |; can be regarded as a subgroup of the
multiplicative group of the field F s (F >« in the unitary case) and B
induces field automorphisms on T ] I Therefore r|d. On the other hand,

® ,(q) divides the order of T |;» so let s be a primitive divisor of ®,(g). As
d>?2, we have s||T;|, whence s = r. However, d is the order of g,
modulo s, so d|s — 1. We now have r|d and d|r — 1, which is absurd.
This contradiction proves (10.8).

(10.9) If Ty < X and (10.1) holds for X, then E(X) = E(X),.

Proof. As (10.1) holds for X, (T5*) = X(T;)T,. Let J be the product of
those components of X not contained in E(X),. Then [Ty, J]=J N
X(Ty)T, < Z(J). The 3-subgroup lemma then shows [T, J] = 1. But this
gives J = C;(T,) = T,, a contradiction.

(10.10) (i) FX(Y) = E(Y);
(ii) Z(E(Y)) = 1; and
(i) E(Y), = 1.

Proof. By (10.5) O,(Y) = 1, so (10.4) shows E(Y), = 1. Also, (10.8)
implies F*(Y) # Fit(Y), so X = E(Y) # 1 and 1s a product of compo-
nents, none of which is of Lie type in characteristic p. If X7, < Y, then
minimality of | Y| and (10.9) gives a contradiction. Therefore ¥ = XT;,.

To prove the result it will suffice to show Fit(Y) = 1. By (6.1) we
have T, < Fit(Y)T,, (recall O,(Y) = 1), hence [T;, Fil(Y)] = T, N Fiu(Y)
=A.1f 4 =1, then Fi(Y) = C(Ty) N Fi(Y) = T, N Fi(Y) =4 = 1,
as required. Suppose 4 # 1. Then 4 < Fit(Y) < C(X) and so 4 < Z(Y).
Fix 1 # a € A and consider the embedding Y < C;(a).

Since T; centralizes no component of Y, X = [T, Y] and this implies
X =D, - Dy, where D,,...,D, are the components of C;(a) (see (2.9)).
By (7.1), T, N D, is a maximal torus of D,, and we may reorder, if
necessary, so that Y, = [T, N D,, Y] # 1. Argue in D, with the subgroup
Y (T, N D,), using minimality of | G,| and (10.9) to obtain a contradic-
tion.
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(10.11) Let X = F*(Y). Then Y = X7, < Aut(X) and either X is
simple or X is the commuting product of two T,-conjugate simple groups.

Proof. Let X, be a component of Y and {X,,...,X,} the orbit of X,
under 7;. By (10.10)(iii), £(Y), =1, so minimality of | Y| and (10.9)
imply Y = X, - -- X, T,. By (10.10)(ii), each of X;,..., X, is a simple group.
Suppose k > 1.

Let T, = Np(X,), so that T, = N(X,) for i =1,...,k. Let r be a
prime divisor of k and let ¢ be an r-element of T;, with | ¢T, |=r. If t" = 1,
consider the group C,(¢)7;, and obtain a contradiction (using minimality
of | Y|). Hence, ¢” # 1. From order consideration we have r || X, |, so it
follows that r divides |4 |, where 4 = C,(¢"). Write A = A4, - - - A, with
A,=ANX,i=1,... k.

Apply (10.1) to the group AT. Let C/0,(4) = A(T;)/0,(A). Then
CTy< AT, and C=C,---C, where C;=CN X, for i=1,...,k. If
C > 0O,(A), then by (9.1) T, contains a maxial torus of C. However,
NG =T,Nn X =1 (otherwise T, =< N(X;)). Therefore, C = O,(4)
and O,(A)T, < AT,. Let 1 #a, € 4, with |a,|=r. For g€ T, — T,
a; 'af € X, X§ N 0,(A)T,,. So, modulo O,(A) this element centralizes T,
and it follows that X = X, X§. This proves (10.11).

At this stage in the proof of (10.1) we consider the possibilities for
X = E(Y). This is where the classification of finite simple groups becomes
relevant. Write X = X, or X, X X,.

(10.12) X, = A,,, for m = 5.

Proof. Suppose X, = A,,. First we rule out the case X = X, X X,.
Otherwise, let ¢t € T, — N(X,) with ¢ a 2-element. Then X| = X, and
j =1t € N(X,). Soj acts as an element of S, on each of X, and X, and
we set A, = Cx(j), for i = 1,2. Then A, = Aj. The structure of 4; is
determined from the cycle decomposition of j. From (10.1) we conclude
T, < A,A,T,. So for 1 # a, € 4,, a;'a! € [4,4,, T,] < T, < C(¢). This
forces | a, |= 2; hence 4, is elementary abelian. From the known structure
of A4,, we conclude m <5 and | T, |< 8. But X; X X, < G, forces n = 2,
and we obtain a contradiction from (2.4). Therefore, X = X.

Let & = {1,...,m}. Since Y < Aut(X) and since the order restric-
tions on | T, | force m > 6, we have Y =4, or S,,, and T;, acts on . We
claim Tj is transitive on §£. Otherwise, we can write & =Q, U Q,, a
disjoint union of Tj-invariant subsets. By minimality of | Y| and (10.9) we
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have |Q;|=<4 for i = 1,2, hence | 2 |< 8. By considering subgroups of
L,(q) we see that n =2, and so order restrictions (see (2.4)) lead to a
contradiction. Therefore, Tj, is transitive on £, and as T, is abelian, Tj is
regular. In particular, |T,|=m. If m is not a prime, write & = {,
U --- U, a disjoint union, corresponding to a system of imprimitivity
for T; on Q. Then T stabilizes a subgroup ¥ isomorphic to Ag X - -+ X4g .
If | 2, |> 4, then the minimality of | Y| and (10.9) (applied to V'T;) gives a
contradiction. Suppose |, |< 4. Then VT is solvable, and since p =5,
we conclude from (6.1) that / = 2 and V is an elementary abelian 2-group.
That is, | 2, |= 2 and m = 4, a contradiction. Therefore, m is prime. Also,
Thy=2,, T,<X=FXY), and Ny(Ty)/T, is cyclic of order 3(m — 1).
We use this information in order to get a numerical contradiction.

Suppose G, is a classical group. Let G be the appropriate linear
group acting on the natural module M, and let T be the prelmage in G of
T,. With notation as in the proof of (10.8) we have M = M, ® --- © M, if
GAO;SAL(n,q), while M=M, L --- LM LN L-.-- L N, otherwise.
Here T, stabilizes each of the subspaces, acts irreducibly on each M,, while
each N, decomposes into two f})-invariant totally singular subspaces. If G
denotes the full linear group (GL(n q), GU(n q), Sp(n q),or SO~ (n, q))
and T the maximal torus of G contammg Ty, then T =T, X --- X T} if
G, =SL(n,q),or T=T, X -+« XT,, X Ty X -+ XT,, j otherw1se, where
the appropriate subgroups act on the corresponding M, or N;, and are
trivial on all other parts of the decomposition.

