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Buhler gave a criterion for a class of finite free extensions of
discrete valuation rings to be tamely ramified 1-dimensional regular
rings. In this note, we extend this criterion to finite free extensions of
general local rings and, in the final section, indicate the extension to
schemes.

1. Introduction. To set the notation, let 4 be a noetherian local
ring of Krull dimension n and let 4 — B be a finite free extension of
rings; denote by by, the discriminant of this extension, defined as
det[tr(b;b;)] where b,,...,b, is a free basis of B over 4 and tr: B > 4
denotes the trace morphism. Let m , be the maximal ideal of 4 and define
a function », on 4 by », (x) = r where r is the largest integer with
x € mj and 7, (0) = oo. Note that », is a valuation if gr,(m,) has no
zero divisors, in particular if 4 is regular [2].

If n,,...,n, are the maximal ideals of B lying over m, define the
ramification index e, ,. to bel 8, (Bn/Mm4B,) where /z( M) denotes the
length (of a composition series) of the artin B-module M. If A4 is a discrete
valuation ring, the e, ,. clearly coincide with the usual ramification
indices of algebraic number theory. Recall that the embedding dimension
ed(B) of the semi-local ring B is max dim,c(n,)n,/n,-2 where n, runs
through all maximal ideals of B. With the above notation the main result
of this paper is:

THEOREM 1. If A is regular (resp. gr,(m ;) has no zero divisors) and if
B = A[X]/{ f(X)) where f( X) is a monic polynomial and k(m) — k(1) is
separable for alli = 1,...,s, then

N

va(bB/A) = 2 (en,/mA - 1)[K(ni): K(mA)]

i=1

with equality if and only if (resp. only if ) ed(B) = ed(A) and B is tamely
ramified over A in that ple for all i, where p is the characteristic of
k(m ).

n,/m,
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2. Proof of Theorem 1. We begin by some reductions. Observe that
the conditions and conclusions of the theorem remain unchanged on base
change by the m ,-adic completion of A: A" > B®,4 =B sowe may
assume A is complete. Thus B is a product of local rings I B; where each
A — B, satisfies the conditions of Theorem 1. Since », (dg,4) =
2, v, (Dg ,4), it is easy to see that it is enough to prove Theorem 1 when B
1s local with maximal ideal m g, say.

Let e be the ramification index of B over 4 and q,,...,a, form a basis
of the cotangent space m ,/m? over k(m ,). There is a monic polynomial
g € A[X] with f=g®+ Z,ah, where h, € A[X] for all i. Letting
R(p(X), g( X)) denote the resultant of the polynomials p and ¢ (see [3] or
[5] for the properties of resultants we will use), then

baa = R/, 1) = R(f,eg s’ + Sah).
If p | e where p = char k(m ), then e € m, and so
Vm,,(bB/A) = va(R(f, eg® g + Za,hi))

= degree f = e[k(my): k(m,)].

This completes the proof for the case of wild ramification.

Assume from now on that e & m,. Since f' = eg’g®”' mod m, and
k(m,) = k(mp) is separable, eg’ and g° ' are relatively prime in
k(m [ X]. Thus by Hensel’s lemma

= (eg’ + ;a,pi)(ge*‘ + ga,q,)

where p,q, € A[ X] with deg( p,) < deg(g’), deg(q,) < deg g~ ' for all i.
Since »,, (R(g°, eg")) = ev,, (R(g, &) = 0 we have

VmA(R(f, eg’ + Zaip,.)) = 0.
Thus

VmA(bB/A) = va(R(f, eg’ + ga,p,)) + VmA(R(f, g+ ;a,q,))

Il

”m,,(R(f, ge“+$a,«q,));

we conclude that if e = 1 then »,, (d,,,) = 0 and m,B = m proving the
theorem for the unramified case e = 1.
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Assume from now on that e =2 and putr = g°~ ' + 3 a,q,. Then
Do) = 7 (RS = g7, 1) = 5 | R S, = g2, 7 )|

=degr= (e — 1[x(my): x(m,)]
and equality holds if and only if (resp. only if)
1= (hy = gqy,... h, = gq,, r)r(m,)[X] = w(m,)[X]

by Lemma 1 below. This completes the proof, for I = k(m ,)[ X] if and
only if some £, is invertible in k(m ) and so if and only if 3 a,h, = f — g°
= 0 mod mj gives a non-trivial linear relation between the @,’s and g in
mp/ma.

