A GENERALIZATION OF THE GLEASON-KAHANE-ŻELAZKO THEOREM

CHANG P’AO CH’ĒN
A GENERALIZATION OF THE
GLEASON-KAHANE-ZELAZKO THEOREM

CHANG-PAO CHEN

In this paper, we consider two classes of commutative Banach algebras, which include $C^\infty(T)$, $\text{Lip}_\beta(T)$, $BV(T)$, $L^1 \cap L^p(G)$, $A^p(G)$, $L^1 \cap C_0(G)$, l^p, c_0, and $C_0(S)$. We characterize ideals of finite codimension in these two classes of algebras and thereby partially answer a question suggested by C. R. Warner and R. Whitley.

In [5] and [9], A. M. Gleason, J. P. Kahane and W. Zelazko gave independently the following characterization of maximal ideals: Let A be a commutative Banach algebra with unit element. Then a linear subspace M of codimension 1 in A is a maximal ideal in A if and only if it consists of noninvertible elements, or equivalently, each element of M belongs to some maximal ideal. This interesting result as first proved depended on the Hadamard Factorization Theorem.

This characterization of maximal ideals was extended in [15] and [16] to algebras without identity. In [16], C. R. Warner and R. Whitley also gave a characterization of ideals of finite codimension in $L^1(R)$ and $C[0,1]$. They showed: Let A be any one of $L^1(R)$ and $C(S)$, where S is a compact subset of R. If M is a closed subspace of codimension n in A with the property that each element in M belongs to at least n regular maximal ideals, then M is an ideal. In fact, M is the intersection of n regular maximal ideals. Also in [16], C. R. Warner and R. Whitley suggested the following question: For what locally compact abelian group G does $L^1(G)$ have the property of $L^1(R)$ described above?

In this paper, we partially answer this question and generalize the work of C. R. Warner and R. Whitley. In this paper, two methods are introduced; One uses the Baire category theorem and the other generalizes the ideas of Theorems 2 and 4 in [16].

Theorem 1. Let A be a commutative Banach algebra with a countable maximal ideal space \mathfrak{M}. If M is a closed subspace of codimension n in A with the property that each element in M belongs to at least n regular maximal ideals, then M is an ideal, which is the intersection of n regular maximal ideals.
Proof. From the hypothesis, we know that \(M \subset \bigcup I_{s_1,s_2,\ldots,s_n} \) where \(I_{s_1,s_2,\ldots,s_n} \) denotes the space \(\{x \in A : x \text{ vanishes at } s_1, s_2, \ldots, s_n\} \) and the union is taken over all sets of distinct elements \(s_1, s_2, \ldots, s_n \) in \(\mathcal{M} \). Since \(\mathcal{M} \) is countable, the union is a countable union. By the Baire category theorem, \(M \subset I_{s_1,s_2,\ldots,s_n} \) for some set of distinct elements \(s_1, s_2, \ldots, s_n \) in \(\mathcal{M} \). If not, for any set of distinct elements \(s_1, s_2, \ldots, s_n \) in \(\mathcal{M} \), we have \(M \cap I_{s_1,s_2,\ldots,s_n} \neq M \). By the open mapping theorem, we find that \(M \cap I_{s_1,s_2,\ldots,s_n} \) is of first category in \(M \) and so the union \(\bigcup (M \cap I_{s_1,s_2,\ldots,s_n}) \) is of first category in \(M \). This implies that \(M \) is of first category in itself and contradicts the fact that \(M \) is a Banach space. Therefore \(M \subset I_{s_1,s_2,\ldots,s_n} \) for some set of distinct elements \(s_1, s_2, \ldots, s_n \) in \(\mathcal{M} \). Since \(M \) and \(I_{s_1,s_2,\ldots,s_n} \) are of codimension \(n \) in \(A \), \(M = I_{s_1,s_2,\ldots,s_n} \). We have completed the proof.

Example 2. Any of the following spaces has the property described in Theorem 1: \(C^n(T) \); \(\text{Lip}_\alpha(T) \), \(0 < \alpha \leq 1 \); \(BV(T) \); \(L^p(G) \), \(1 \leq p \leq \infty \), or \(A^p(G) \) or \(C(G) \), or any normed ideal in \(L^1(G) \), where \(G \) is a metrizable compact abelian group; \(l^p \), \(1 \leq p < \infty \), and \(c_0 \) (cf. [1, 2, 4, 7, 8, 10, 11, 12, 14]).