Now, T, has prime order. If G, is a symplectic or even dimensional
orthogonal group, say dim(M) = 2n, then | Tl /| Ty | divides 4, and since
q = 13 we conclude that k + j = 1. It follows that N (7;)/T; has order at
most 2n. If G0 = 0Q2n + 1, q)’, we get the same conclusion, although
here one of M,’s has dimension 1 and T induces Z, on this factor.
Suppose GO = SL(n, q). Then f‘l is cyclic of order g™ — 1, where m; =
dim(M;). This forces k <2 and if k = 2, then one of M, and M, has
dimension 1. So here N;(7;)/T; has order n or 2n — 1. Similarly, if
G0 = SU(n, q) we have N;(T,)/ T, of order at most 2n. Thus, in all cases,
| Ng(T5)/ Ty | < 2r, where r is the Lie rank of G. This gives the inequality,
2r> i(m—1), or 4r+ 1=m. Also, m =%(qg — 1)" = 1(12)" (by (2.4)
and d =r + 1. Hence, (4r + 1)(r + 1) = 127, a contradiction. This shows
that G, is not a classical group.

Let G, be an exceptional group and G of Lie rank r. Then }(m — 1)
divides | W|, while m = 1(q — 1)" = 412". Considering the possibilities
for | W| we obtain a contradiction.

(10.13) X, is not a group of Lie type in any characteristic.
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Proof. Suppose that X, is of Lie type and defined over F,, where
go = r® and r is prime. By (10.10)(iii), » # p. Minimality of | Y| and (10.9)
shows that Tj stabilizes no subgroup J < X with E(J), # 1.

Suppose r divides | T, N X|. We first claim that Tj is an r-group.
From (3.9) of [4] it follows that there is a canonical parabolic subgroup, D
of X, with O(T, N X) = O,(D). Then T, = N(D) and minimality of | Y|
implies that (10.1) holds for DTj,. Since O0,(DT;) = O,(D) = 1 and since
E(DTy), = E(D), =1, we must have T, < DT,. In particular,
[0.(T}), O(D)] = O.(T;) N O(D) = 1. Then [D, O(Ty)] =D N
C(0(D)) N 0,(T,) = 1. In particular, O,(T;) centralizes a Borel sub-
group of X, and checking Aut( X) we see that O,(7;) = 1. This proves the
claim.

Let U € Syl (X) with T, < N(U). Then N,(U)T, is solvable and, as
above, Ty < Ny(U)T;,. Suppose X = X, X X,. Thenr =2. Lett € T;, —
N(X)) and a; € Ny (U N X;). Then a;'al = [a,, t] € T, = 0,T,), from
which it follows that g, = 2. Also, a; 'a! € T, and T, abelian implies
U N X, is abelian. But then, X, = SI(2, 2), a contradiction. Therefore, X
is simple. Since Tj, < Ny(U)T,, [Ny(U), T, T,] = 1, and consideration of
T, = O(T,) = Aut(X) yields T, =< U. Let D, be any proper parabolic
subgroup of X with U < D,. Then minimality of | Y| yields T, < D,. If
X = PSL(2, q,), then letting D, vary, we conclude 7, < X, a contradic-
tion. Therefore, X = PSL(2, q,), and N,(U) < N(T;) forces | T, |= g,.
Also, Y = X and N,(T,)/T, is cyclic of order g, — 1/(2, g, — 1). At this
point we have the same situation that existed at the end of the proof of
(10.12) (set m = g, but allow for the fact that 7; may not have prime
order) and this led to a numerical contradiction. We conclude that 7;, N X
is an r’-group.

Suppose 1 # t € T, N X and consider C = C,(¢). Let ¢t € I, a maxi-
mal torus of X. By (2.9), there are commuting groups of Lie type,
D,,...,D,, over extension fields of F, such that D, - -- D, is normal in C
with quotient isomorphic to a subgroup of the center of the universal
cover of Y. If E(C) # 1, we contradict the minimality of | Y'|. Hence,
E(C) = 1. Consequently, either D, ---D,J=1or q,=2 or 3 and D, =
SL(2, q,), PSL(2, q,), SU(3,2), or PSU(3,2), fori =1,...,L

Suppose one of the latter cases occurs and set J =[D, ---D,, Tj].
Then J<D,---D,NT,<O0,(D, ---D,) (as T, is an r’-group). Also,
J<D,---DT, Since T, is abelian, J N D, < Z(D,) for any i with
D, =812, 3) or SU(3,2). For such an i, [T}, D,, D;,] <[Z(D,), D;] =1,
and since D; is generated by r-elements, [7;, D;] = 1. But then D, <
Cs(Ty) = T, whereas Tj is an r’-group. We conclude that D, = PSL(2, g,)
or PSU(3,2) for i=1,...,/. Normality of J in D, ---D,T; and the
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previous commutator argument shows that J = O,(D, - - - D,). In particu-
lar, there are root subgroups 4, =4, =Z, of Y such that PSL(2, ¢,) =
(A,, A,)< Cand E = 0,((4,, A,)) = T,. Let ¢, be a generator of E. As
above, E(C(t,)) = 1. This implies that Y has Lie rank at most 2. Since
X=<G, n=2, and |T,|= 312> = 48 (see (2.4)). As T, is an abelian
r’-subgroup of C,(¢) we obtain a numerical contradiction.

We now have D, ---D,J =1<1C. Let m be the Lie rank of the
overlying algebraic group of X,. Then | C| is bounded by the order of a
maximal torus of the universal cover of X, so (2.4) implies that | 7, N X |
=(go + 1) (replace g, by g, = /g, for the Suzuki and Ree groups).
Here we use the fact that if X = X, X X,, then Ty, N X, =T, N X, = 1.
Regarding T;,/T, N X as an abelian subgroup of Out(X) we have | T;) |<
(go + )™*? (again we replace g, by ¢, = /4o 1n the Suzuki and Ree
cases). This inequality also holds in case T, N X = 1.

We cannot have X, = Sz(q), L,(4), or U,(3). For the first two this
follows since T is abelian of order at least 48. If X, = U,(3), use (5.16) of
[23] together with the existence of an extraspecial 3-group in X, of order
3° to conclude that n =4. Then | T;|= ${12* contradicting the above
inequality.

Suppose M is a faithful module in characteristic p for a covering
group of G,. Using the main theorem of [18], the containment X < G,,,
and the above paragraph, we can obtain lower bounds on dim(M).
Excluding the Suzuki and Ree groups, we then have dim(M) = 3(g¢' — 1)
(in most cases this is too low, but for the symplectic groups in odd
characteristic, it is exact). For X = Sz(q,), 2Gx(q,), *F,(q,) we have
dim(M) =(40/2)"/*(qo — 1), qo(qo — 1> (40/2)'/?q5(qo — 1), respec-
tively. In what follows we use these bounds on dim(M) to obtain
contradictory inequalities involving | T; | . The contradiction is most easily
obtained for the three exceptional cases, although they must be considered
individually. We, therefore, leave these cases to the reader and present a
treatment of the remaining cases.

