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ABSOLUTELY FLAT SEMIGROUPS

S. BULMAN-FLEMING AND K. MCDOWELL

All left modules over a ring are flat if and only if the ring is von
Neumann regular. In [7], M. Kilp showed that for a monoid S to be left
absolutely flat (i.e., for all left S-sets to be flat) regularity is necessary
but not sufficient. Kilp also proved [8] that every inverse union of groups
is absolutely flat. In the present paper we show that in fact every inverse
semigroup is absolutely flat and that the converse is not true.

1. Preliminaries. We consider a monoid to be a universal algebra
(S; -, 1) of type (2,0). We shall consistently denote such a monoid by S
and on occasion consider it to be a semigroup via the forgetful functor. If
S is a monoid S-Ens (respectively, Ens-S) will denote the class of left
(right) unital S-sets. In §§1 and 2, we deal only with monoids and their
associated S-sets. In §3 the considerations will be extended to arbitrary
semigroups.

Let S be a monoid. For A € Ens-S and B € S-Ens, let 7 denote the
smallest equivalence relation on A4 X B containing all pairs ((as, b),
(a, sb)) fora € A, b € B, and s € S. The tensor product A ® B (or, more
precisely, A ®¢ B) is defined to be the set (4 X B)/7, and possesses the
customary universal mapping property with respect to balanced maps
from A X B to an arbitrary set. For a € 4 and b € B, a ® b represents
the r-class of (a, b).

The following information will be useful in the sequel. If S is any
monoid and s, ¢ € S then (s, t) will denote the principal left congruence
on S identifying s and z. It is easy to check that for u, v in S,
(u, v) € (s, t) if and only if either

u=-ov
or
there exist wy,...,w,, $|,...,8,,{,...,{, €S
where {s,,t,} = {s, ¢} fori = 1,...,n, such that
u=ws,,

Wil| = W,5,,

wil =ov.
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In fact, we have

I:EMMA 1.1. Let S be a monoid, s,t € S, A € Ens-S, a,a’ € A. Then
a®1l=a" ®1inA®sS/0(s,t) if and only if either

a=a’
or
there exist a,,...,a, € A,s,,...,5, €S, t,..., 1, €S
where {s,, t,} = {s,t} fori = 1,...,n, such that
a=as,,
Gl = a,y$,,
a,t,=a'.

Proof. For a, a’ € A define aya’ if and only if a = a’ or a system of
equalities joining a and a’, such as that given in the statement of the
lemma, exists. ¢ is an equivalence relation on A. Define a map ¢:
A X S/0(s, 1) > A/ by ¢(a, 1) =au for a € A and u € S. Check that ¢
is well-defined and balanced (i.e. ¢(ax, u) = ¢(a, xut) for each a € A,
x € §, and u € S) and that the resulting map ®: 4 ®;S/0(s,t) > A/¢
is a bijection. Thus, for a,a’ €4, a®1=a'®1 iff ®(a®1) =
d(a’ @ 1) iff aya’. O

The following lemma provides a method of determining whether two
elements of a tensor product over a monoid are equal.

LEMMA 1.2. Let S be a monoid, A € Ens-S, a,a’ € A, B € S-Ens, and
b,b’ €B. Then a®b=a" ®b" in AQsB if and only if there exist
a,...,a, €A, b,,....b, EB,s,....,5, € Sandt,...t, €S such that

a = as,,
at, = a,s,, s;b=ub,,

ayly, = assy,  $;by, = 4,b;,

a,t,=a, s,b, =1t,b".

n'n

Proof. Verify that the relation 7 on A X B defined by (a, b)n(a’, b’) if
and only if a system of equalities such as that appearing above exists, is,
in fact, the (tensor product) relation 7 presented earlier. O
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We will call the above system of equalities an (S-) scheme over A and
B of length n joining (a, b) to (a’, b’).

2. Flat S-sets over monoids.

DEFINITION 2.1. Let S be any monoid, and let B belong to S-Ens.
Then B is called flat (in S-Ens) if and only if, for all embeddings 4 — C in
Ens-S, the induced map 4 ® B—- C ® B is an embedding. Flat right
S-sets are defined analogously.

Note that flatness as defined above differs from the notion considered
in [9] and some of the references contained therein.

LEMMA 2.2. Let S be a monoid and let B belong to S-Ens. Then B is flat
if and only if, for every right S-set A, and every a, a’ € A, b, b’ € B such
that there exists a scheme over A and B joining (a, b) to (a’, b’), there exists
a scheme (of possibly different length) over aS U a’S and B joining (a, b) to
(a’, b"). A similar statement describes flat right S-sets.

