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For an arbitrary parabolic subgroup P of the real or complex
symplectic group, let N be the nilradical. Using Kirillov theory, a subset
of the dual of N is found, whose complement has Plancherel measure
zero. It is shown how these representations extend by combining with the
oscillator representation of a lower rank symplectic group. A result is
obtained concerning the commuting algebra of the restrictions to P of
the principal series representation of the symplectic group induced from
a unitary character of the opposite parabolic.

Introduction. In [6] and [2] there are irreducibility theorems for
principal series representations of symplectic groups induced from unitary
characters of certain maximal parabolic subgroups. Such a representation
can be realized to act in the L?-space of a nilpotent subgroup, the
nilradical of the opposite parabolic. The irreducibility results are obtained
in two stages. In the first stage the representation T is restricted to the
opposite parabolic and the commuting algebra of the restriction is com-
puted using nilpotent harmonic analysis. Since these parabolics are maxi-
mal subgroups, the full symplectic group is generated by the opposite
parabolic together with a single element, say p. The commuting algebra of
T is, therefore, the subalgebra of the commuting algebra of the restriction
consisting of operators that commute with 7( p). The second stage is the
difficult determination of which operators these are. For arbitrary para-
bolic subgroups of the symplectic groups, even for arbitrary maximal
ones, it appears that the second stage of this program is not feasible and
the irreducibility theorems must come from more powerful methods in
semisimple representation theory. However, the first stage can be carried
out in full generality, and it is of interest for the way in which the
oscillator representation occurs and because of the computations involved
in the nilpotent harmonic analysis. This is the topic of this paper.

To be more specific, let P be a parabolic subgroup of the symplectic
group Sp(n, F), where F = R or C. It is known that the principal series
representation 7 of Sp(n, F) induced up from a unitary character of P
can be realized to act in L*(N), where N is a nilpotent subgroup of
Sp(n, F) and N N P is trivial. Let M be the normalizer of N in P, then
the semidirect product NM is a parabolic subgroup conjugate to P (NM is
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the opposite parabolic) and N is the nilradical of NM. These groups are
further described in §1. In §2, the theory of Kirillov is used to compute,
except for a set of measure zero, the dual object of the nilradical of an
arbitrary parabolic subgroup of Sp(n, F). Denote by 9U the Lie algebra of
the nilradical N and let 9U* be the real vector space dual of 9U. Suffi-
ciently many coadjoint orbits in 9U* are found so that the complement of
their union has measure zero in 9U*. The irreducible representations
corresponding to these orbits are computed and they form a subset of the
dual object of N whose complement must have Plancherel measure zero.

Let F = C, to simplify the remainder of this introduction, and let A be
an element of the dual of N, acting in a space L*(V). Define M, to be the
subgroup of M consisting of all m € M such that the representations
z - A(m~'zm) and X are unitarily equivalent. Depending on the choice of
P, we will see that M is isomorphic to a direct product of the form

Sp(no,C) X G].(nl, C) X tee XGl(nr, C).

where n = ny+ n, + --- +n,, n, is nonnegative and n,,...,n, are posi-
tive. It turns out that M, is isomorphic to

Sp(ny,C) X O(n,;,C) X --- X0O(n,,C).

In §3, we extend A to a unitary representation of NM, acting in the same
Hilbert space L*(V'). For this we need a representation D, of M, acting in
L*(V) and satisfying

A(m™'zm) = D,(m) 'N(z)Dy(m) (z € N,m € M,).

The operators D,(m) are given in terms of the oscillator representation of
Sp(ny, C) and a certain natural representation of O(n,, C)
X -+ XO(n,,C).

Finally, in §4, we indicate that there is a *-isomorphism between the
commuting algebras of T'|y,, and D,. Throughout the paper we give the
analogous results for the real field, which are more complicated to state.

1. Definitions. In this section, we define some of the groups and
introduce some of the notation that will be used throughout the paper.

Let F be the real field or the complex field, R or C. We choose to
define the symplectic groups over F as is done in [5] in order to have the
most appealing treatment of the parabolic subgroups. Because of this
choice, a notation for “secondary transpose” becomes very useful. For
any positive integer p, let
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be the p X p matrix with ones along the secondary diagonal and zeros
elsewhere. The subscript can be omitted when the context determines the
dimensions of J,. If x is a p X ¢ matrix and x’ denotes the usual transpose
of x, let the secondary transpose x* be defined by

x* = JqX’Jp.

It is easily verified that (x*)’ = (x’)* and, in the case of invertible
matrices, (x°)' = (x7!)*. Thus, we can write x**~! for ((x*)")! without
confusion. Also, (xy)* = y°x* whenever x and y are compatible for multi-
plication.

Fix a positive integer n and define the symplectic group

R S e Y

n n

Another way of expressing (1.1) is the following: denote the elements of
F'2" by [xy] with x, y € F'*". Then Sp(n, F) is the subgroup of
Gl(2n, F) consisting of all linear transformations of F!*2" which leave
invariant the bilinear form

(1.2) B([x, 0], [%232]) = »ixs — x135.