LemMA 1. If A is a regular local ring (resp. a local ring) and a,,. .. ,a, a
basis of m , and p,,. . .,p, € A[ X] with p, monic, then

[ $ an ) i

i=1

if and only if (resp. only if ) p,...,p, are coprime in k(m [ X].

Proof. If A is an arbitrary local ring, let m € A[ X] be a monic
polynomial with residue in x(m ,)[ X] the highest common factor of
Dos- - -»P,- Then for some g, € A[ X] with g, monic and deg mgq, = deg p,,
R, a;p;, po) = R(mZ a,q;, mq,) mod miero*! so if degm = 1,
R(Z a,p;, p,) € mSerot! as required.

Conversely, if A4 is regular gr,(m,) is a polynomial ring
k(m Ol X,,...,X,] [2], with the usual grading, so that monomials of total
degree d in a,,...,a, are linearly independent in A4,/m9*!. Since
R(Z, a;p;, py) 1s a homogeneous polynomial of degree deg p, in the g, in
A, v, (R(Z,a,p;, py)) =1 + deg p, if and onmly if R(ZZ p,, p,) is the
zero polynomial in the ring x(m,)[Z,,...,Z,] where the Z s are inde-
terminates.

Now 1if p; are coprime in k(m ,)[X] then 2", c;p, =1 mod m , for
some ¢; € A[ X]. Thus

va(R(élcip,-,po)) = va(R(éOcip”po)) —0

so R(ZZ,p;, p,) is not the zero polynomial in x(m,)[Z] proving the
lemma. (|



74 M. L. BROWN

3. The obstruction for non-regular rings. Throughout this section
the local ring A is assumed to have no zero divisors in gr,(m ;).

For regular rings, Theorem 1 gives a necessary and sufficient numeri-
cal criterion for 4 —» A[{X]/{ f( X)) to be tamely ramified with ed(f) =
ed( A). The failure of this criterion to be necessary for non-regular rings is
examined in this section; we will see that the obstruction lies in the
equations defining the tangent cone gr,(m,). Indeed, we construct a
cohomology group H 2(Cg') so that the numerical criterion is necessary and
sufficient for all polynomials with a fixed reduction g mod m ,, say, if and
only if H 2(Cg') is isomorphic to the vector space of homogeneous equa-
tions defining the tangent cone of degree equal to that of g( X).

In the sense of Hilbert schemes classifying polynomials over A, this
failure is not exceptional: “almost all”” tamely ramified polynomials f( X)
over a non-regular ring 4 with »(discr f) > Z,(e, — D)[r(n,): k(m )] have
ed( f( X)) = ed(A4);

Nevertheless, for polynomials which are unramified or totally rami-
fied or have degree < 3, the numerical criterion is necessary and sufficient
over arbitrary local rings.

Fix a monic polynomial g( X) = X" + 377, b, , X" in k(m ,)[ X] and
let b, € A be elements with residue b, for all i. Then g(X) factorizes as
II,g(X)* over k(m,) where we assume g(X) are distinct separable
polynomials over k(m ,).

The Hilbert scheme H, = Spec A[X\,....X,. 1 x5, x4 m, clas-
sifies the monic polynomials with reduction g mod m , in that there is a
bijection:

H (Spec A) ~ {Monic polynomials f( X) over 4
with f(X) = g(X) mod m ,}

given by
m—1
{A[ X, . X, ], »A: X, >, b} > X"+ X (¢4 + b)) X"
i=0
Let T be the tangent cone of Spec A, by definition 7 = Projgr,(nt,)
where gr,(m,) = @= m’,/m;"; fix a basis, once and for all, a,,....a,
of m, so that n = ed(4). Let 7" = A" X, T where k = k(m,) = A/m,
and A\ = Speck[X,: 1 =i=m, 1 =j=n] is affine nm-space over .
Regarding Spec k as a T-scheme, via projection onto the 1st component
gr,(m,) - A/m, = k, there is a bijection:

H(Spec 4,/m?) > T-sch(Spec k, T")
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given by

n
{(f: X;>c,+0b) —>{Xij—>xij € kalli, jwhere ¢, = Y a,x,, mod mi}.
J=1

Denote by * the composite of the maps:

natur.

H (Spec A4) el Hg(Spec A/m?2) > T-sch(Spec k, T").

PROPOSITION 1. (1) The integer s = 2,(e; — D[x(n;): k(m,)] is the
same for all polynomials in H,(Spec A).

(2) There are closed subschemes V D V' of T’ so that for any h €
H (Spec A) with associated polynomial f( X),

(a) v, (discr f( X)) > s if and only if h* € T-sch-(Speck, V'),

(b) ed( f( X)) > ed(A) if and only if h* € T-sch(Spec k, V).