DEFINITION 2.3. A monoid S is called left (right) reversible if any two
principal right (left) ideals of S intersect. (See [1], p. 34.) A right (left)
S-set A over a monoid S is called reversible if any two cyclic sub-S-sets of
A intersect.

LEMMA 2.4. Let S be a monoid. Then the following conditions are
equivalent:

(1) The singleton left S-set Z = {z} is flat.

(2) S is left reversible.

(3) Every connected right S-set is reversible.

(4) Every sub-S-set of a connected right S-set is connected.

Proof. (1) implies (2)
Foranys,t € Sitisclear thats ® z = ¢ ® zin S ® Z. Thus there exists a
scheme over sS U ¢S and Z joining (s, z) to (¢, z) (by Lemmas 1.2 and
2.2). In particular there exist s,,...,s,, t,...,f, €S and u,,...,u, €
sS U S such that

s = us;,

Uty = u,s,,

From this it may easily be deduced that S is left reversible.
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(2) implies (3)
Suppose A4 is a connected right S-set and a, a’ are two elements of A.
Because A4 is connected there exist s,,...,S5,, 4,...,¢, € Sand a,,...,a, €
A such that

a=a,s,,
aty = a,s,,
a,t,=a'.
Because S is left reversible there exist x,,...,x,, y;,...,¥, € S such that
s, = 4y, and (8,5, )x; = ¢y, (1 <i < n). From this it is easy to see
that a(x, - - - x,) = a’y, and, hence, 4 is reversible.

(3) implies (4)
Clear, since sub-S-sets inherit reversibility.

(4) implies (1)
Suppose A4 is a right S-set and a, a’ are two elements of 4 such that there
exists a scheme over 4 and Z joining (a, z) to (a’, z). This implies @ and
a’ lie in a connected component of A of which aS U a’S is a sub-S-set. By
(4), there will exist a scheme over aS U a’S and Z joining (a, z) to (a’, z).
Thus, by Lemma 2.2, Z is flat. O

The following result appears in the literature.

PROPOSITION 2.5. (Kilp [7]) If all cyclic left S-sets over a monoid are
flat, then S is regular.

Proof. Choose s €S. s®1=2s>®1 in S ®S/0(s, s?), hence, in
58S ®5S/0(s, s?) (by flatness of S/0(s, s*)). By Lemma 1.1, either s = s2
or there exist u,,...,u, € sS, s,,...,s, €S, t,,...,t, € S where {s,,t,} =
{5, 5%} fori = 1,...,n such that

s = us,,
Uit = UyS,,
_ 2

u,t, =s>.

In either case it is clear that s € sSs. O
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The converse of this result is not true. In fact the band S = {0, e, f, 1}
in which ef = e and fe = fis both regular and left reversible but possesses
a two element cyclic left S-set which is not flat.

DEFINITION 2.6. A monoid S is called left (right) absolutely flat if all
of its left (right) S-sets are flat and absolutely flat if it is both left and right
absolutely flat.

Clearly every left (right) absolutely flat monoid is regular and left
(right) reversible.

Note. Isbell’s notions of dominion and absolutely closed semigroup (6],
[S] may be formulated in terms of schemes (see [10] and [4]). Absolutely
closed monoids need not be absolutely flat: they may not even be regular.
The authors thank the referee for demonstrating, however, that every left
(or right) absolutely flat monoid is absolutely closed.

PROPOSITION 2.7. Homomorphic images of (left, right) absolutely flat
monoids are (left, right) absolutely flat.

Proof. If f: S —» T is a monoid homomorphism onto 7 then any
A € Ens-T (B € T-Ens) may be considered a right (left) S-set via the
action (a, s) = af(s) ((s, b) = f(s)b) and furthermore, A ® ;B = 4 . B.
The result follows easily. ]

DEFINITION 2.8. A submonoid F of a monoid S is called a filter of S if
for all x, y € S, xy € F implies x, y € F.

PROPOSITION 2.9. A filter F of a (left, right) absolutely flat monoid S is
(left, right) absolutely flat.

Proof. We will assume S is a left absolutely flat monoid, and that
F 5 S. Then, by Proposition 2.7 the Rees factor semigroup S/P, where
P = S\ F, is left absolutely flat. Now S/P = F U {0} = F°. If X is a left
F-set, X* will denote the left F%set obtained by adjoining a new element
* to X and extending the action by defining OX* = {*} and F » = {x}.
Y* will denote the right F°-set obtained by performing a similar construc-
tion on Y € Ens-F.