Remark 3. The structure of a metrizable compact abelian group can be found in [12, Theorem 2.2.6]. It is well-known that the maximal ideal space of \(l^\infty \) coincides with the Stone-Čech compactification \(\beta Z^+ \), whose cardinal number is uncountable. (See [2, pp. 58] and [3, pp. 244].) Therefore Theorem 1 cannot be applied to this case. Theorem 1 answers the question suggested by C. R. Warner and R. Whitley for \(L^1(G) \) in the case \(G \) is compact and metrizable.

The following theorem extends the results presented in Theorem 1 to another kind of algebra while not hypothesizing that \(M \) be closed. (Compare this with Theorem 1 and [16, Theorems 2 and 4].) This theorem generalizes Theorems 2 and 4 in [16].

Theorem 4. Let \(A \) be a commutative Banach algebra with involution \(x \to x^* \) satisfying \(\hat{x}^* = \hat{x}^\sim \). Suppose that there is an element \(x_0 \) in \(A \), with \(\hat{x}_0 \) never zero, and that there is a one-to-one real-valued function \(\phi \) on the maximal ideal space \(\mathfrak{M} \) of \(A \) such that \(\hat{x}_0 \phi^j = \hat{x}_j \) for some \(x_j \) in \(A \) \((1 \leq j \leq n)\). If \(M \) is a subspace (not a priori closed) of codimension \(n \) in \(A \) with the property that each element in \(M \) belongs to at least \(n \) regular maximal ideals, then \(M \) is an ideal which is the intersection of \(n \) regular maximal ideals.
Proof. Without loss of generality, we may assume that \(\tilde{x}_0 \) is real-valued. Let \(\tilde{x}_0, \tilde{x}_1, \ldots, \tilde{x}_{n-1} \) denote the cosets in the quotient space \(A/M \) corresponding to \(x_0, x_1, \ldots, x_{n-1} \). If \(\lambda_0 \tilde{x}_0 + \lambda_1 \tilde{x}_1 + \cdots + \lambda_{n-1} \tilde{x}_{n-1} = 0 \), then \(\lambda_0 x_0 + \lambda_1 x_1 + \cdots + \lambda_{n-1} x_{n-1} = 0 \) has \(n \) distinct solutions in \(s \). This implies that the polynomial \(\lambda_0 + \lambda_1 s + \cdots + \lambda_{n-1} s^{n-1} = 0 \) has \(n \) distinct zeros, which occurs only if all \(\lambda_j \)'s are zero. Hence \(\tilde{x}_0, \tilde{x}_1, \ldots, \tilde{x}_{n-1} \) form a basis for \(A/M \).

There exist scalars \(\lambda_0, \ldots, \lambda_{n-1} \) such that \(x_n - \lambda_0 x_0 - \cdots - \lambda_{n-1} x_{n-1} \) is in \(M \). Denote this element of \(M \) by \(m_0 \). We claim that \(m_0 \) is real-valued. By hypothesis and since \(m_0 \in M \), we find that the equation \(\lambda_0 + \lambda_1 \phi(s) + \cdots + \lambda_{n-1} \phi(s)^{n-1} = \phi(s)^n \) has \(n \) distinct solutions, say \(s_1, s_2, \ldots, s_n \).

We write down these relations as follows:

\[
\begin{align*}
\lambda_0 + \lambda_1 \phi(s_1) + \cdots + \lambda_{n-1} \phi(s_1)^{n-1} &= \phi(s_1)^n, \\
\lambda_0 + \lambda_1 \phi(s_2) + \cdots + \lambda_{n-1} \phi(s_2)^{n-1} &= \phi(s_2)^n, \\
&\vdots \\
\lambda_0 + \lambda_1 \phi(s_n) + \cdots + \lambda_{n-1} \phi(s_n)^{n-1} &= \phi(s_n)^n.
\end{align*}
\]

By hypothesis, we know that \(\phi(s_1), \phi(s_2), \ldots, \phi(s_n) \) are \(n \) distinct real numbers. By Cramer's rule, we find that \(\lambda_0, \lambda_1, \ldots, \lambda_{n-1} \) are all real and so \(m_0 \) is real-valued. As we saw above, \(m_0 \) vanishes exactly at \(s_1, s_2, \ldots, s_n \).