First, suppose G, to be a classical group and let M be the usual
module for the corresponding linear group. Then dim(M) <2n + 1. By
the previous paragraph, 2n + 1 = (g — 1), so n > 3(q") — 1. We then
have ‘the inequalities (g, + 1)"*2 =| Ty |=4(¢ — )" = 4(¢ — D)"!
> 1(12)/948)~2_ This yields 288(q, + 1) 2 > 12(/9), When m =2
and g, = 5 this is impossible. Moreover, if g, = 3 or 4, then m < 2, while
if g, = 2, then m < 4. Suppose m = 1. Then the inequality forces g, = 25.
Considering subgroups of PSL(2, ¢), we see that n = 2. But then | Tj |
= 112" = 48, contradicting T, < Aut(X). Therefore, m =2 and it fol-
lows that g, = 2, 3, or 4. Also, m = 2 in the latter cases.
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We treat these cases separately, using the inequality () (g, + 1)™*?2
=|T,|= 4(¢g — 1)" = 12". Suppose g, = 4. Then 2n + 1 = 4(gf' — 1) >
7, so n = 4, which contradicts (*). Suppose g, = 3. Then m = 2 and X is
simple. For the moment, exclude the case X = PSp(4, 3). The result in [18]
then gives 2n + 1 = dim(M) = 6. So n =3 and we contradict (*). If
X = PSp(4,3), then X contains the split extension of an elementary
abelian 3-group of order 3° and S; and O,( X) has class 3. However, G, is
a classical group with n = 2, and one checks that this forces » = 3. This is
a contradiction, leaving only the case g, = 2. Since Tj is an r’-group we
can improve the earlier bound to get | Ty|< (g, + 1)"*' =3"*1 If
m = 4, the bound 2n + 1 = 1(2™ — 1) forces n = 3, whence | T |= $123,
contradicting the above. If m = 2,3, then n =2 and we again have a
contradiction unless X, = PSU(4, 2) and n = 2. But PSU(4, 2) = PSp(4, 3)
and we have already observed that this forces n = 3.

At this point G, is an exceptional group, and, except for the case
G, = G,(q), these cases are easier than the above. Suppose G, = G,(q), so
that G, has a 7-dimensional representation in characteristic p. We then
have the inequality 7 = dim(M) = 1(gy — 1), so ¢’ < 13.If g, = 2, then
as above, | Ty |< (g, + 1)™*" which forces m = 4 (as d = 1), a contradic-
tion. If g, = 3, then (*) forces m = 2 (X would be solvable if m = 1), so
X = PSL(3,3), PSp(4,3), or PSU(3,3). But then we can improve the
earlier bound on | Tj)| obtaining | Ty |< 2(g, + 1)”*', which contradicts
(*). Therefore, g, = 4, m = 1, and X = PSL(2, q,). This contradicts (*) (as
qo = 13). So G, = G,(q).

For the other exceptional groups argue as follows. In each case X acts
on a module M of dimension 27 if G, = F,(q), E4(q), or *E(q), dimen-
sion 56 if G, = E,(q), and dimension 248 if G, = Eg(q). These bounds
give easy contradictions. Details are omitted, but we illustrate with the
case G, = F,(q). Here dim(M) = 27 = (g’ — 1), whilen = 4 andd = 1.
As above we obtain a contradiction. This completes the proof of (10.13).

11. Classification (continued). In this section we complete the proof
of (10.1). In view of the classification theorem and (10.11)-(10.13) we
have X = F*(Y) a sporadic simple group or the direct product of two
sporadic groups interchanged by an element of 7;,. Our method is to first
show that Tj is T.I. set in Y, of odd order, and to use this together with
properties of the individual groups to obtain a contradiction. An effort
has been made to keep the number of special properties to a minimum,
avoiding an extensive list of references. For the most part we only need
the orders of the sporadic groups (Table (11.1), below) and the structure
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of centralizers of involutions (available in Table 1 of [2]). For certain
groups we do appeal to the literature for additional information. A
somewhat shorter proof could be obtained by citing a much larger number
of references, but this did not seem worthwhile.

Let n be the Lie rank of G. The containment X < G, certainly forces
n=2, whence |T)|=4(¢ — 1)"=48 (as d=<n+ 1). In the following
table we list the sporadic simple groups and their orders.

TaBLE (11.1)

X | X| X | X
M, 2%-3*.5-11 ON 2°-3*.5.7%.11-19-13
M, 2°-3%-5-11 Co, 22'-3%.54.72.11-13-23
M, 27-3%-5-7-11 Co, 2'%-36.5%.7-11-23
M,, 27-3%.5-7-11-23 Co, 2'°-37.5%.7-11-23
M,, 2%°-3°.5.7-11-23 F, 2'7-3%.52.7-11-23
J, 2°-3.5-7-11-19 F,, 2'%.38.52.7.11-13-17-23
J, 27.3%.5%.7 F,, 271.316.52.73.11-13-17-
J 27.3-5-17-19 23-29
J, 2%.3*.5.7.11-23-29- | Ly 2%8.37-5%.7-11-31-37-67
31-37-43 F, 2%.3%6.59.79.11%-13%- 17
HS 2°-32-5%.7-11 19-23-29-31-41-47-59-71
Mc 27-3%.53.7-11 F, 2%.38.56.72.11-13-17-19-
Suz 29-37-52.7-11-13 23-31-47
He 29-3.52.73.17 F,  21%.319.53.72.13.19-31
F, 2.36.56.7-11-19
Ru 2M.3%.5%.7-13-29

(11.2). If ¢ € T, is an involution, then T, = O,(Cy(7)) and Cy(¢) is
2-constrained.

Proof. The possibilities for C,(t) are presented in Table 1 of [2] and
in [17] for X = J,. Suppose Cy(¢) is not 2-constrained. We have T, <
N(E(C(t))), so minimality of | Y| implies (10.1) holds for E(C,(¢))T;.
The only possibility is X =J; or J; X J;, with ¢ inducing an outer
automorphism on each component of X. Hence, C,(¢) = PSL(2,17) or
PSL(2,17) X PSL(2,17), and g = 17. Also, T, N X =< Cy(¢), T, N X inter-
sects each component trivially if X is not simple, and | T, N X |= 12 (24 if
X 1s simple). Since Tj, is a p’-group, this is impossible. Therefore, C,(?) is
2-constrained. From (10.1) and the minimality of | Y| we conclude Cy(#)
=< N(T,), which forces T, = O,(Cy(t)).
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(11.3) (i) | T, | is odd.
(ii) X is simple.

Proof. Suppose | T | is even and apply (11.2) to obtain T, = O,(Cy(?))
and Cy(¢) 2-constrained for each involution ¢ € 7. Suppose X = X| X X,,
with X, = X}, for some y € T;,. The previous remarks show that each
involution, ¢, of T, normalizes X; and X,, and since y € O,(Cy(?)) we
necessarily have Cy(7) a 2-group (consider [a,, y] for a; € Cx(?) of odd
order). However, Table 1 of [2] and [17] show this to be impossible.
Therefore (ii) holds.

We know that Tj is a 2-group of order at least 48, and this forces
| T, | = 25. By Table 1 of [2] and [17] the only sporadic groups X having an
involution 7 such that O,(Cy(#)) contains an abelian subgroup of order 2°
are R,, Co,, Co,, F,, F;, F,, F,, J,, or F,. Moreover, in each case
0,(Cy (1)) has exponent at most 4.

Since | Ty |= 2%, T, has rank at least 3. From (2.1)(iii) we conclude
n = 3. Hence, | Ty |= 4(g — 1)" = § - 123 (recall, d < n + 1), and since T,
is a 2-group, | T |= 2°. Repeat the argument. Namely, 7; of exponent at
most 4 implies T, of rank at least 5. Therefore, n = 5 and | Ty |= ¢ - 12° >
2'°. Eventually, we obtain | T, |>| X |, a contradiction.

114 (@HX=7Y.
(if) Ny(T,) is the unique maximal subgroup of Y containing 7;,.
(i) TyisaT.I. setin X =Y.

Proof. X = Y by (11.3) and Table 1 of [2]. Suppose (ii) holds. If T, is
not a T.L. set in Y, then there exists y € Y — N(T,) with 1 # T, N T3.
Choose 1 # ¢t € T, N T3, so that Ty, Ty < Cy(¢). By (ii), Cy(¢) = N(Ty),
so (6.3) forces the contradiction T = Ty. Therefore, it will suffice to
prove (ii).