Suppose B € F-Ens, A € Ens-F, a,a’ € A, b, b’ € B and there exists
an F-scheme over A and B joining (a, b) to (a’, b’). This may be
interpreted as an F%scheme over 4* and B* joining (a, b) to (a’, b’).
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Since F° is left absolutely flat, there exists an F°-scheme over aF° U a’'F°
and B* joining (a, b) to (a’, b’). It is easily checked that this last scheme
is actually an F-scheme over aF U a’F and B joining (a, b) to (a’, b’).
Thus, B is flat and F is left absolutely flat. O

3. Flat S-sets over semigroups. If S is any semigroup, let S' denote
the monoid S U {1}, obtained by adjoining a new identity element to S,
even in the case in which § is already a monoid.

DEFINITION 3.1. A semigroup S is called (left, right) absolutely flat if
S'! is a (left, right) absolutely flat monoid.

The concept of absolute flatness of a semigroup S may also be
developed in terms of the tensor product of S-sets in a manner similar to
that which has been outlined for monoids. This approach is consistent
with the definition above. Note that if S is a semigroup which possesses
an identity element, then S is absolutely flat as a semigroup if and only if
S is absolutely flat as a monoid. Finally, the semigroup analogues of
Lemma 2.4 and Propositions 2.5, 2.7, and 2.9 are clearly valid.

4. Inverse semigroups. In this section we prove that every inverse
semigroup is absolutely flat. Without loss of generality, assume S is an
inverse monoid and B belongs to S-Ens. We shall use Lemma 2.2 to show
B is flat. Let A belong to Ens-S, a, a’ € A, b, b’ € B and suppose that the
following scheme over 4 and B joins (a, b) to (a’, b’):

a=a,s,,
at, = a,s,, sb=1utb,,

at, = assy, S$,b, = t,b;,

a,t,=a, s,b, =1,b".

n"n

It will be convenient and will impose no added restriction to assume » is
even throughout this section. With reference to the above scheme, let

xo=1, x;=s7'tys;'ty---s7"% (1<i=<n)
and let

— — 41 -1 -1 .
yO - 1’ yi - tn sntn-—lsn—l o 'tn—i+lsn—i+l (1 Slsn)'
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LEMMA 4.1.
(1) X ¥ =X, (0=<i=<n),
(2) ytx;—llzyn (OSISI’I),
(3) ax, = a;t;x; 'x, (1=i=<n),
(4) @'y, =8, S yi Vi (1<i=n).

Proof. (1) and (2) follow immediately from the definition of the x’s
and y’s. We employ induction on i to establish (3). If i = 1, then, since the
idempotents of S commute,

ajt,xy'x, = aytty sy sy, = agssy it = ax,
as required. Assuming (3) holds for some k, | < k <n,

ak+ltk+lxk_-l1xk+l = ak+|tk+1t/:nllsk,+1x/:]xksk_+11tk+1
= g SpXe X Siiites:  (idempotents commute)
= @ty X XSt
= ax,Sp e (inductive hypotheses)

= ax,,,, whichis the desired result.

The proof of (4) is similar to that of (3). O

It will now be convenient to use the notation s;'s,=e, and
£ it = f fori = 1,2,...,n. We shall verify that the following is a
scherie (of length 3n) over aS U a’S and B joining (a, b) to (a’, b’):

ax, = axye;,

ax, = axe,, sib=1,b,,

ax, = ax,e;, $,b, = t,by,
axn*l = axn-len’ Sn—lbn~l = tn—lbn’

—_— — ’

ax,y, = ax,yo /1, s,b,=1,b,

ax, y, = axnylf2> tnb’ = snbn’
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ax,y, = ax,» fs,

Xy Ynys2—1 = Xy Vns2—1Jny2s

— ’
axnyn/2 =a ynxn/Zs

4
A YnXny 2-1€n,2

’ —
ay,x,e; =
’ ——
ay,xe, =

’
a y,Xo€

a,yn— 1 f;l =

— ’
=a ynxn/Z—l’

’
a ynxz’

’
ay,Xxy,

—
= ay,Xp,

’
ayn—l’

ayf,=ay,,

ayfh=
=a'y,,

a’yofy

ay,

t,_\b,=s,_1b,_1,

n—1 n—1%n

by ya+2bn 243 = Sy 24200 242
tn/2+1bn/2+2 = Sn/2+1bn/2+l’

byy2by 241 = Sp 2Dy 25

t3b, = 53b,
by = s5,b,,
t,b, = s,b,

s,b=1,b,,

sn—2bn—2 = tn~2bn—l7
b_,=t, b,

n—1 n—1

s,b,=1,b".