The parabolic subgroups of Sp(n, F), up to conjugacy, can be worked
out from (1.2) as in [8] (§8). Let

{ny,ny,....,n, 204, n,,n,_4,...,n}

be any sequence of integers with the indicated symmetry and satisfying
the conditions that n; is positive for i = 1,...,r, n, is nonnegative, and
n=ny+n,+---+n,. Consider the blocking scheme for 2n X 2n
matrices in which the diagonal blocks have dimensions

n X ny,ny, Xn,y,...,n, Xn,2n,X2n,,nXn,,...,n Xny,

respectively, from upper left to lower right. Corresponding to this block-
ing scheme we have

(1.3) P = {g € Sp(n, F): gis upper block-triangular}.

That is, g € P if and only if g € Sp(n, F) and, with respect to the
blocking scheme, the blocks in g below the block-diagonal are zero. As
defined by (1.3), P is a parabolic subgroup of Sp(n, F'). Moreover, each
conjugacy class of parabolics in Sp(n, F) contains exactly one member of
this form.

Also associated with the above blocking scheme are the subgroups of
Sp(n, F) called N and M, which we now describe. First, denote by W the
subgroup of Gl(n — ny, F) consisting of all matrices that are lower
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block-triangular with identity blocks along the block-diagonal; here the
blocking scheme for (n — n,) X (n — n,) matrices has diagonal blocks of
dimensions

n,Xn,,...,n, Xn,,n, Xny,

respectively, from upper left to lower right. Define N to be the subgroup
consisting of all lower block-triangular elements of Sp(n, F') with identity
blocks along the diagonal. Using (1.1), a matrix computation shows that

w0 0 0
Syp,8—1
(14) N=4 TV é g g 1w E W, x, y € FmoXn,
yw
t y X w

wt' — tw' = yx° — xy°t.

We will abbreviate the notation for elements of N by using (¢, y, x, w).
The multiplication law for N can then be written as

(1.5) (1), yi> X1, W) (23, 325 X3, W)
= ((t1 —nx;txy, + Wltzwf)wf—l,Y1 T wiy,, Xt owix,, W1W2)-

Let M be the block-diagonal subgroup of Sp(n, F). If we denote by
Gl(n,, F) X -+ - XGl(n,, F) the subgroup of Gl(n — n,, F) consisting of
block-diagonal matrices

ar
a= ’
a,
with a; € Gl(n;, F) fori =1,...,r, then
a’' 0 0
(1.6) M= 0 s 0]|:s€ESp(ny, F),
0 0 a

a € Gl(n,, F) X --- XGl(n,, F);.

In (1.4), (1.6), and throughout the paper, we use the convention that any
matrix with n, as a dimension is suppressed if n, = 0.
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It is easy to verify that NM is a semidirect product with M normaliz-
ing N and that NM is conjugate to P in Sp(n, F). Let x be a unitary
character of P. The unitary representation of Sp(n, F) induced by x is a
member of the principal series associated with P. The formula for this
representation T realized to act in L?>(N) can be found in [5] (§33.1). We
shall only present, here, the formula for the restriction to NM of the
principal series representations of Sp(n, F). For f € L>(N), z € N, and
meM,

(1.7) T(zm)f(§) = 8(m)™"*x(m)f(m~'tzm),
where 8(m) = d(m¢{m™") /d¢{ and d¢ is Haar measure on N.

2. The dual of N. Let the nilpotent group N have the form (1.4). In
particular, this means we are fixing a blocking scheme for 2n X 2n
matrices, in which the diagonal blocks have dimensions

n, Xny,...,n,Xn,,2n,X2n4,n,Xn,,....,n Xny,

respectively, from upper left to lower right. This induces blocking schemes
for the various submatrices of z € N. Notice that if (¢, y, x, w) € N then
the blocking scheme induced on ¢ has blocks along the secondary diagonal
of dimensions n, X n,,...,n, X n, from lower left to upper right.

In this section we use the method of Kirillov to obtain the dual object
of N (up to a set of Plancherel measure zero). For this we need the Lie
algebra 9, its real vector space dual 9U*, and the coadjoint action of N on
9U*. The dual of N is taken to be a set of irreducible unitary representa-
tions of N which correspond to the orbits of maximal dimension in 9U*
under the coadjoint action of N.

