Vol. 108, No. 1, 1983

Recent Issues
Vol. 332: 1  2
Vol. 331: 1  2
Vol. 330: 1  2
Vol. 329: 1  2
Vol. 328: 1  2
Vol. 327: 1  2
Vol. 326: 1  2
Vol. 325: 1  2
Online Archive
Volume:
Issue:
     
The Journal
About the journal
Ethics and policies
Peer-review process
 
Submission guidelines
Submission form
Editorial board
Officers
 
Subscriptions
 
ISSN 1945-5844 (electronic)
ISSN 0030-8730 (print)
 
Special Issues
Author index
To appear
 
Other MSP journals
A proof of the Bender-Knuth conjecture

Basil Gordon

Vol. 108 (1983), No. 1, 99–113
Abstract

Let br(nIm) denote the number of r-rowed partitions of n whose parts lie in the set Im = {1,2,,m} and decrease strictly along each row. It is shown that

∑∞              m∏  ∏i
br(n | Im )xn =     (1− xr+i+j−1)∕(1 − xi+j−1).
n=0             i=1 j=1

Mathematical Subject Classification 2000
Primary: 05A17
Secondary: 05A15
Milestones
Received: 30 October 1981
Published: 1 September 1983
Authors
Basil Gordon