Let T, = M < X. We must show N(7,) = M. Suppose false, so that
minimality of | Y| implies that (10.1) holds for M. Therefore, either
O, (M) # 1 or E(M), # 1. Suppose E(M), # 1 and let D be a compo-
nent of E(M),. By (7.1) T, N D is a maximal torus of D, hence T; < N(D).
Then (7.2) shows that 7, = Cp, (7)) is a maximal torus of G,, where T} is
a Cartan subgroup of D. Let V" be a Sylow p-subgroup of D normalized by
T,. Then V is a product of T,-root subgroups of G, (use (9.1)), each of
which has order a power of g. If D = L,(g°), for some integer a, then T,
is necessarily of even order. But then | 7, | is even, and applying (11.3) to
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T, rather than to T;,, we have a contradiction. So D = L,(¢®) and
1(g* — 1) is odd.

Suppose | V'|= g and let T, = C5(T)°, a maximal torus of G. There
is a T,-root subgroup ¥ of G such that ¥ = V,. Then D is generated by V'
and the opposite T,-root subgroup of G,, and it follows that either
D =SL(2, q) or G, = PSp(4, q) and V is a root subgroup for a short root.
The first case contradicts | 7, | odd. In the second case, consideration of
Ng (V) shows that | T, |= 3(q — 1)? or 1(g* — 1), either way we again
contradict | T, | odd. Therefore, a > 1, and since 3(g* — 1) is odd, so is a.
Thus, ¢* || V| . Also, ¢ = -1 (mod 4) forces g to be an odd power of p and
p = -1 (mod4). From Table (11.1) we easily rule out all possibilities for
X. Hence, E(M)p =1.

We then have O,(M) # 1. Let J be a minimal Ti-root subgroup
contained in O,(M). Then |J|= q“ for some a = 1. If a = 1, argue as in
the above paragraph and contradict the fact that | 7;| is odd. Hence
a=2.

Suppose a = 2. ThenJ = X, for somei € {1,...,v} andX U X UB
for a, B roots of the same length. Let D = (U+a, U+B> Then D is a
T( o)-invariant rank two subgroup of G, so D= 0* (D,) is a perfect
central extension of one of the groups PSL(2, g%), PSL(3, ¢), PSU(3, q),
or PSp(4, g). By (7.1), T, N D is a maximal torus of D. Also, T, = N(J),
so T, N D is contained in a proper parabolic subgroup of D. However,
one checks that this forces | 7, N D| even, a contradiction. Therefore,
a=3.

From Table (11.1) we conclude that X is one of the groups Ly, F;, F,,
or F,. In the first two cases, J is necessarily of order 5° and a Sylow
5-subgroup of X. However, J is elementary abelian, while Ly contains
G,(5) (Lyons [19]) and F; contains a HS section (Table 1 of [2]), which
contains a Uy(5) section. This is impossible, forcing X = F, or F,. At this
point we appeal to (11.8) (which is proved independently of (11.4)) to
obtain a contradiction. This completes the proof of (11.4).

(11.5) G, has a faithful irreducible projective module M over a field of
characteristic p and satisfying
(1) dim(M) < 2n + 1if G, is a classical group;
(i) dim( M) < 8 if G, = G,(q);
(ii)) dim(M) < 27 if G, = F,(q), E¢(q), or *E((q);
(iv) dim( M) < 56 if G, = E,(q); and
(v) dim(M) < 248 if G, = E¢(q).
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Proof. If G, is a classical group use the natural module associated
with the corresponding linear group. If G, = G,(g), the containment
G,(¢q) = D,(q) implies the result. Each of the groups in (iii) is contained
in E¢(K). To obtain the module M, consider the group E,(K) and let P
be the standard parabolic subgroup whose derived group involves E( K ).
Then M = R (P) can be viewed as a 27-dimensional module for the Levi
factor of P. A similar procedure establishes (iv), while in (v) we let M be
the Lie algebra of G = Ey(K).

(11.6) () | Ty |= 4(q — )" =45 - 12",
(ii) If n = k, then | Ty |= 1/(k + 1)- 12,

Proof. By (2.3) | Ty |=4(¢ — 1)". Asd<gq + 1 and g = 13, we have
Wg— D" =g~ D/(g+ D)g— D' =512"71 = 412", which
proves (i). To prove (i) use the inequality |7, |=4(g — )" =
(1/(n + 1))12" and repeated use of the inequality (1/(/+ 1))(g — 1)’
> (g -1

(11.7) X is not a Mathieu group.

Proof. Suppose X is a Mathieu group. Regard X as a subgroup of M,,,
acting on a set  of size 24. Let A be an orbit of T;, of maximal length. Fix
a € A and set T;, = (T;),. By (11.3) | A} is odd and since T;, is abelian, T,
fixes each point in A. From | T,|= 48 we conclude T, # 1, and since
|A|=3, T, = M,; < Aut(PSL(3, 4)).

If | A|= 3, then | T} |= 16 forces 7|| T, | , whence T has an orbit of
size a multiple of 7. This contradicts the choice of A. Therefore |A|=5
and 7, must be contained in a Cartan subgroup of Aut(PSL(3,4)) = M,,.
Then | T, | divides 9 and | A |= 7. This forces | T} |= 3, whence | A |= 16,
impossible.

(11.8) X = F, or F,.

Proof. If X = F, or F,, then X contains a covering of E¢(2) (see Table
1 of [2]). By [18] any faithful projective representation of 2E4(2) in odd
characteristic has degree at least 3-2°. So (11.5) implies G is a classical
group and n = 3(3-2° — 1). Combining this with (11.6) we have | T |>
| X|, a contradiction.

(11.9) X & Mc or Co,.
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Proof. Suppose X = Mc or Co,. By (11.4)(ii) Ny(T;) is a maximal
subgroup of X, all such subgroups being determined in Finkelstein [11].
Now X acts faithfully on the Lie algebra, M, of G. Also, fis =< Mc = Co,
and Ay = GL(4,2). Decomposing M into eigenspaces for the central
involution of the /fs and using [18], we have dim(M) =2-7 = 14. This
implies n = 4 and so | T, |= 112*. The results in [11] yield a contradiction.

(11.10) X = HS.

Proof. Suppose X = HS. Then X is 2-transitive of degree 176, with
1-point stabilizer PSU(3, 5) and 2-point stabilizer an extension of SL(2, 5)
by Z.. Say X acts on & and A is a non-trivial orbit of T;,. For a € A,
T, = (1), stabilizes each point in A, hence 7, < SL(2,5) X Z; and
| T, |< 15. In particular, | T, |< 15-176.

If p 5, then using the containment PSU(3,5) < G, together with
[18] and (11.5) we have n =4. Hence, | T, |= 4(¢ — 1)" =+ -12% con-
tradicting | T, |< 15-176. So p =5, which forces ¢ =25 and |T;|=
1(q — 1)" = 1.24% = 263. Also, T;, has order prime to 5, so | T, |< 3? and
| A|>21. The lower bound on |7;| implies that each orbit of Tj is
non-trivial, of odd length, and of order greater than 21, but dividing | X | .
Table (11.1) shows this to be impossible.

(11.11) X 2 Ru or Suz.

Proof. Suppose X = Ru or Suz then X contains a subgroup (4 X R)D,
where Z, X Z, =R < RD =A,, D =< N(A), and A = Sz(8) or PSL(3,4),
respectively (this follows from Table 1 of [2]). Let M be a nontrivial,
projective, irreducible module for G, in characteristic p, and let G, be the
representation group for M.