(3) V is a proper closed subscheme of T if and only if all polynomials in
H (Spec A) are tamely ramified.

Proof. (1) Clear.

(2) Recall g( X) factorises as II,; g7 in k[ X] and choose representative
monic polynomials g,( X) € A[ X] with residue g,( X) mod m , for all i.

As in the proof of Theorem 1, it is not difficult to see that
v, (discr f( X)) > s if and only if

Vm,,(R(f(X), 2egs I gj’f)) >s.
i JFi
Now
R( (%), Segige T g7) = R( £, s |R( £ Ses T g,);
i VEall i i Vkall

as in the proof of Theorem 1, », (R(f(X), 2,¢,8/1l,.,8,)) =0 if and
only if p does not divide e, for all i where p is the characteristic of k(m ;).

It follows from Theorem 1 that if p | e, for some e, then v, (discr f) > s
for any f with reduction g so for this wildly ramified case V' = T" has the
required properties. If now p e, for all i then », (discr f( X)) > s if and
only if », (R(f, g;)) > deg g,;(X) for some . Putting

m—1 n
025 1+ S
i=0 Jj=1

with the notation as previously, f(X) is the general polynomial of
H (Spec A); R(f(X), g;(X)) is a homogeneous polynomial in the X, ’s of
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degree deg g,( X). Moreover, the coefficient of each monomial in the X, ’s
is a monomial in the a,’s of degree deg g,( X). Let p, (X, : all ij) be the
polynomial R( f(X), g,(X))-regarded as an element of gr(m )[X, ] of
degree degg, and put p(X,) =1, p (X, all i, j)*. The ideal of
gr(m [ X, all i, j] generated by p(X,,) clearly defines the closed sub-
scheme V of T".

(2b) With the notation above, let f*(X) be a polynomial from
H (Spec A) then f*(X) =1I, g" + Z-, a,p,(X) for some p,(X) € A[X].
We assert ed( f*( X)) = ed(A4) if and only if II, g, p,(X),...,p,(X) have
no common factor in the residue ring «(m ,)[ X]. For, without loss of
generality 4 is complete as in the proof of Theorem 1, so f*(X) =
II,(g" + 2% a,p, (X)) for some polynomials p, ,( X) € A[ X] by Hensel’s
lemma. By the proof of Theorem 1 and Lemma 1, ed( f*( X)) = ed(A) if
and only if g,(X), p( X),-..,p;,(X) have no common factor in k(m ) X]
for all i. The assertion easily follows on expanding the product for f*( X).

For a general polynomial f( X) in H(Spec 4) put, as before, f( X) =
X"+ Z,(b+ 2 aX,,)X". Let f*(X) denote the specialisation of f(X)
under X, — x,, €k, then ed(f*(X)) =ed(4) if and only if II, g/,
2, x,X',j=1,...,n, have no common factor in x(m ,)[ X]. Introducing
arbitrary parameters Z,,...,Z,, then ed( f*( X)) > ed(A4) if and only if,
by Lemma 1, R(g(X), 2'-, Z,Z, x,,X") is the zero polynomial, regarded
as a polynomial in k(m ,)[Z,,...,Z,] by taking it mod md&s*",

Thus R(g(X), 2'_, Z,27, X,, X') mod m}"%®% is a homogeneous
polynomial of degree deg g( X) = m in the Z,, assuming it is non-zero.

Write R(g(X), 3,,Z, X, X') =3 Z,q(X,;) mod m);"%*& where Z,
runs over all monomials in Z, of degree m and g;(X,;) € x(m [ X,
0=i=m—1, 1 =<j=<n]is an homogeneous polynomial of degree m.
Thus ed(/*( X)) > ed(4) if and only if g;(x,,) = O for all i

Let V7 be the closed subscheme of 7" defined by the ideal < ¢;( X, )):
all i > , then clearly V" has the required properties. O

From the above proof we deduce:

COROLLARY 1. (1) Either V = T’ or V is a union of hypersurfaces of T’
of degree t,, = [k(n,): k(m )], with multiplicity e,, for all k, and is defined
by an homogeneous equation 11, f,( X, ;allij) =0 of degree m = deg g(x)
with coefficients of X, in f, homogeneous polynonials in a,,...,a, of degree
.