S

n—1

We begin by checking that these equalities hold. Because the equali-
ties on the right appear in the original scheme we need only consider those

on the left.

(1) ax; = axe

O=i=n-—1).

: — — — —1 — — —
Fori =0, ax,e, =ae, = a;s\s, s, = a,s, = a = ax,.

For0<i<n—1, axe, ,=a;t;x;'x;e;., (Lemma 4.1(3))

_ —-1
= Q1S X Xi€4

_ -1
= Qi 1S X X

) ax,y;

ax,y,

(idempotents commute)

(Lemma 4.1(3)).

=ax,yf., (0=<i=n/2-1).

-1
a;t.x; 'x;
ax;
_ -1
=ax,_; Vi Vi
_ -1
=ax, i\ Vi v
_ -1
=ax,_;¥; Vifin

= ax,y;fi+

(Lemma 4.1(1))

(idempotents commute)
(Lemma 4.1(1)).
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(3) ax, Y, ;2 = @' YoXp 12

XYy j2 = Xy 12 Yn 2 Vo2 (Lemma 4.1(1))
= an/Ztn/Zx;/l2xn/2yn_/12yn/2 (Lemma 4.1(3))
=4, /9415241, 2 Vn j2%n /lzx,, s, (idempotents commute)
=a'y, /3%, }2%n 12 (Lemma 4.1(4))
=a'y,x,, (Lemma 4.1(2)).

The remaining two groups of equalities in the left hand column are
similar to the second and first groups respectively and the proofs that the
equalities hold are analogous to the proofs given in (2) and (1) above.

Finally, it is necessary to verify that successive equalities “match up”
properly. For example, the first n equalities on the left and n — 1
equalities on the right may be written as follows:

a = (as')s,

(asl_l)tl = (axlsz_l)sz, 516 = 1,b,,
(axlsz_‘)tz = (axzs;')s3, $,b, = t,bs,
(axn—-Zs_—ll)tn——l = (axn—lsn_l)sn’ sn—lbn—l = tn—lbn'

By continuing in this way it is easy to see that the equalities are correctly
connected and, therefore, constitute a proper scheme.

We have proven in the above discussion that every inverse semigroup
is left absolutely flat and may now state the main theorem.

THEOREM 4.2. Inverse semigroups are (left, right) absolutely flat.

Completely injective semigroups (monoids all of whose left and right
S-sets are injective) are inverse (see [3]) and hence, by the theorem above,
absolutely flat.

The referee has pointed out that the proof of Theorem 4.2 in fact
establishes the following stronger result: if 7" is a submonoid of an inverse
monoid S, then any embedding of right (left) S-sets is preserved on
forming tensor products over T with any left (right) 7T-set.

Among unions of groups the absolutely flat semigroups are exactly
those which are inverse.
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THEOREM 4.3. Let S be a union of groups. Then S is absolutely flat iff S
is a semilattice of groups.

Proof. Without loss of generality, assume S is a monoid. If S is a
semilattice of groups, S is inverse and, hence, absolutely flat. Suppose S is
an absolutely flat union of groups. Then S is a semilattice of completely
simple semigroups ([1], p. 126), ie. S= U(S |y €T} where I is a
semilattice and S, is completely simple for each y € I'. Choose any § € I
Then S5 = U{S,|y €T, y =48} is also absolutely flat because it is a
filter in S (Proposition 2.9). Hence, S|, and, therefore, S; is left and right
reversible. However, because S; is completely simple it can be left and
right reversible only if it is a group. Thus, each S, is a group and S is,
therefore, a semilattice of groups. O

Note. For an alternative proof that every semilattice of groups is
absolutely flat, see Kilp [8].

COROLLARY 4.4. A band is absolutely flat iff it is a semilattice.

COROLLARY 4.5. A completely simple semigroup is absolutely flat iff it is
a group.

In the next section we demonstrate that absolutely flat semigroups
need not be inverse.

5. Primitive regular semigroups. In this section, we will char-
acterize a class of semigroups with 0 which are absolutely flat because,
very roughly speaking, every scheme behaves like a scheme over a group
or reduces to a trivial scheme involving 0.