Write M = C,,(R) ® [M, R]. We first show that [4,[M, R]] # 0.
Suppose otherwise. Using (3.3) and (8.10)(i) of [2] we see that there exists
x € X with R* < AR and R* N 4 < Z(X) = R* N R. Then AR = AR".
Since A is trivial on [M, R] we conclude [M, R*] =[M, R], hence equal-
ity holds. Therefore, CM(ﬁ) = Cy( R*), whereas R* induces a subgroup
of A on C,,(R) and, surely, [4, C,,(R)] # 0. Therefore, [4,[M, R]] # 0,
as asserted.

Suppose X = Ru. Then the main theorem of [18] implies dim(M) =
dim([ M, Ié]) > 8 and dim(M) = 14 in case Z(X) has odd order. If R is
not abelian, then Clifford’s theorem and Schur’s lemma imply that M
contains the direct sum of two faithful K [/i]-composition factors, hence
dim(M) = 16. If R is abelian, we can write [M, R] = M, ® M, ® M,, the



ROOT SUBGROUPS FOR MAXIMAL TORI 233

sum of three faithful irreducibles for 4, permuted transitively by D. Here
dim( M) = 24 and dim(M) = 42 if Z( X) has odd order. Apply (11.5) and
note that in (11.5)(iii)) the module corresponded to a 3-fold cover of
E,(K). We conclude that » = 7 and if n = 7, then G, = E,;(q) and d = 2.
Therefore, | T, |= 127, and this contradicts (11.3) and (11.4)(i).

Now suppose X = Suz and let M be the Lie algebra of G. Here X = X
acts on M and A does not centralize [M, R]. Also, [M,R] =M, ® M, ®
M,, where M|, M,, and M, are the fixed spaces of the involutions in R.
The spaces M,, M,, and M, are left invariant by 4 and permuted
transitively by D. It follows from [18] that dim(M) = 3 - dim(M,) = 45. If
G = F(K), we have a contradiction by replacing M by the module in
(10.5)(iii) (a module for the 3-fold cover of E (K)). Hence n = 5. Since
| Ty | is odd equality holds only if G, = PSp(10, g) or PSO™ (10, g)" with
| To|= %(q — 1)°. The only possibilities are | T, | = 1(¢° + 1) with ¢ = 13
or 17, or n = 6 and G, = PSU(7, 13). In each case we have a numerical
contradiction.

(11.12) X = J,.

Proof. We use (11.4)(iii) to conclude | T, |* <| X|. If n =3, then
| Ty |> 4127 and this is impossible. Thus, n = 2. A Sylow 2-normalizer of
X contains a Frobenius group of order 237. Therefore, any projective
irreducible for X in odd characteristic has dimension at least 7. By (11.5)
G = Gy(K), hence d =1 and | T;|= (¢ — 1)%. As | T, |* < X, this forces
g=19. As |T,| is odd, |T;|= @(q) or ®:(g), and one checks that
[Tl [19,] -

(11.13) X = J, or J;.

Proof. Suppose X = J, or J; and let ¢ be a 2-central involution in X.
By Table 1 of [2] we have C,(?) an extension of an extraspecial group of
order 2° by 4.

We first claim n = 3. To see this let M be a faithful K[ X]-module,
and write M = [M, t] ® C,, (7). As M is faithful each of the factors is
non-trivial, and they are both C,(#) invariant. Since O,(Cy(?)) is extra-
special, we have dim([M, t]) = 4. Now consider C,,(¢). Involutions in
0,(Cx(t)) are non-trivial on C,,(¢) and it is easy to see that such
involutions are conjugates of 7 (use Table 1 of [2]). Thus, O,(C(?)) acts in
a non-trivial manner on C,,(¢) and it follows from Clifford’s theorem that
dim(C,,(2)) = 5. Consesquently, dim(M) =9. Now SL(3, K') acts on its
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Lie algebra of dimension 8; G,(K) acts in 8 dimensions; while PSp(4, K)
= O(5, K actsin 5 dimensions. This proves the claim, and so | T | = §12°.

From Sylow’s theorem, we have the Sylow 7-subgroups of J, self-
centralizing while the Sylow r-subgroups of J, are self-centralizing for
r =17, 19. Since | T, | is odd, the above inequality shows | T, |= 3*-5% or
3°.5, according to X = J, or J;. However, (11.4) implies that | X : Ny(T) |
=1 (mod| T; |) and this is impossible.

(11.14) X = J,.

Proof. Suppose X = J,. We refer the reader to Janko [17] for proper-
ties of J,. If ¢ is a 2-central involution then O,(Cy(?)) is extraspecial of
order 2. So if M is the Lie algebra of G we have dim(M) = 2. Thus
n=6and|T,|=+125%

If P € Syl,(X), then by [17] P is self-centralizing for r = 23, 29, 31,
37, and 43. The Sylow 11-subgroups of X are non-abelian, so by Table 1
we have | T, | dividing 3°-5-7-11% This contradicts the inequality above.

(11.15) X = He.

Proof. Suppose X = He. From Table 1 of [2] it follows that X
contains a klein group R such that E(C,(R)) is a covering group of
PSL(3,4) with center R, and N,(R) is transitive on R. An easy argument
using [18] shows that a faithful projective K(E(Cy(R)))-module has
dimension at least 4-3 = 12. So (11.5) yields n = 4, hence | Tp |= % - 124

Since Ny(R) has a section isomorphic to PGL(3, 4), X has non-abelian
Sylow 3-subgroups. Therefore, 3*4| T;| . The Sylow 17-subgroups of X
are self-centralizing, so | 7;| is prime to 17. From Table (11.1) and the
above inequality we conclude that Oy (T) € Syls(X) or O,(T,) €
Syl,(X). Since 5 and 7 are divisors of | Cy(R)|, we may assume (by
(11.4)(iii)) that R < N(T;,). But then T, = (Cr(r) |1 #* r € R), whereas
Cy(r) = N(R) for each r € R* and | N,(R)| is not divisible by | T | .
This is a contradiction.

(11.16) X = Ly.

Proof. Suppose X = Ly. Let M be a module as given in (11.5). If
p # 5, then the containment G,(5) < X (see Lyons [19]) and [18] implies
dim(M) = 120. Hence n = 8, equality possible only if G = Ei(K) and
d = 1. It follows that | T | = 128 But (11.4)(iii) implies | T, |* <| X |, and
this is impossible. Therefore, p = 5 and ¢ = 25.
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Since p = 5, | T, | is prime to 5. As | T;, | = 48, and Sylow r-subgroups
of X are self-centralizing for r = 31, 37, 67 (see (3.3) of [19] or use Sylow’s
theorem), we conclude | T | divides 37-7- 11. By [19] there is an involution
J € X with Cy(t) = 4,,, the covering group of 4,,. We may regard Cy(¢)
as acting on M, and write M = M, ©® M,, where M, = Cy(t) and M, =
[M, t]. Each of M, and M, is non-trivial and considering the action of a
Frobenius subgroup of C,(f) of order 55 we have dim(M;) =35 for
i = 1,2. Hence dim(M) = 10, so (11.5) implies n = 4, with equality only
if G = F,(K) and d = 2. Therefore, | Ty |= $24* = 3*-2"". From the pre-
vious divisibility condition we have | T, |= 37-7- 11, whereas X does not
have abelian Sylow 3-subgroups. This is a contradiction.