Let \(m \) be an element in \(M \) with \(m \) real-valued. We have \(m + im_0 \in M \) and so the equation \(\hat{m}(s) + i\hat{m}_0(s) = 0 \) has \(n \) distinct solutions in \(s \). This implies that \(\hat{m}(s_1) = \cdots = \hat{m}(s_n) = 0 \), because \(m_0 \) vanishes exactly at \(s_1, s_2, \ldots, s_n \).

Fix \(m \) in \(M \). There exist scalars \(\lambda_0, \lambda_1, \ldots, \lambda_{n-1} \) such that \(m^* - \lambda_0 x_0 - \cdots - \lambda_{n-1} x_{n-1} \) is in \(M \). We have \(m + m^* - \lambda_0 x_0 - \cdots - \lambda_{n-1} x_{n-1} \in M \) and so the equation \(2\text{Re}\, \hat{m}(s) - \lambda_0 \hat{x}_0(s) - \cdots - \lambda_{n-1} \hat{x}_0(s) \phi(s)^{n-1} = 0 \) has \(n \) distinct solutions in \(s \). By Cramer's rule, we find that \(\lambda_0, \lambda_1, \ldots, \lambda_{n-1} \) are all real. On the other hand, we have \(-m + m^* - \lambda_0 x_0 - \cdots - \lambda_{n-1} x_{n-1} \in M \) and so the equation \(-2i\, \text{Im}\, \hat{m}(s) - \lambda_0 \hat{x}_0(s) - \cdots - \lambda_{n-1} \hat{x}_0(s) \phi(s)^{n-1} = 0 \) has \(n \) distinct solutions in \(s \). By Cramer's rule, we find that \(\lambda_0, \lambda_1, \ldots, \lambda_{n-1} \) are all pure imaginary. Combining these two results we find that all \(\lambda_j \)'s are zero. This shows that \(m^* \) is in \(M \).

We know that

\[
m = 2^{-1}(m + m^*) + i\left[(2i)^{-1}(m - m^*)\right],
\]
where the Fourier-Gelfand transforms of \(m + m^* \) and \((2i)^{-1}(m - m^*) \) are real-valued. From the results presented in the preceding two paragraphs, we find that \(\hat{m} \) vanishes at \(s_1, s_2, \ldots, s_n \) for every \(m \) in \(M \). This says that \(M \subset I_{1, s_2, \ldots, s_n} \) where \(I_{1, s_2, \ldots, s_n} \) denotes the space \(\{ x \in A : \hat{x} \text{ vanishes at } s_1, s_2, \ldots, s_n \} \). Since \(M \) and \(I_{1, s_2, \ldots, s_n} \) are of codimension \(n \) in \(A \), \(M = I_{1, s_2, \ldots, s_n} \). We have completed the proof.

Example 5. Any of the following spaces has the property described in Theorem 4: \(C^n(T) \), \(Lip_\alpha(T) \), \(0 < \alpha \leq 1 \); \(BV(T) \), \(L^1 \cap L^p(G) \), \(1 \leq p \leq \infty \), or \(A^p(G) \) or \(L^1 \cap C_0(G) \), or any normed ideal in \(L^1(G) \) which is invariant under involution, where \(G \) is either a metrizable compact abelian group or the direct product of the real line \(R \) and a metrizable compact abelian group; \(L^p \), \(1 \leq p < \infty \), and \(C_0(S) \), where \(S \) is any closed subset of \(R \times Z^\infty \).

Example 5 follows immediately from the following lemma:

Lemma 6. The following two types of algebras have the property described in Theorem 4:

(i) Any normed ideal in \(L^1(G) \) which is invariant under involution, where \(G \) is a metrizable compact abelian group or the direct product of \(R \) and such a \(G \).

(ii) \(C_0(S) \), where \(S \) is any closed subset of \(R \times Z^\infty \).