Recall that a regular semigroup with 0 is called primitive if each of its
non-zero idempotents is primitive (i.e., minimal non-zero with respect to
the usual partial order on idempotents: e < f iff e = ef = fe).

DEFINITION 5.1. Suppose S is a semigroup with 0, and x € S. Then
ann,(x) = {s € S| sx = 0} is the left annihilator of x and

stab,(x) = {s € §|sx = x} is the left stabilizer of x.

ann,(x) and stab,(x) are defined similarly.

THEOREM 5.2. Let S be a primitive regular semigroup. Then S is left
(resp. right) absolutely flat iff S satisfies the condition

(Ann,): (Vx, y € S) (ann,(x) = ann,( y) implies xS = yS)

(resp. (Ann,)).
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Proof. Suppose that S satisfies (Ann,). We shall prove that S' is a left
absolutely flat monoid, and hence S is a left absolutely flat semigroup. To
this end, note first that S' satisfies the condition

(*): (Vx,yeS')(x=1orx EySor
(ann,(x) N stab,(y)) U (ann,(y) N stab,(x)) # 2).

Indeed, for x, y € S', if x # 1 and x & yS (so y 1), then x and y are
elements of S for which xS 7 yS. By (Ann,) there exists an element
w € (ann,(x)\ann,(y)) U (ann,(y)\ann,x)). Since S is left O-stratified
(see for example [2], pp. 23 ff.), either y € Swy (if w € ann,(x)\ann,(y))
or x € Swx (if w € ann,(y)\ann,(x)). In the first case, if y = uwy for
u € S, then uw € ann,(x) N stab,(y); in the second case, if x = owx for
v € §, then vw € ann,(y) N stab,(x).

Suppose now A € Ens-S' and B € S'-Ens. We shall prove by induc-
tion on » that, for a, a’ € A and b, b’ € B, the existence of a scheme of
length n over A4 and B joining (a, b) to (a’, b’) implies the existence of a
scheme over aS' U a’S! and B joining these two pairs. Then, by Lemma
2.2, B will be flat and hence the proof of the sufficiency of (Ann,) will be
complete. Throughout this proof, if s € S then s’ will denote any inverse
of sin S.

If n = 1 we must consider schemes of the form

a=as,,
p— ’ —
at, =a, ;b =1,

where s, 7, € S' and a, € A. If t;, = 1 then a, = a’ € aS' U a’S" and so
the original scheme itself is of the required type. If ¢, € 5,S then ¢, = s,u
for some u € S, so we may calculate as|t, = a,s,s{s,u = a;s,u = a;t, = a’.
Hence, in this case, the scheme

a = (as))s,,
(as))t, =a’, s;b=t,b'
establishes the result. Finally, if z¢, = ¢ and zs, =0, or z¢t; =0 and

zs, = s, for some z € § (by (*)), we have zs,b = zt,b’, from which it
follows (in either case) that 0b = ¢,b’ = s,b = 0b’. The scheme

a = (as))s,,
(as{)0 = (a’t;)0, s,b =00,
(a't)t, = a’, 0" =¢,b’

furnishes the desired conclusion.
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Assume now that appropriate new schemes may be found for all
schemes of length k for 1 < k < n. Consider any scheme

a=as,,
at; = a,s,, s1b=1,b,,
a,t, = a,s;, 5,0, = t,by,
an—ltn—l = ansn’ sn—lbn—l = tn—lbn’
a,t,=a, s,b,=t,b

of length n over A and B joining (a, b) to (a’, b’).
Ifey, =1

a= az(szsl)’

asl, = a,ss, (5,8))b = t,bs,

a,t,=a’, s,b, = t,b

is a scheme of length n — 1 over 4 and B joining (a, b) to (a’, b’), and the
inductive hypothesis gives the result. By symmetry, the case in which
s, = 1 is handled similarly. If ¢, € 5,S then ¢, = s,u for some u € S. It
follows that a,t, = a,(s,u) = au and so, since the pairs (a,t,, b,) and
(a’, b') are joined over a,t,S' U a’S' and B by some scheme (using the
inductive hypothesis again), they are a fortiori joined by a scheme over
aS' U a’S' and B. Moreover, the pairs (a, b) and (a,t,, b,) (by the n = 1
case) are also joined by such a scheme. The latter two schemes may be
spliced together to join (a, b) and (a’, b’) over aS' U a’S' and B as
required. By symmetry, the case in which s, € #,S is handled similarly.
Finally, using (*) if z € § exists for which zt, = ¢, and zs, =0 or zt;, = 0
and zs, = s,, and w € S exists for which ws, = s, and wt, = 0 or ws, = 0
and wt, = ¢, then we have zs,b = zt,b, (implying 0b = t,b, = 5,0 = 0b,
= ... =0b,=0b’) and ws, b, = wt, b’ (implying 00" = s,b, = t,b" = 0b,
= ... = 0b, = 0b). In this case, the scheme