(11.17) X = ON.

Proof. Suppose false. We quote O’Nan [20] for the following fact
about X. Namely, a Sylow 3-subgroup, 4, of X is elementary abelian of
order 3%, its normalizer being an extension of Qg © Dy by D,,. It follows
that each orbit of N(4) on A* has size a multiple of 40. Let X be the
covering group of X that acts on M. If A is abelian, then the above and
Clifford’s theorem implies dim(M) = 40. Thus, n =7 and | T, |= § - 127.
Otherwise, 4 contains an extraspecial subgroup of order 3°. Here, dim( M)
=9and 3 || Z( GO) | . The proof of (11.5), shows n = 6 with equality only
if G = E4(K). Hence, | T,|=}-12° But (11.4)(iii) implies | T, * <| X|,
and this contradicts Table (11.1).

(11.18) X = F,y, Fy,, or F,.

Proof. Suppose X = F,,, F,,, or F,,. Let M be a module as in (11.5).
We first obtain lower bounds for dim(AM). Suppose X = F,, or F,,. By
Table 1 of [2] there is an involution j € X such that Cy(j) = Cy(j) and

Cy(7)/{Jj)= Uy(2) or F,,, respectively. Let D be the derived group of the
preimage of C,(j) in a covering group of X that affords M. By Griess
[14], [15] we see that D contains an involution j such that jZ( D) =j (in
fact D = C,(j) if X = F,,).

Write M = C,,()) ® [M, j]. Clearly [M, j] affords a non-trivial
module for D. This is also true of Cu( N. For if D is trivial on CM( j)
then choosing j # j* € Cy(j) we find that j~ J* can be chosen so that j* J =7
and this is impossible. If X = F,,, then by [18] we have C,,( ]) and [M, f]
each of dimension at least 21, and so dim(M) = 42. If X = F,;, we have
C,, (/) and [M, j] modules for D, each non-trivial as before. Hence
dim( M) = 84. This also holds if X = F;,, since F,; < Fj,.
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If X=F,, then by (11.5) n=7, with equality possible only if
G = E,(K). Therefore, | T,|=%-(12)". On the other hand, (11.4)(iii)
implies | 7 |* < X, and this is a contradiction.

Now suppose X = F,; or F,,. If X is a classical group then by (11.5)
n = %(84 — 1) > 41. Hence | T, |> 75 -(12)*', contradicting | T, |* <| X]| .
So X is not a classical group, which forces G = Ey K ). From Table (11.1)
we have 23 || X | . However, 23 does not divide | Eg(q) | for 13 < g <47
with g # 23 (one checks this by noting that neither ®,,(q) nor ®,,(q)
divides | Eg(q) |). On the other hand 17 does not divide | Eg(23) | . There-
fore, | Ty | = 4(46), contradicting | Ty |* <| X .

(11.19) X = Co,.

Suppose X = Co,. Table 1 of [2] shows that some involution in X has
centralizer containing an extension of an elementary abelian group, 4, of
order 2* by GL(4,2) (natural action). It follows from Clifford’s theorem
that dim( M) = 15, where M is as in (11.5) (an easy argument shows that
we can regard 4 as acting on M). By (11.5), n = 7 if G is a classical group;
otherwise n = 4. Suppose G = F(K). By Table 1 of [2] we see that X
contains an elementary abelian group, E, of order 2'°. By (5.16) of [25), E
normalizes a maximal torus of G, and this forces the Weyl group of F,(K)
to have an elementary abelian subgroup of order at least 25, This is false.
So G = F(K) and we conclude from (11.5) that n = 6, equality only if
G = E4(K). It follows that | Tp|= % - 12%. Sylow’s theorem implies that
subgroups of X having order 11 or 23 are self-centralizing, so Table (11.1)
implies | T, | | 3°5%7. This is a contradiction.

(11.20) X 2= Co,.

Proof. Suppose X = Co,. We first claim that n = §, equality possible
only for G = Ey(K). Table 1 of [2] shows that there is an involutionj € X
such that Cy(j) = A X R = G,(4) X (Z, X Z,) and R¥ consists of con-
jugates of j. As in (8.6) and (8.8) of [2] there exists a conjugate R* of R
such that R* < AR, R* N A = 1, and R projects to the center of a Sylow
2-subgroup of A.

Let V be the Lie algebra of G and write ¥ = [V, R] ® C,(R). Then
[V, RI= V, @ ¥V, ® V;, where ¥, = [V, R] N C(j;) and R* = {j,, jp, jy}-
As in (11.11) we have [4,V;] # 1 for i = 1,2,3, so by [18] dim(V) =
dim{V, R] = 3-dim(¥;) = 3-60 = 180. The claim follows. Consequently,
| Tyl= (g — 1* = 12
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By (11.4)(iii), | T, |* < X, which by the above inequality is impossible
for g > 13. Hence, ¢ = 13. Now 13 has order 11 (modulo 23) and this
forces n = 10. But then, | T, |= #;(12)"°, again contradicting | T; |* < X.

(1121) X 2 F,.

Proof. Suppose X = F; and let V be the Lie algebra of G. If p 5,
then use (§4, II) of Harada [16] to conclude that X contains an extraspe-
cial group of order 5° and an element inducing Z, on the center of the
extraspecial group. Elementary arguments imply that dim(¥7) = 100.
Hence n = 7, equality possible only for G = E,(K) or C,(K). We then
have | T, |= 3(12)’, contradicting | Ty |* < X.

Suppose p = 5. Then ¢ = 5¢ for a = 2 and from (11.1) we have | T, |
dividing 3%-7-11-19. Since 19|| G, | , a primitive divisor argument shows
that if g = 25, then ®,(25) divides | G, | , for d; a multiple of 9. But then
e(d)) = @(9) = 6 and | Ty | = 5(24)%, a contradiction. For ¢ = 5° use the
prime 11 to obtain a contradiction, etc.

(11.22) X = F,.

Proof. Suppose X = F;. Then X contains a non-split extension of an
elementary abelian group of order 2°, by SL(5,2) (Thompson [27]). This
group has trivial multiplier, so (11.5) implies that » =7, with equality
possible only if G = E,(K). Hence | Ty |= (¢ — 1)".

If ¢ = 23, then this contradicts | T |* <| X| . For the remaining cases
argue as follows. Since 31 divides | X|, 31 divides | G;|. So there is an
integer d, such that 31 | ,(9) || Go| . One checks that d, is a multiple of
30, 30 or 15, according to ¢ = 13, 17, or 19. It follows that n = 8, equality
possible only if G, = E¢(g). Hence | T, |= (g — 1)® and this contradicts
| T, <| X

We have now considered all possibilities for X, completing the proof
of (10.1).

12. Some consequences of (10.1). In this section we derive some
consequences of (10.1) and (10.2). Throughout this section assume that
p>3and g> 11

THEOREM (12.1). The map X - )Z, is a bijection between the set of
closed, connected, o-invariant subgroups of G containing a maximal torus
and the set of subgroups of G generated by maximal tori of G.
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The above theorem will be a consequence of the next result which
gives additional information. In particular, the inverse of the map X — X,
is described. We first need some notation.

For a subset A of 2, let G(A, T) = (U, |a € A). If A =A% then
G(A, T) is o-invariant and we set G(A, T) = 07 (G(A, T),). For X < G,
let 2(X,T)=({a€3|U, <X}, and for X<G, set (X, T) =
Ux<x S,. If the maximal torus T is understood we abbreviate the above
to G(A), G(A), 2(X), and 2( X), respectively.