As a linear Lie algebra, 9 is given by

-w 0 0 O

-x; 0 0 O
. = tw, € 9,
@D =4 6 0 o |

L N X WM

X,y € FOrmno)Xno, ¢ = 51

where °Uf, the Lie algebra of W, is the set of (n — ny) X (n — n,) lower
block-triangular matrices with zero blocks along the diagonal. The best
way to express 9U* seems to be as a set of equivalence classes in F2"*?",
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For X, Y € F?"*2"_define
(X|Y)=Retr XY'

(the real part of the trace of XY*). Let two elements, X’ and Y’, of F2"*2"
be equivalent if ( X|X")= (X |Y’) for all X € 9. Denote the equiva-
lence class of X’ by ¢( X”), then

-w 0 0 O
-x; 0 0 O
(22)  N*={c ysl o 0 o cw, €W, 1, =15},
1
L Y1 X1 W

The adjoint (left) action of N on 9 is given by Ad z(X) = zXz', for
z € N and X € 9U. Thus, the coadjoint (right) action of N on 9 * is

(2.3) Ad*z(c( X)) = c(z'X7z7Y).
This follows since, for X € 9, we have
<X| Ad*z(c(X’))) = (Ad z2(X) | c(X’)>
= (zxz7'| X")= (X | 2'X'27 ") = (X | e(2'X72"7Y)),

using properties of the trace. If X’ is lower block-triangular then z'X’z"™!
is generally not lower block-triangular and this explains the need for
equivalence classes.

For brevity, denote the elements of 9* by (¢,, y,, x;, w;), keeping in
mind that (¢, y,, x,, w;) = (5, ¥,, X,, w,) if and only if t, = 1,, y, =y,
X, = x,, and w, is identical with w, below the block-diagonal. By comput-
ing the matrix product z'X’z'"!, with z= (¢, y, x, w) EN and X' =
(ty, y1, X1, W) € OU*, we find the formula

(2.4) Ad*z(X’) = (wtw*, wi(y, + 1,x%),
wi(x, — 1,y%), wi(w, — x,x* — yy" — 5w )wt ),

Letting z vary in N, (2.4) gives the orbit of X’ in 9U* under the coadjoint
action of N. In general, the orbit is very complicated but a considerable
simplification occurs if ¢, has the property that each submatrix #{*!, with
n, + -+ +n, rows and columns, in the lower left cornerof ¢, (k = 1,...,r)
is non-singular, Let us call this property secondary block-diagonalizable
(SBD) as suggested by the following matrix fact. Let A be the set of all
(n — ny) X (n — n,) matrices

A

r
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with A, = X, € Gl(n;, F) (i = 1,...,r) along the second block-diagonal
and zero elsewhere.

LeMMA 2.1. With respect to the blocking schemes indicated earlier, the
matrix t, =t} is SBD if and only if t, = w'Aw*" for some N € A and
w € W. Moreover, \ and w are unique in this case.

Proof. A statement proved in [5] (p. 59) can be applied to #,J = (¢,J)’
to yield this lemma.

The next result gives the maximal orbits in 9U* under the coadjoint
action of N.

THEOREM 2.2. For i = 1,2 let (t,, y;, x;, w;) € O* and suppose t, is
SBD, t, = w'Aw*, w € W, \| € A. Then (a) (t,, y,, X, W) is in the same
orbit as (A,,0,0,0), and (b) (1, y,, x;,w;) is in the same orbit as
(5, ¥5, X5, W,) if and only if t, = v'\ 0" for some v € W.

Proof. First we show that (7, y,, x,,w,) is in the same orbit as
(2,,0,0,0) by constructing a suitable z € N. Recall that z = (¢, y, x,w) €
N provided wt®* — tw® = yx* — xy°. It follows that (T — yx°, y, x, I) EN
for any T'= T°. According to (2.4), to have

AdX(T — yx*, y, x, I) (1, y1, x,, W) = (1,,0,0,0),
we must set y, + #,x** = 0, x;, — ¢,** = 0 and find T = T* so that
(2.5) wp — xx' =y yt = tl(T—yxs)“ =0.

where = means these two matrices agree below the block-diagonal. Thus,
let x = ¢/~ 'y and y = —#{~'x{" (since ¢, is SBD, it is invertible) and note
that (2.5) is equivalent to

(2.6) 4LT = w, + yxitt.

We claim that #,4 = B always has a solution A = 4° when ¢, is SBD. The

proof is a recursive construction of the block-columns of A. Here, 4 and B

have a blocking scheme with diagonal blocks of dimensions n, X n,,...,n,

X n, from upper left to lower right. Let A denote the jth block-column

of A. We will write A = B") when these block-column submatrices of 4

and B agree below the block-diagonal position. To begin, let

Y 0

% =[5 ]

n,Xn,

0

be a solution to ¢, X{" = B™. Such a solution exists since ¢, is SBD and
hence #{"~" is invertible. Define 4, = X; + X then 4, = A4S and 1,4V =
1, X" = B®. Suppose for some k (1 <k <r — 1) we have 4, = 4} and
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0] Y| 0
0] 0| Of
0100

Where X{&1D =[¥] and Y is the (n, + n, + --- +n,_,) X n,,, subma-
trix of X{k*D above the secondary block-diagonal. Since ¢{"~¥! is invert-
ible, there is such a matrix X, , satisfying £, X***D = B*+D — ¢ g(k+D,
Let

1AY =BY (j=1,...,k). Let

X1 =

Ay = A + Xy + Xy
then
— k+1) o k+1 k+1) ~ p(k+1
Apy = Ajsrs HAEND =6, AP + 1 XD = BETY,
and, for1 <j <k,
hAZ, =n4f) = BY.

