Vol. 108, No. 1, 1983

Recent Issues
Vol. 323: 1  2
Vol. 322: 1  2
Vol. 321: 1  2
Vol. 320: 1  2
Vol. 319: 1  2
Vol. 318: 1  2
Vol. 317: 1  2
Vol. 316: 1  2
Online Archive
Volume:
Issue:
     
The Journal
Subscriptions
Editorial Board
Officers
Contacts
 
Submission Guidelines
Submission Form
Policies for Authors
 
ISSN: 1945-5844 (e-only)
ISSN: 0030-8730 (print)
Special Issues
Author Index
To Appear
 
Other MSP Journals
A proof of the Bender-Knuth conjecture

Basil Gordon

Vol. 108 (1983), No. 1, 99–113
Abstract

Let br(nIm) denote the number of r-rowed partitions of n whose parts lie in the set Im = {1,2,,m} and decrease strictly along each row. It is shown that

∑∞              m∏  ∏i
br(n | Im )xn =     (1− xr+i+j−1)∕(1 − xi+j−1).
n=0             i=1 j=1

Mathematical Subject Classification 2000
Primary: 05A17
Secondary: 05A15
Milestones
Received: 30 October 1981
Published: 1 September 1983
Authors
Basil Gordon