Proof. Let \(A \) be a normed ideal in \(L^1(G) \) which is invariant under involution, where \(G \) is either a metrizable compact abelian group or the direct product of the real line \(R \) and a metrizable compact abelian group. From Theorems 2.2.2 and 2.2.6 in [12] we find that \(\Gamma \) is of the form \(\Gamma_1 \times \Gamma_2 \), where \(\Gamma_1 \) is \(\{0\} \) or \(R \) and \(\Gamma_2 \) is countable. Write \(\Gamma_2 \) as \(\{ \gamma_1, \gamma_2, \ldots \} \). Define a function \(\phi \) on \(\Gamma \) as follows:

\[
\phi(\gamma_m) = m \quad \text{if } \Gamma_1 = \{0\},
\]

\[
\phi(x, \gamma_m) = \frac{x}{(1 + 4\pi^2x^2)^{1/2}} + m \quad \text{if } \Gamma_1 = R,
\]

then \(\phi \) is a one-to-one real-valued function on \(\Gamma \).

Choose an integrable function \(h_0 \) on \(G \) with the following property:

\[
\hat{h}_0(\gamma_m) = e^{-m^2} \quad \text{if } \Gamma_1 = \{0\},
\]

\[
\hat{h}_0(x, \gamma_m) = e^{-(x^2 + m^2)} \quad \text{if } \Gamma_1 = R.
\]
It is well-known that Γ is sigma-compact, say $\Gamma = \bigcup_{j=1}^{\infty} K_j$, where K_j are compact subsets of Γ. There exists functions g_j in A such that $\hat{g}_j \geq 0$ on Γ and $\hat{g}_j = 1$ on K_j. Define
\[
g_0 = \frac{\sum_{j=1}^{\infty} g_j}{\sum_{j=1}^{\infty} 1} \text{ and } f_0 = g_0 * h_0,
\]
then f_0 is in A and \hat{f}_0 is never zero.

For the case $\Gamma_1 = \mathbb{R}$ we have
\[
\hat{f}_0(x, \gamma_m) = \hat{g}_0(x, \gamma_m) e^{-(x^2 + m^2)} \left[\frac{x}{(1 + 4\pi^2 x^2)^{1/2}} + m \right]^j
\]
\[
\hat{g}_0(x, \gamma_m) = \hat{g}_0(x, \gamma_m) - \sum_{j=0}^{\infty} \frac{x^j}{j!} \hat{G}_1(x)^j m^{-j} - \sum_{j=0}^{\infty} \frac{x^j}{j!} \hat{G}_1(x)^j m^{-j}
\]
\[
\hat{G}_1(x) = \frac{1}{(4\pi)^{1/2}} \frac{1}{\Gamma(1/2)} \int_0^\infty e^{-\pi x^2/8} e^{-\delta x^2/4\pi} d\delta
\]
\[
\hat{H}_k(x) = e^{-x^2} x^k,
\]
\[
F_j = \sum_{k=0}^{j} \binom{j}{k} \left[\frac{H_k * G_1 * \cdots * G_1}{\sum_{m=1}^{k \text{ terms}}} \right] \left(\sum_{m=1}^{\infty} e^{-m^2} m^{-j-k} \right),
\]
\[
f_j = g_0 * F_j.
\]

The definition of G_1 can be found in [13, pp. 132]. The existence of integrable functions H_k on \mathbb{R} is based on the fact that the function e^{-x^2} is
rapidly decreasing. We have $G_1 \in L^1(R), H_k \in L^1(R)$ and the functions
\[\sum_{m=1}^{\infty} e^{-m^2 m^{1-k}} \gamma_m \]
are integrable. This implies that $F_j \in L^1(G)$ and so f_j is in A. This result is also true for the case $\Gamma_1 = \{0\};$ with minor modifications the preceding proof applies.

It remains to show (ii). Let S be any closed subset of the space $R \times Z^\infty$. From Theorem XI.6.5 in [3] we find that S is locally compact. It is well-known that $R \times Z^\infty$ is the dual group of $R \times T^\omega$. (See [12, §2.2].) Take $G = R \times T^\omega$ and define ϕ and h_0 as above. Denote the restriction of h_0 on S by f_0 and the restriction of ϕ on S by itself, then $f_0 \in C_0(S), f_0$ is never zero, ϕ is one-to-one and real-valued and $f_0 \phi^j \in C_0(S)$ for all j. (Here we use the assumption that S is closed.) We have completed the proof.