The matrix A = A,_, is the desired solution. We have proved that (2.6)
has a solution T with T = T and it follows that (¢, y,, x;, w;) is in the
same orbit as (7,, 0,0, 0). Clearly, (0,0,0, w) € N and

Ad*(0,0,0, w)(1,,0,0,0) = (A,,0,0,0)

by (2.4) so (¢,,0,0,0) is in the same orbit as (A,,0,0,0) and (a) is proved.
The proof of (b) is straightforward.

If ¢, is SBD then we say that the orbit of (z,, y,, x;, w;) € 9O* is an
SBD orbit. By Theorem 2.2 the SBD orbits are in 1:1 correspondence
with the set A. Next, we will show that SBD orbits are orbits of maximal
dimension. Let m denote the number of entries below the block diagonal
in a blocking scheme corresponding to n — n, = n; + --- +n, so that
dim W = m.

THEOREM 2.3. (a) Each SBD orbit is an algebraic surface in OU* having
dimension over F equal to 2m + 2ny(n — ng). (b) The SBD orbits are orbits
of maximal dimension in 9U*.

Proof. (a) Let O be an SBD orbit represented by (A,0,0,0) with
A € A. Then O consists of all (¢, y;, x;, w;) € 9* such that ¢, = w'Aw*
for some w € W. By the uniqueness part of Lemma 2.1, #, can be
parameterized by w € W. Thus, dimO =m + ny(n — ny) + ny(n — ny)
+ m. (b) The complement of the union of the SBD orbits consists of all
elements (t,, y,, x,, w;) € N* with det¢[*1=0 for some k=1,...,r.
Thus, the union of the SBD orbits is a Zariski open set. It is known that
the union of the orbits of maximal dimension is also a Zariski open set. If
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the SBD orbits were not of maximal dimension we would have two
disjoint Zariski open sets, which is impossible.

REMARK. We have not proved that there could not be an orbit of
maximal dimension which is not SBD.

Now that we have isolated the SBD orbits, we will present the
corresponding irreducible unitary representations of N. Recall that a
subalgebra QU of the Lie algebra 9 is said to be subordinate to X’ € IN*
provided ([ X, Y] | X")= 0 for every X, Y € QL. For fixed X’ € I* let U
be a subordinate subalgebra of maximal dimension and let U = exp .
Define a unitary character on U by setting x(u) = exp 2wi(log u | X"), for
u € U. The desired irreducible unitary representation of N is the one
induced from x.

It happens that there is a maximal subalgebra subordinate to every
X’ € 9*. In fact, define AU = {(¢,, »,,0,0) € 9N}, then AU is an abelian
subalgebra of 9 and it can be verified that

dimg U = (dimg 9N ) — (dimg 0),/2,

for an SBD orbit O, to show that Q has maximal dimension.

For X € 9 we have X2 = 0, which implies that exp X = I + X. Let
U =exp, then U= {(¢, y,0, I) € N}. U is an abelian subgroup of N
with group operation

(¢, 9,0, 1)(t', y',0,I)= (¢t + ¢,y +y,0,1).

Also, define V' = {(0,0, x, w) € N}, then V'is a subgroup of N with group
operation given by

(0,0, x,w)(0,0, x’,w’) = (0,0, x + wx’, ww’).

Elements of N can be uniquely expressed in the form z = uv, with u € U
and v € V. In fact,

(2.19) (¢, y, x,w) = (w* + yx*, »,0,1)(0,0, x,w).
Also, V normalizes U since
(2.20) (0,0, x,w)(z, »,0, 1)(0,0, x, w)™

= (xy*w* + wiw* + wyx*, wy,0, I)

It follows that N = UV is a semidirect product and representations of N
induced from characters of U can be realized to act in L*(V).

Fix A€ A, let X’ =(A,0,0,0) € 9U*, and consider the unitary
character of U defined for u = (¢, y,0, I) € Uby

(2.21) xa(u) = exp2mi(logu| X') = exp2mi(t|A),
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where (7|A)= RetrtX. The irreducible unitary representation of N,
denoted A, induced by x, and acting in L?(V) is then given by
A(ug0y)9(0) = xx(vugo™")p(vvy), for uy, € U, v, € V, and ¢ € LX(V).