We say that a subset A of 2 is T-closed if A = A° = 3(G(A)). This
agrees with the concept introduced in §10. A final notation. For Y < G,
let G(Y,T) = G(Z(Y))- T, abbreviated to G(Y) when T is understood.
We can now state

THEOREM (12.2). Let Ty< Y < G. Then
(i) A = 2(Y) is the unique T-closed subset of 3 satisfying G(AT, QY.
(ii) G(Y) is independent of T;,. That is, if T, is a maximal torus of G
with Ty N G, < Y, then G(Y, T) = G(Y,T).
(iii) Y < N(G(Y)), T normalizes Y, and G(AT S YT.
(iv) If Y = T and if Y is generated by maximal tori of G, then G(Y, T)
is the unique closed, connected, o-invariant subgroup of G containing a

maximal torus of | G and having fixed point set Y.
MIf X=X =X°=T, then X = (TX), where X = X,.

It is clear that (12.1) follows from (12.2) and that the inverse of the
map X — X, is the map ¥ - G(Y). The next several results aim at the
proof of (12.2). First we characterize T-closed subsets of = at the G-level.

(12.3) A o-invariant subset A of = is T-closed if and only if S(G(A))
= A.

Proof. Suppose A = A°. First assume that S(G(A)) = A. Clearly
AC Z(G(A)) If A is not closed, then there is some (¢ )-orbit 3, of = such
that X, < G(A) and 3, € A. However, X, < G(A) implies X, < G(A), so
the assumption gives 2 C A, a contradiction. Therefore, A is closed.

Now assume that A is closed. Hence, S(G(A)) = A and we must
prove 3(G(A)) = A. Clearly, A C S(G(A)), so it will suffice to take
X, < G(A) and show X, < G(A). If X, is a p-group, then by (3.9) of [4]
there is a o-invariant parabolic subgroup P of G(A)T such that X, <R/(P)
and T, = P. By (6.4) we also have T < P. Therefore, R (P) is a product
of T-root subgroups of G and using (6.9), we have X <R/(P)=<G(A),as
required.
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Suppose X; is a group of Lie type and let 7, be a Cartan subgroup
G(A) (a p-complement in a Sylow p-normalizer). Then T, = Cgayr(T)) is
a maximal torus of G, (by (9.1)), and we set T, = Cx(T,)°, a maximal
torus of G. Then T, < G(A)T, < G(A)T and we claim that 7, normalizes
a o-invariant max1ma1 torus of G(A)T. To see this first use (5.16) of [25]
toget T, < N(A ), where A is a o-invariant maxial torus of G(A) Then
let A = A4,Z(G(A))° and check that 4 is a maximal torus of G(A)T. This
proves the claim, so by (6.3) and (2.8) we must have A= T;

Set Y = G(A) and note that G(A) < ¥(T,). Since G(A) < G(A) and
since each T,-root subgroup contained in G(A) is a p-group, the argument
in the second paragraph of the proof shows that Y(T,) < G(A). On the
other hand, (9.1) shows that Y(T) = Y(To) so we now have G(A) =
Y(T,). By definition, X, < Y(T), so X, < G(A) as required.

(124) Let T, = Y=G. Set A= 3(Y). Then A is the unique 7-closed
subset of 2 satisfying G(A)T, < Y.

Proof. Let A = 3(Y). By (10.1), Y(T,)T, Y and Y(Ty) =
OP(Y(T ),)- From the definitions we have Y(T) = G(A), so Y(Ty) =
G(A), which proves G(A)T, < Y. From (12.3), it follows that A is
T-closed. For if X, < G(A), then X, < Y and 2, C A. Hence A = 3(G(A)).

For the uniqueness of A argue as follows. Let @ C = with = Q° and
G(2)T, 2 Y. If X, is any T-root subgroup of G, then (T;%)= X,T, (see
(6.7) and (7.1)). So if X, <Y, we have X, < G(). This implies that
S(G(RQ)) = Z(Y). If, in addition, @ is T-closed, then (12.3) yields @ =
S(G(R)) = Z(Y) = A, and A is unique.

(12.5) Let T, < Y < G. Then
(i) Y =< N(G(Y));

(if) T =< Ng4(Y); and

(iii) G(Z(Y))T < YT.

_ Proof. Let A=3(Y)=Z2(Y,T). By (124), G(A)T, QY and A is
T-closed. As in the proof of (12.4) we have G(A) = Y(T;). Let T, be a
p-complement of the normalizer of a Sylow p-subgroup of Y(7;)T;. By
(2.1), T, is a maximal torus of G, so T, = Cc'(Tz)O is a maximal torus of
G.

By (10.2) and (9.1) we have Y(T,) = Y(Ty(T,). If D is any T,-root
subgroup of G, then (T2)= DT,. As (T} )< Y(T;)T,, we conclude that
Y(T;) = Y(T,), and hence Y(T;,) = Y(T5). From (9.1) we also have Y(T,)
= Y(T) and Y(T )T = Y(T,)T,. The Frattini argument yields Y =
Y(T;)Ny(T,).
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Since G(A) = Y(T,), we have G(Y) = X(T,)T = Y(T,)T,. By (2.5)
G(Y), = (G(A)T) = G(A)T and also G(Y), = Y(T,)T = Y(T,)T;,
where T, = (T5),.

As Y(T,) = Y(Tz) and N(7T,) SN(?(TZ)) N N(T_’z), we necessarily
have Y = Y(T,)N(T,) = N(G(Y)), proving (i). By the above, Y <
N(G(Y) ) = N(G(A)T) so this will prove (iii), once (ii) is proved.

Now, ¥ < N(G(Y)), so Y normalizes G(Y) = WT,))T = Y(T,)T;, =
Y(T,)T,. The group Ny(T,) also normalizes T;, so [Ny(T;), T;] <
T, 0 Gy =T,, and [Ny(T,), Y(T,)T,] < X(T,)T, = Y(T)T,. Letting ~
denote images modulo Y(7;) we use the above to conclude [Y~,T7] =
[Nv(T)”, T7]1 = [Ny(T,)" , T;1 = Ty = Y™ . This proves (ii) and com-
pletes the proof of (12.5).

(12.6) Let T, = Y = G. If T, is any maximal torus of G with T, =
T,NGy<Y, then G(Y,T)) = G(Y, T).

Proof. Let A=3(Y,T), so G(A)T, < Y by (12.4). Also, G(A) =
Y(Tp), by (10.1). By (10.2), Y(T;)/0,(Y) = E(Y/O,(Y)), so Y(T) =
Y(T,). Also, Y(T;) = G(A,T) and Y(T,) = G(A,, 7)), where A, =
3(Y,T,). By (12.5)@i1) Y normalizes G(Y,T) = G(A)T. In particular,
T, < N(G(A)T).

We claim that 7, < G(A)T, where T, = C(T,)°. Let Q = R (G(A)T)
and Z/Q the connected center of G(A)T/Q. So G(A)T/Z is semisimple
and (5.16) of [25] shows that T, normalizes a o-invariant maximal torus of
G(A)T/Z. So there is a o-invariant maximal torus 4 of G, with 4 < G(A)T
and T, < N(AQ).Let A = A_a and Q0 = Q,. Then T, normalizes (ZQ),, =
AQ and T,AQ/Q is a solvable p’-group. By Hall’s theorem T, is contained
in a Hall p’-group of T, AQ, so T, normalizes A*, for some x € Q. But A~
is a maximal torus of G, whence 7, = 4* N G, by (6.3). Then (2.6) gives
A* = T, and the claim is proved. Therefore, G( A)T G(A)T,.