(2) V' is defined in T' by most ("_}) equations of degree m in the
variables X, ; and with coefficients in k(m ,).
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We relate the equations defining V, V’ to those defining the tangent
cone T in its embedding T — P}’ given by the very ample sheaf O(1). Let
S™(m ,/m?2) denote the mth symmetric power of m ,/m3 and let K, be

the kernel of the natural map S™(m,/m?%) >m/7/m7*; thus K, is the
set of “equations of degree m defining 7 ”.

Suppose g is tamely ramified and let m = degg(x) and s =
2, (e; — DIx(n,): k(m )], then there is a complex C :

i ] k
0 - T — sch(k, V') > T — sch(k, V) 5> 8™(m . /m2) >m™m/mm+!

where i is the natural inclusion (‘complex’ meaning that composites of
successive maps are zero: note that each component of the complex has a
distinguished zero element).

To define the complex it is only necessary to define j. Let f( X,
0=<i=m—1,1=<j=n) =0 be the equation defining V. Since gr (1t ,)
is without zero divisors, by Corollary 1(1) the coefficients of f(X,,) are
polynomials in the a,’s of degree m. The proof of Proposition 1(2b)
actually constructs a polynomial f*(X; ) in S (m,/m2)[X s 0=i=s
m—1,1<j=<n], S (m,/m?) denoting the symmetric algebra, whose
image in gr(m,)[X] is f(X;;) under the canonical map. Denote by
af,...,a¥ the unique liftings of a,,...,a, in S (m,/m3). Let z €
T-sch(x, V) be given by {X,, - x;; € « for all i, j with f(x, ) = 0} and
define j(z) :f#(x,j) € §™(m,/m?3). Clearly k o j = 0 since k o j(z) =
k(f*(x;,)) = f(x,;) = 0. Note that the coefficients of f*( X,;), regarded
as a polynomial in af,...,a* € S (m,/m?2) with coefficients in
k(m4)[ X, all ], are precisely the equations defining V’. Thus j(z) = 0 if
and only if z = i( y) for some y € T-sch(k, V'’) thus showing j o i = 0, and
C’ is a complex. taking cohomology, we deduce H(C') = H'(C') = 0.

From Proposition 1, {#(discr f) = s if and only if ed( /) = ed(A4), for
every f(X) in H (Spec A)} if and only if i is surjective, thus if and only if j
is the zero map. We deduce:

PROPOSITION 2. H*(C') =K, if and only if {v(discr f(x)) =s <
ed( f(x)) = ed(A), for all f(x) in H(SpecA)}.

COROLLARY 2. Suppose f( X) has reduction I, g,(X)* mod m , which
has one of the following:

(1) f is totally ramified i.e. deg g, = 1 for all i,

(2) f is unramified i.e. e, = 1 for all i,
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(3) K,, = 0 where m = deg f(x),

(4) deg f(X) =3,
then v(discr f( X)) = Z,(e; — D[k(n,): w(m,)] if and only if f is tamely
ramified and ed( f( X)) = ed(A).

Proof. In any case, if f( X) is wildly ramified the result follows so we
assume f is tamely ramified.

(1) Since f is totally ramified, the equation p( X, ) defining V is, by
Corollary 1, a product II, p,(X;,) of factors linear in the X;;’s and a,’s.
Let z € T-sch(x, V) be given by X;, > x,; € « for all i, j, then p(X,;) =0
implies p,(x,;) = 0 for some k since gr,(m,) has no zero divisors. Thus
pi(x;;) =0 is a linear relation between the linearly independent a,’s so
j(z) = 0. Since H'(C') =0, z = i(y) for some y € T — sch(k, V) prov-
ing the corollary in view of Proposition 1.

(2) If f is unramified, then obviously », (discr f) = 0 since f(X) = 0
has distinct roots mod m ,. Thus ed( f( X)) = ed(A) by Theorem 1.

(3) The Corollary follows immediately from Proposition 2.

(4) If deg f(X) < 3 then the only possibilities are that f is totally
ramified or is unramified whence the result from (1) and (2). O

Since resultants are ‘universally’ defined it easily follows from the
proof of Proposition 1 that the subschemes ¥, V” of 7" have a ‘ universal’
construction in that they are induced from Z-schemes independent of 7”:

PROPOSITION 3. Given non-negative integers n, f,,....f,, e,,...,e, there
are affine Z-schemes Z, Z' which are closed subschemes of A%, where
w=n+ Zi_, f(e,i + 1), with the following property. For any local ring A
of embedding dimension n; any monic polynomial g( X) € A[ X] with g( X)
=1[I/-, g(X)*mod m, where g,(X) are distinct separable polynomials of
degree f,, thereisamap T' > Ay sothat V=Z X T and V' = Z' X, T".