Let X be the additive group F("~"9*7_ Choose as independent
parameters for the elements (0,0, x, w) € V the matrices { = w'x € X
and p =w € W. The Haar measure of V is d§dp, where d§ and du
denote the Haar measures of X and W, so we have an identification of
L3(V) with LA X X W). In terms of £ and p, the formula for X is

(2.23) A(t, y, x,w)o (&, )
= exp2mi (N | p(£y* + w* + yx* + y£)u) (w7 (£ + x), pw),

for (t, y, x, w) € Nand ¢ € L*(X X W).
To summarize this application of the theory of Kirillov we state

THEOREM 2.4 (i) For A € A, (2.23) defines an irreducible unitary
representation X of N. (i) The mapping from A to the dual object of N which
sends N to the unitary equivalence class of A is injective, preserves Borel
structure, and the complement of the image is a null set with respect to
Plancherel measure.

3. The action of M on the dual of N. Since M normalizes N, the map
z - m~'zm is an automorphism of N for each m € M. It follows that
z - AM(m~'zm), for A € A, is an irreducible unitary representation of N
unitarily equivalent to (m-A)~ for some m-A € A. We now investigate
this action (m, A) > m-A of M on A.

Denote the elements of M, defined in (1.6), by m = (s, a), with
s € Sp(ny, F) and a € Gl(n,, F) X --- XGl(n,, F). Express s in terms
of n, X n, submatrices by writing
S Sz

s_

S21 S»

and recall that a is regarded as an (n — n,) X (n — n,) block-diagonal
matrix. Let z = (¢, y, x, w) € N. Since y, x € X = F("""0)*"_ we can
form the (n — n,) X 2n, matrix [ yx]. It will be convenient to define

(3.1) g(y, x) = g([yx]) = yx°.

1

Matrix multiplication now gives the following expression for m~'zm:

(32) mzm=(a'ta*"", a7\ (ys,, + x55), a”(ys;, + x5,,), a 'wa).



PARABOLIC SUBGROUPS OF Sp(n, F) 359

Let A € A and ¢ € L*(X X W), then (3.2) together with (2.23) yields

(3.3)  N(m7zm)e(¢, p)
= exp 2mi (A | p(£(ys,, + x55)°a*”!
+a (owe + g([yls))a" + a sy, + x5 €)W
-¢(a'wla(E+ a'(ys), + x5,,)), pa'wa).

Since the representation z - A(m~'zm) is unitarily equivalent to
(m-)\)", there exists a unitary operator D,(m) on L*(X X W), for each
m € M and A € A, such that

(3.4) A(m™'zm) = Dy(m)™ (m-X)"(2) Dy(m),

for all z € N. The operator D,(m) is unique up to a scalar factor in
J={a€C: |a|=1)}, because (m-A) is irreducible. Also, for m,,
m, €M,

X(mgl(ml‘lzml)mz) = X((m,mz)_lz(mlmz))
implies that m, - (m,-A) = (m;m,) - A, from which it follows
(3.5) Dy(mym,) = a(A, my, mz)szh,\(ml)D)\(mz),

for some a(A, m;, m,) € J.
The way to describe the operators D,(m) and the action (m, A) = m-A
is to work separately with the following obvious subgroups of M:

S ={(s,1):s €Sp(ny, F)},
and
A={(I,a):a€Gl(n,, F) X --- XGl(n,, F)}.

Fix A € A. It is easy to see from (3.2) that 4 normalizes the subgroup
V = {(0,0, x,w) € N} of N. Therefore, the formula

Dy(m)¢(v) = v(m)"*¢(m 'om)

(m € A, ¢ € LA(V)), where y(m) = d(m~'vm)/dv, defines a unitary op-
erator on L* (V). If m = (I, a) € A then, in terms of the parameters
(&, p), the formula becomes

(3.6) Dy(1, a)¢(%, ) = ¥(I, a)*¢(a'¢, a'pa),
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for ¢ € L3(X X W). A simple computation shows

LEMMA 3.1. Form = (I,a) €E Aand A € A,

A(m'zm) = Dy(m)™'(a*"'Na""")"(z) Dr(m),
for all z € N, Dy(m) defined by (3.6). Thus, m-A = a'~'\a*"".

If ny = 0 then M = A and we are done, so assume in the discussion
of S that follows that n,# 0. Now let m = (s,I) € S. In order to
describe D, (s, I), we need to parallel Weil’s construction of the oscillator
representation (cf. [4] 2.3). Fix A\ € Gl(n — n,, F) and let X be the vector

space F("~"0) X n, over F. The dual of the additive group of X is
identified with X using the bicharacter

(3.7) (x, yYr=exp2mi (A | xp* + yx*) = xa(xp* + yx°*).

For each (y, x) € X X X, let Uy(y, x) denote the unitary operator on
L*( X) defined by

(3.8) U(y, x)¥(§) = xa(€p® + y& )9(€ + x).
The family of operators
Up(y, x, @) = aUy(y,x) (y,xEX,a€T)

forms a group, denoted A4,( X ), whose composition law is

Un(y15 %1, 0) Ua(5 X2, a5)
= Ux(n1 + 325 %1 + X, Xa(02x7 + X13) ;).
There is an isomorphic group 4,( X) = X X X X ¥ with composition law
(V1 %15 @) (325 X35 @3) = (01 + 350 %, + x5, x2(00%5 + x1y3)oqa;).