Let = 2(G(A), T)) so that G(A) = G(, T,). Clearly Q is T,-closed
and G(&, T) = G(A). By (2.5)(iv), G(2, T)T, = G(A)T, 2 Y, so (12.4)
forces @ = 3(Y, T,). At this stage we have G(Y, T,) = G(Y, T), as de-
sired.

(12.7) Assume that Y is generated by G conjugates of maximal tori of
G. Then Y = X, for a unique closed connected, o-invariant subgroup X of
G such that X contains a maximal torus of G.

Proof. Let T|, T, be maximal tori of G with T, <Y =T,. Let
A, =2(Y,T) for i=1,2. Then G(A, T)T; <Y for i=1,2 (see
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(12.5)(iii)). By (12.6), G(Y, T,) = G(Y, T,), so taking fixed points (and
applying (2.5)) we have G(A,, T;)T, = G(A,, T,)T,. Fixing T, and letting
T, vary over all maximal tori of G contained in Y, we conclude that
Y = G(4,, T|)T, and this gives the existence of X.

Now suppose Y = X, with X closed, connected, o-invariant, and
containing a maximal torus 7, of G. We may take 7T, to be o-invariant. Set
T, =(T,),. Let A, =3(X, T,), so X= G(A,)T,. Hence G(A,) < Y and
Y/G(A,) is a p’-group. This implies that each 7)-root subgroup of G
contained in Y is actually in G(4,). That is, E(G(A ) = E(Y T)). But A,
is T,-closed. Thus (12.3) shows that A, = 3(Y, 7}) and then X=G(Y,T),
proving uniqueness.

At this point all parts of Theorem (12.2) have been established, with
the exception of (v). Suppose X is as in (12.2)(v) and let X = X,. By
(10.1), X(T)T, = (T¥) 9 X. Abo, X(T,) = O7(X(Ty),) = O7(X,).
Since X = 0?(X,)T, we have the result.

We close this section with some results on generation. From now on,
T is fixed. We thus delete mention of T and T from the earlier notation
and say A C 2 is closed if it is 7-closed.

(12.8) Let Q,,...,Q, be closed subsets of =. Then
(G(R)),....6(2))= 07((G(R),...,G (%))

Proof. Let @ = 2((G(Q)),...,G(2,))). Then G(2) = G(Y,) for i =
1,...,k and Q is closed. Let Y = (G(2)),...,G(L,)) and set A = 3(Y).
By (12 4) we have G(A)T;, < YT, and it follows that Y = G(A).

Suppose 2 C Q, for some i and j. Then X < G(2,) and X, = G(Q)
=Y, proving E C Z(Y) A. We conclude Q. CA for i=1,...,k.
Therefore, G(A) > (G(R)),...,G(R,)). Since A is closed (by (12.4)), we
have € C A. Hence, G(2) < G(A). On the other hand, G(2) = G(2,) for

=1,...,k, so G(Q)=(G(Q,),...,G(,))= Y = G(A). This proves
G(2) = G(A) = Y, which proves the result.

The following results extend (6.10) to arbitrary collections of 7-root
subgroups.

THEOREM (12.9). Let X; ,..., X, be T-root subgroups of G. Then

(Koo X,)= 0((Bn K,



242 GARY M. SEITZ

Proof. Set Y = (X, ,...,X, ) and A = Z(Y). Apply (12.4) to YT, and
conclude that Y = G(A) and A is closed For j=1,...,k, 2 CA, so

X = G(A) Therefore, 0”7 ({ X,,.. X)) = OP(G(A)) = G(A) =YY=
( .»X;,)- Since the other contamment is obvious, the proof is com-
plete

THEOREM (12.10). Let S be an arbitrary set of p’-elements of G. Then
(1) If G is simply connected, then (Gela):s € 8)=G, N

(C(s):s €ES).

(ii) If G is simply connected, then G, = (Cs(s):s €S) if and only if
G = (Cis5):5 €S).

(iii) If G = (C(5)°: s € S), then G, = (Cs(s5): s € S).

(iv) If S C T with T a maximal torus of G, then G, = { E(Cj ():se
S) if and only if G = (E(Cx(s)): s € S).

Proof. Set X = (Cs(s):s € Sy and X = (Cx(s5)°:s €S).Fixs€ S
and 7 a maximal torus of Gwiths € . Then I, = TN Gyand 7} = T N
G, are maximal tori of G, and G,, respectively. Let T be the unique
max1mal torus of G containing 7. Then T, < T, < Xand T < X.

Let C = Cs(s)° and C = C,, By (10.1) we have X(T;) < X. Also T
normalizes X(7;). Let X be the unique o-invariant, connected subgroup of
G satisfying T<Xand X, = X(T,)T (use (12.1)). Then (12.2)(iv) 1mphes
X = G(X, T). Since C.(s) = C; (s)T, we have G(C,T)<G(X,T) =
On the other hand, G(C,T) = C (this follows from (12.1) as both have
fixed point set under o equal to C). So C < X and letting s vary we obtain
X<X

From X < X and X, = X(T,)T, we immediately have (iii). Suppose G
is simply connected. Then Cz(s) = Cz(s)° for each s € S. In particular
X, =(Cy(s):s € S)= X. Letting s, T be as before we have X, =
(X T)zX(T)T=X,= X,. Consequently, X, = X, and (12. 1) yields
X=X Also (X,T)= X(T,)T = XT. Therefore, XN G, =X NG, =
X,N G, =XT NG, =XTnN G)=XT, = X, proving (i). If X=G,
then XT = G, forcing X = G. Hence X = G. Combining this with (iii) we
have (ii).

Finally, suppose S C T for T a maximal torus of G. For purposes of
proving (iv) we may assume G is simply connected. For s € S, C, -(s)
E(C-(s))T and Cg(s) = E(Cg(s))T (by (2.9) and its proof). Hence X=
(E(C4(s)): s € S)T,. From the previous paragraph X = X, so X, = X,
= XT. (iv) now follows from (12.1).
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(12.11) Let Sj,...,S; be subsets of T. Suppose that for each
a €3, there is some i € {l,...,k} with S, C C(U,). Then G,=
(E(Ce(Sh)|i=1,....k).

Proof. For 1 i<k, CS,)° is a reductive group and (C4(S;)°) a
semi-simple group. Hence E(Cg(S;)) = O” ((C—(S) )). By (12.4),
E(Cg(S;)) = G(%,) for a unique closed subset Q, of = (if E(Cs(S)) =1,
set SZ, @ and G(£;) = 1).

By (12.8), (G(2),...,G(R,)y= 07 ((G(R),...,G(R)),)- lf a € 2+
with S, < C(U) then S; centrahzes <U+a)<(C5(S) )Y.Soif a € 2
haveX X* =< (C4(S,)°) and then X s XF = G(R,). Since Q; is closed we

conclude 2 s 2* C Q,. These remarks and our assumption show that
(G(R)),.. G(Qk)> = G, and the result follows.

(12.12) Let T be a maximal torus of G and R<T. Then G, =
(E(Cg(R))| R, =R and R/R, cyclic).

Proof. Let R < T and « € =*. Then R induces a cyclic group on U,,
hence R, = Cx(U,) has cyclic quotient group. So (12.12) follows from
(12.11).
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