a = (as)s,,
(as))0 = (a’t))0, s,b=0p,
(at)t, = a, 0B = 1,b’

joins (a, b) and (a’, b’) over aS' U a’S' and B. Thus, B is flat and S is left
absolutely flat.
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Conversely, assume that S does not satisfy the condition (Ann,), and
so there exist x, y € S such that ann,(x) = ann,(y) but xS # yS (and,
hence, xS N yS = {0}). Without loss of generality, we assume x # 0. We
prove S'/8(x, y) (see §1) is not flat in S'-Ens by showing that the
induced map (xS U yS) ®xS'/0(x, y) > S' ®S'/6(x, y) is not an
embedding.

Clearly x ® 1=y ® 1in §' ® S' /6(x, y). Assume for the moment
that x® 1=y ® 1 in (xS U yS) O S'/6(x, y). Then by Lemma 1.1
there exist a,,...,a, ExSUYS, s,,...,5, €S, f,...,t, €S' where
{s;,t;} = {x, y} fori =1,...,n such that

X = a,s,,
a)l; = a,s,,

a)l, = a,ss,

a,t,=y.
Now a, & yS for otherwise x € yS. Hence, a,f, € xS. a,t; # 0 because
otherwise a;, € ann,(¢,) = ann,(s,) implying a,s, = x = 0 which is a con-
tradiction. Thus 0 # a,#; € xS. By induction it may be established that
0 +#a;t; € xS for i = 1,...,n. In particular 0 # a,t, = y € xS which is
impossible since xS N yS = {0}. This contradiction concludes the proof
that S'/0(x, y) is not flat in S'-Ens, and, therefore, S is not left
absolutely flat. O

Primitive regular semigroups may be characterized as those semi-
groups with 0 which are 0-direct unions of completely O-simple semi-
groups ([2], p. 28). These latter semigroups are Rees matrix semigroups
MO[G; I, A; P] where P is a regular A X I sandwich matrix with entries
in G° We will denote by s(P) (the support of P) the A X I matrix
obtained by replacing all of the non-zero entries of P by the symbol 1.

COROLLARY 5.3. A Rees matrix semigroup S = M °[G; I, A; P] is left
(right) absolutely flat iff no two columns (rows) of s(P) are identical.

Proof. S has condition (Ann,) ((Ann,)) of Theorem 5.2 iff s(P) does
not possess two identical columns (rows). (]

The example following Proposition 2.5 is isomorphic to S!, where
S = G_)ILO[{I}; {1,2}, {1}; [11]], and thus is a right absolutely flat monoid
which is not (as also noted earlier) left absolutely flat.
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Any finite congruence-free semigroup with 0 is absolutely flat (see [4],
p. 84). Furthermore, if § = U {S, |y € I'} is a 0-direct union decomposi-
tion of a primitive regular semigroup S into completely 0-simple semi-
groups S, (y €T), S is absolutely flat iff S, is absolutely flat for each
y €T

Any regular semigroup S for which | S |< 4 is completely regular i.e. a
union of groups. Therefore, using Theorem 4.3, it is easy to see that if
| S|= 4, S is absolutely flat iff S is inverse. It follows that a non-inverse
absolutely flat semigroup must have at least 5 elements. Consider the
semigroup S = {0, e, f, g, s} with the following multiplication table.

0 e f g s
0 0 0 0 0
e 0 e f e f
f 0 e f 0 0
g 0 g s g s
s 0 g s 0 0

This semigroup is isomorphic to OM°[G; I, A; P] where G = {1} is the
one element group, I = A = {1,2} and P = [} }]. S is a 5-element non-in-
verse congruence-free semigroup with 0 which, by Corollary 5.3, is abso-
lutely flat. In fact for any natural number n = 5, there exists a non-in-
verse, absolutely flat semigroup with cardinality n. (One could, for exam-
ple, adjoin successive new identity elements to the semigroup provided
above.)
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