U,: A,(X) - A4,(X) is the unique irreducible unitary representation of
A,\(X) which leaves the center, {0} X {0} X &, pointwise fixed, in the
sense that U,(0,0, a) = al.

Let B,(X) denote the group of automorphisms of 4,(X) which leave
the center pointwise fixed and let 0 € B,( X). Then there exists a unitary
operator r,(¢) of L*( X), unique up to a scalar factor in J, such that

(3.9) Uy, x, @)a) = ry(a) " Ur(y, x, a)ry(o).

The mapping o — r)(o) determines a projective representation of B,(X)
called the Weil representation.
Let s € Sp(n,, F) and define f, ,: X X X - T by

(3.10) £y, %) = xa(g(lyxls) = g(lyx]),
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where g([yx]) = yx°. Then the pair (s, f,,) determines an element of
B,(X) defined by

(311) (ysx’a)(s’ fv,)\) = ([yx]s’ fs,)\(y>x)a)’

for (y, x, @) € A\(X), as a computation shows. Morever, the set {(s, f; ,):
s € Sp(ny, F)} together with the operation

(Sxa f:vhk)(SZ’ fvz,k) = (S1sza fslsz,x)

forms a subgroup of B,(X) isomorphic to Sp(n,, F). For each s €
Sp(ny, F), use 6 = (s, £, ) in (3.9) to define

(3.12) r(s) = n(s, fs)\)

The mapping s — r\(s) determines a projective representation of
Sp(n,, F); this is the oscillator representation.

In order to make use of r, in the context of the representation A of N
acting in L2( X X W), we identify L?>(X X W) with L>(W, L*( X)). That
is, the function ¢ € L*(X X W) is identified with the L?( X)-valued
function

p=o,=0(,n),

defined for p € W. Recall that an operator Q on L*(W, L*( X)) is called
decomposable if (Q¢), = Q(p)¢, for ¢ € L¥(W, L*( X)), where Q(p) is an
operator on L*( X) for each p € W. In this case we say Q = [, O(p) dp.
If we define N, = {(¢, y, x, I) € N}, then N, is a subgroup of N and the
operators A(?, y, x, I) are decomposable. For A € A and p € W, we will
use the notation

A-po=pfAps,
(3.13) {()\ “)(t v, x, I) = x5 ot + yx* YU _u(y, x).

Then (2.23) and (3.8) imply
(3.14) A, y, %, 1) ZfW(X'M)(t, y,x, 1) dp

The relationship between A and the oscillator representation is given by
the following sequence of results:

LEMMA 32. Let A E AN, pE W, (¢, y,x,I) €N, and s € Sp(n,, F),
then

(3.15)  (R-w)(t, [yx]s, I) = ry W(s)(R-w)(t, y, x, D)y ().
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Proof. Here is an outline of the proof. (1) Define 7, ,: N} = 4, . ,(X)
by the formula

T)\-[I.(t’ Y, X, I) = (y’ X, Xk-u(t +yxs))’

then , _, is a homomorphism and A-p = U, 7, ,. (2) Denote by (s, I)
the automorphism of N, given by

(t,y,x, 1) = (1,[yx]s, I).

Then the following is a commutative diagram:

G, D
N, —>) N,
ol Y7au
Ay u(X) o Ay .u(X)
S, S,A - B

(3) Denote by ry .,(s) the automorphism of 4, . ,(X) given by

U)\-u(y, X, 0[) - r/\-u(s)—lUA~n(y, X, a)rk-u(s)’

then the following is a commutative diagram:

Nl :
s,I)
> X
A, (%) - LX)
Ay
(s’fs,)\-u) J rx.u(s)
Nl -
. Aew
v v
N
Ay, (%) 5 > Ax-u(’d
Aen

which completes the proof.

LEMMA 3.3. For p € W, define a unitary operator I(p) on L*(X) by
I(p)Y(&) = Y(p'§). Then, for s € Sp(n,, F),

r)\-p(s) = l(l‘)—l"x(s)l(ﬂ)>

up to a scalar factor in %J.
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Proof. First, note that fory € L*(X) and (¢, y, x, I) € N,,
() " xa(p (e + yx ) ) Ui (ulyx])1(w) ¥ (£)
= xa(p(t + yx* ) ) xa(n(&y* + p£ )1 (p)Y(pé + px)

= xx. ot T yx*)xn (&Y + £ )x (£ + x)
= xa.ult T yx)UK W (y, x)¥(§).

That is,
(3.16)  Up)"'N-I(pew, plyx], DI(p) = X-p(t, y, x, I).
It follows that
) ' n () ()X (e, p, %, DI(R) ' r(s)I(p)
= 1(u)"'ra(s) "' I(ppe, plyx], I)ry(s)i(p)

= I(u)"'X-I(pep, plyx]s, I)i(p)
= X '[.L,(t, [yX]S, ‘I),

using (3.16) and (3.15). Since r, . ,(s) is the unique unitary operator (up to
scalar factor in & ) with this property, we have the desired result.