The problem of characterizing the ideals of finite codimension for $L^1(R^2)$ and $C(D), D$ the closed unit disk, raised in [16] remains open.

Acknowledgement. I would like to thank the referee for his valuable suggestions.

References

Received September 10, 1981 and in revised form January 20, 1982.

INSTITUTE OF MATHEMATICS
NATIONAL TSING HUA UNIVERSITY
HSINCHU 300, TAIWAN
REPUBLIC OF CHINA
PACIFIC JOURNAL OF MATHEMATICS
EDITORS
DONALD BABBITT (Managing Editor)
University of California
Los Angeles, CA 90024
J. DUGUNDJI
Department of Mathematics
University of Southern California
Los Angeles, CA 90089-1113
HUGO ROSSI
University of Utah
Salt Lake City, UT 84112
R. FINN and H. SAMELSON
Stanford University
Stanford, CA 94305
C. C. MOORE and ARTHUR OGUS
University of California
Berkeley, CA 94720

ASSOCIATE EDITORS
R. ARENS E. F. BECKENBACH B. H. NEUMANN F. WOLF K. YOSHIDA
(1906–1982)

SUPPORTING INSTITUTIONS
UNIVERSITY OF ARIZONA UNIVERSITY OF OREGON
UNIVERSITY OF BRITISH COLUMBIA UNIVERSITY OF SOUTHERN CALIFORNIA
CALIFORNIA INSTITUTE OF TECHNOLOGY STANFORD UNIVERSITY
UNIVERSITY OF CALIFORNIA UNIVERSITY OF HAWAI'I
MONTANA STATE UNIVERSITY UNIVERSITY OF TOKYO
UNIVERSITY OF NEVADA, RENO UNIVERSITY OF UTAH
NEW MEXICO STATE UNIVERSITY WASHINGTON STATE UNIVERSITY
OREGON STATE UNIVERSITY UNIVERSITY OF WASHINGTON
Pacific Journal of Mathematics
Vol. 107, No. 1 January, 1983

John Kelly Beem and Phillip E. Parker, Klein-Gordon solvability and the geometry of geodesics ... 1
David Borwein and Amnon Jakimovski, Transformations of certain sequences of random variables by generalized Hausdorff matrices 15
Willy Brandal and Erol Barbut, Localizations of torsion theories 27
John David Brillhart, Paul Erdős and Richard Patrick Morton, On sums of Rudin-Shapiro coefficients. II .. 39
Martin Lloyd Brown, A note on tamely ramified extensions of rings 71
Chang P’ao Ch’en, A generalization of the Gleason-Kahane-Żelazko theorem ... 81
I. P. de Guzman, Annihilator alternative algebras 89
Ralph Jay De Laubenfels, Extensions of d/dx that generate uniformly bounded semigroups .. 95
Patrick Ronald Halpin, Some Poincaré series related to identities of 2×2 matrices ... 107
Fumio Hiai, Masanori Ohya and Makoto Tsukada, Sufficiency and relative entropy in $*$-algebras with applications in quantum systems 117
Dean Robert Hickerson, Splittings of finite groups 141
Jon Lee Johnson, Integral closure and generalized transforms in graded domains ... 173
Maria Grazia Marinari, Francesco Odetti and Mario Raimondo, Affine curves over an algebraically nonclosed field 179
Douglas Shelby Meadows, Explicit PL self-knottings and the structure of PL homotopy complex projective spaces 189
Charles Kimbrough Megibben, III, Crawley’s problem on the unique ω-elongation of p-groups is undecidable 205
Mary Elizabeth Schaps, Versal determinantal deformations 213
Stephen Scheinberg, Gauthier’s localization theorem on meromorphic uniform approximation .. 223
Peter Frederick Stiller, On the uniformization of certain curves 229
Ernest Lester Stitzinger, Engel’s theorem for a class of algebras 245
Emery Thomas, On the zeta function for function fields over F_p 251