ExAMPLE. We construct a quartic f( X') over a 1-dimensional local ring
A with f tamely ramified, ed(f) = ed(4), », (discrf) =3 and s =
2,(e; — Dlr(n,): k(m )] = 2.

Let Q be the field of rational numbers and let a,, a, be independent
transcendentals over Q. Put 4 = Ql[ay, a,]., .,y/( a?+a?). Let (X) =
(X*+ 1)> + a, X + a, be a polynomial over 4.
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We claim A4 and f( X) are our example.
For f(X)=(X?*+ 1)> mod m, so f(X) is tamely ramified with
ramification index 2 and s = 2. The discriminant of f( X) is

(2564} — 27a% + 288a,a3 + 256(a? + a})) /256 = (-32a} — 27a}) /256

so that v, (discr f) = 3.

A is a l-dimensional local ring of embedding dimension 2 and
gr,(m,) =~ Q[X,, X,]/( X} + X5) has no zero divisors.

The maximal ideal of A[ X]/( (X)) is {(a,, a,, X* + 1)= (a,, X* +
1) since a, = ~(X*+ 1)2 — a, X € {a,, X* + 1) in A[X]/( f(X)). Thus
ed( f(X)) = 2 = ed(A4).

4. Applications. For the translation of Theorem 1 to schemes, we
have:

THEOREM 2. Let Y be a regular scheme and Py, the projective line bundle
over Y[4]. Let X be a closed subscheme of Py, so that for every irreducible
component X; of X, the induced f;: X, » Y is dominating and finite and all
residue field extensions are separable. Then:

() X - Yis flat;

(2) X is regular and tamely ramified over Y if and only if v, (d y v, ,) =
2, (e, — DIx(m,): (m )] for all points x,,...,x, in the fibre f~'(y) and
for all points y of Y.

By dy,y,, we here mean the local discriminant of the finite free
extension Oy , — I'(Xx, Spec Oy, , Oy, Spec Oy ,); e, is defined simi-
larly.

For the proof of the theorem, note that the question is local on Y so
we may assume Y is affine. Moreover, we may replace Y by Spec Oy ,, by
flat base change, and prove the theorem when Y = Spec A with 4 a
regular local ring. In this case, P; = Proj 4[ X,, X,] has every finite subset
of points contained in an open affine subscheme isomorphic to Spec A[ X7;
since condition (2) of the theorem is applied to such finite sets, we may
assume X is a closed subscheme of some Spec A[ X]. Let X = Spec A[ X']/1.

Let/ =q, N g, - Ngq, be the primary decomposition of 7 in A[ X]
and let p, = va,, i = 1,...,n, be the prime ideals associated to q,. Then
Spec A[X]/, — SpecA is dominating and finite for each i. Therefore
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p, N A = {0} so height p, =1 for each i. It easily follows that p, is a
principal ideal, generated by p;(X), say where p;(X) is a non-constant
polynomial in A[ X].

Since p, N 4 = {0} for all i, we have g, = ( p(X)™) for some
integers n;. Therefore (I, p(X)")YC I= MN]_, q,. In the fibre A[X]
®, fract(A), I and (II, p,(X)™) coincide since A[X]®, fract(4) is a
principal ideal domain. It follows that for every q(X) € I there are
a, b € A with ag( X) = bp(X) where p(X) = 1II, p,(X)™.

But A[X]/ ,x), is a finite A-module and, since 4 is normal,
Kronecker’s Theorem [1] shows that p (X) has invertible leading coeffi-
cient for all i; thus we may suppose p(X), pi(X),...,p,(X) are monic
polynomials. Consequently, if ag( X) = bp(X) then g( X) € ( p(X)) thus

= (p(X)) and so X = SpecA[X]/{ p(X)) where p(X) is a monic
polynomial; consequently X — Y is flat. The second part of the theorem
now follows from Theorem 1. (]

COROLLARY. With f- X - Y as in Theorem 2. Suppose that Reg(Y) is
open (resp. contains a non-empty open set). Then the set of points {x € X | X
is regular and tamely ramified over Y at every point of the fibre f ~'f(x)} is
open (resp. contains a non-empty open set).

Proof. By replacing Y by a regular open subscheme we may assume Y
is regular. Now, vmy( dx/v.y)» 2:[K(m, ): k(m,)] are upper semi-continuous
on Y and 2, e[r(m,): k(m )] is locally constant; the corollary now
follows. O
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