THEOREM 3.3. For (s,I) € S, define the unitary operator D,(s) on
L*(W, L¥( X)) by setting

Dy(s) = [ 1) r(s)H(w) dp.

Then,
X((S, I)—l(ta Vs X, W)(S, I)) = DA(S)—lx(t’ Vs X, W)D)\(S)a
for every (t, y, x,w) € N.

Proof. For (t, y, x,w) € N, we have
Az, y, x,w) =A(w?, y, x, I)X(0,0,0, w)
and, hence,
Dk(s)_l}:(t, v, x,w)D,(s)
= D,(s)"'A(tw*, y, x, I)D,(s)D,(s)"'X(0,0,0, w)D,(s).
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But, for ¢ € LAW, L} X)),
(Dy(s)'R(tw*, y, x, I)Dy(5)9) (%)
= 1) " ra(s) HRIX - p(ow", y, x, D) 1)) 9,(£)
= uls) X (W, p, 3, Dy u(5)8,(6)
=X-p((s, 1) (w*, y, x, I)(s, I))$,(§)
= (X((s, 1) '(w*, y, x, I)(x, 1))9),(4),
by Lemma 3.3 and (3.15). Also, from (2.23), we have
(317)  (X(0,0,0,w)$),(§) = ¢, (w™'§) = I(W)¢.,(£).
Thus,
(D(s)7'A(0,0,0,w)Dy(5)9),(£)
= 1(1)"'ra(5)" 1(1)(X(0,0,0, w) Dx(s)$),(£)
= 1) (5) 1)) (D3 (5)6) e (8)
= 1(p) " () 1) W) (pw) " () I(uw) 8, (£)
= 1(w)4,,(§) = (X(0,0,0,w)$),(¢);
that is, 7\(0, 0,0, w) commutes with D,(s). Combining these facts yields
Dy(s)'A(2, y, x, w)Dy(s)
= D,(s)"'A(w*, y, x, I)X(0,0,0, w)D,(s)
= D,(s)'A(w*, y, x, I)D,(5)A(0,0,0, w)
= X((s, 1)"'(ew*, y, x, I)(s, I))A(0,0,0, w)
= X(ew?, [ yx]s, I)A(0,0,0, w)
=A(t, [yx]s,w) =X((s, I)'(2, y, x,w)(s, I)).

In summary, we have the result:

THEOREM 3.4 (a) The action of M on A is given by
(3.19) (s,a)A=a""\a"""! for(s,a) EM,\ EA.

(b) With D,(s, a) = Dy(s, I)D\(1, a) for A € A and (s, a) € M, we
have

A((s, a)'z(s, a)) = D,(s, a) ' (a" " 'Na*"") (2)Dy(s, a),
for all z € N.
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Next, we investigate the orbits in A under the action of M. Since
(3.19) is correct for n, = 0 as well as for n, # 0, the results here hold in
both cases. For any A € A, let A = (AD,... ] X"), where XX = (X®)s is
the non-singular, n, X n, submatrix of A in the kth position (k = 1,...,r)
along the secondary block-diagonal of A (counting from lower left to
upper right). For (s,a) € M, let a=(a®,...,a"”), where a'® &€
Gl(n,, F) is the submatrix of a in the kth position along the block-diago-
nal (counting from lower right to upper left). In terms of this notation, the
action of M on A is given by

(3.20) m-A = (@M INDgMst=1 g1\ (Dsi=1)

A variant of Sylvestor’s Law can be applied to each component to prove
the following result:

THEOREM 3.5. For F = C, the action of M on A is transitive. For
F =R, there are (n, + 1)(n, + 1) ---(n, + 1) orbits in A under the action
of M. Each orbit is represented by an element (\V,...,X") such that, for
k=1,...,r, X has the secondary diagonal form

B _1 T
-1 _
1 - Jnk’mk’
[ 1 |
with m,_ entries of 1 in the lower left positions and n, — m, entries of —1 in
the remaining positions (m, = 0, 1,...,n,).

4. The commuting algebra of T restricted to NM. Corresponding to
a certain blocking scheme for 2n X 2n matrices, we have defined a
parabolic subgroup P of Sp(n, F), the opposite parabolic NM, and the
principal series representation T induced from a unitary character on P
and acting in L?(N). Next, we obtain theorems concerning the commut-
ing algebra of T |,,, generalizing results in [6], [2], and [1]. Proofs will be
omitted here; they are similar to what can be found in the papers just
mentioned.

Let A,,...,A, denote the orbits in A under the action of 4 and let
A,...,A; be orbit representatives (see Theorem 3.5). Define the stability
subgroup of A, in 4:

A,={(I,a) €A: (I,a)-A\,=1,},

fori = 1,...,I. The subgroup 4, is uniquely determined by the orbit, up to
conjugate subgroups in A. We are also interested in the stability subgroup
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of A; in M. This turns out to be S4,, as is easily seen. Consider, now, the
restnctlon of D, to SA,. By (3.5), thls is a multiplier representation of SA,
acting in L2(X X W). The two theorems below describe the stablhty
subgroups and D, g, .

Analogous to the notation J, ,, of Theorem 3.5, we have

—In—m 0 .
’"_[0 I ] (m=0,1,...,n),

m

1

n,

where I, and I, ,, denote identity matrices. The (pseudo) orthogonal
groups are defined by
O(m,n—m,F)={a€Gln, F):adl, ,a =1,,}.

If m = 0 then O(0, n — 0, F) = O(n, F) is the usual orthogonal group.

THEOREM 4.1. Let F = C. The single orbit A, = A is represented by

= (Jpps---sdn,) = Iy, and A, is isomorphic to
O(n,,C) X --- X0(n,,C).
Ifny =0, then SA, = A, and D, s, is given by
D, (a)é(p) = ¢(a'pa),

for € LA (W) and a € O(n,,C) X --- XO(n,,C). If ny # 0, then SA, is
isomorphic to
Sp(nO’C) X O(nhC) Xoeee XO(nnC)

and D, 4, is given by
(D (s, a)$), (&) = 1(p) " r ()(p)1(@) by,0(£),
for ¢ € LX(W, LY X)), s € Sp(n,,C), and a € O(n,,C) X - -- XO(n,,C).

ReMARk. The description of A, is due to the following: for a =
(aV,...,a”) € Gl(n,,C) X --- XGl(n,,C),

a" Vg ' =J e a® VY oW =g forallk=1,...,r

But multiplying both sides of this equation by J, on the right results in
a®=1gt)=1 = [ Thus, (I, a) € 4, if and only it g1 e O(n,,C) for
alk=1,...,r. This means a® € O(nk, C) for all k.

THEOREM 4.2. Let F = R. Let A, be the orbit represented by A\, =
(J, Jo..m,)- Then A, is isomorphic to

ny,mp>**°°Yn

o(m;,n, —m;,R) X ---X0(m,,n, — m,,R).

r’
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Ifny =0, then SA, = A, and D, |54, is given by
D, (a)¢(pn) = ¢(a 'pa),

forp € L>(W)anda € O(m;,n, — m,R) X --- XO(m,, n, — m,R). If
ny # 0, then SA, is isomorphic to

Sp(ny,R) X O(my, n; — m,R) X --- XO(m,,n, — m,,R)

and D), 4, is given by
(D5 (5, @)9), (&) = 1(p) "' ry ()1(1)I(a) by1,(£),
for ¢ € LA (W, L*( X)).
Corresponding to the orbit representatives A,...,A, let @ =

@'(D)s4,) denote the commuting algebra of the multiplier representation
of SA,(i = 1,...,]). Let L, € @], then

(1,a)-A, ~ DM(I, a)LiD)\i(Ia a)—l’
for (I, a) € A, is a well-defined map from A, into £( L(V)). For suppose
(I,a)-\,=(1,a)-\,, then (I,a’)'(I,a)=(I,a”) €A, and (I,a) =
(1, a’)(1, a”). Thus,
D,(I1,a)L,D,(1,a)" = D,(1,a)D, (I, a”)L,Dy(I,a")"' Dy (I, a)”
=D\ (I,a")LD,(I, a’)"
since L; commutes with D, (1, a”).
We can now state the main results regarding the commuting algebra

@'(T |ypp)- Let P: L¥(N) - L*(A, HS(L*(V)), dm())) be the Plancherel
transform of L*(N) defined as in [6). Let T = TP,

THEOREM 4.3. Let F = C. Let A\, A,, and D, be as in Theorem 4.2.
The mapping from @'( Dy, 54, 0 £( L*(A, HS(L*(V')), dm()))) defined by

L, —»fAD,\I(I, a)L,D, (1,a)" ® Idm((I, a)-A,)

(a € A) is a *-isomorphism between the von Neumann algebras @'( Dy s4,)
and @'(T |y,,). Thus, @(T |y,,) is *-isomorphic with @'(Dyjs54,)-

Proof. This follows from [3] (Theorem 6) along with Theorem 4.1.
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Similarly, we have

THEOREM 44. Let F=R. Let A,...,\; be the orbit representatives
given in Theorem 3.5, where = (n, + 1) ---(n,+ 1). Let A, and D,
(i = 1,...,1) correspond to \; as in Theorem 4.2. The mapping from
RD---®Q 10 B(LZ(A HS(L*(V)), dm()))) defined by

(L,,...,L,) —>€B fDA(I a)L,Dy (1, a)™ ® Idm((I, a)-},),

i=1 l

(a € A) is a *-isomorphism between the von Neumann algebras @
@ --- ©Q and Q'(T |yy,). Thus, @(T |yp) is *-isomorphic with @'( Dy, 154, )
D - OQ(Dyys4)-
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