THE MAXIMAL ERGODIC HILBERT TRANSFORM WITH WEIGHTS

ENRIQUE ATENCIA AND FRANCISCO JAVIER MARTIN-REYES
THE MAXIMAL ERGODIC HILBERT TRANSFORM
WITH WEIGHTS

E. ATENCIA AND F. J. MARTIN-REYES

This work is concerned with the characterization of those positive functions, \(w \), such that the ergodic maximal Hilbert transform associated to an invertible, measure preserving, ergodic transformation on a probability space, is a bounded operator in \(L^p(wd\mu) \).

1. Introduction. Let \((X, \mathcal{F}, \mu) \) be a non-atomic probability space, and let \(T: X \to X \) be an ergodic, invertible, measure preserving transformation. We consider the ergodic maximal Hilbert transform associated to \(T \) defined by

\[
Hf(x) = \sup_{s, t \geq 0} \left| \sum_{s < |i| < t} f(T^i(x)) \right| \quad (s, t \in \mathbb{Z})
\]

and acting on measurable functions. Our main result is given by the following theorem.

(1.2) Theorem. Let \(w \) be a positive integrable function. Then \(f \to Hf \) is bounded on \(L^p(wd\mu) \) if and only if \(w \) satisfies condition \(A'_p \), i.e., there exists a constant \(M \) such that for a.e. \(x \in X \) and for all positive integers \(k \)

\[
k^{-1} \sum_{i=0}^{k-1} w(T^i(x)) \cdot \left[k^{-1} \sum_{i=0}^{k-1} w(T^i(x))^{-1/(p-1)} \right]^{p-1} \leq M.
\]

2. Main results. In this section we will prove the theorem above stated using the concept of ergodic rectangle and some ideas in (3) adapted to our context.

(2.1) Definition. Let \(B \) be a subset of \(X \) with positive measure and \(k \) a positive integer such that

\[
T^iB \cap T^jB = \emptyset, \quad i \neq j, \quad 0 \leq i, j \leq k - 1.
\]

Then the set \(R = \bigcup_{i=0}^{k-1} T^iB \) will be called an "(ergodic) rectangle" with base \(B \) and length \(k \).

Obviously \(\mu(R) = k\mu(B) \).

In the proof of the theorem we will need the following two results which have been proved in (1).
(2.2) **Proposition.** Let k be a positive integer and let $A \subset X$ be a subset with positive measure. Then there exists $B \subset A$ such that B is base of a rectangle of length k.

(2.3) **Lemma.** For any positive integer k, X can be written as a countable union of bases of rectangles of length k.

The boundedness of the operator $f \to Hf$ on $L_p(wd\mu)$, $p > 1$, implies w satisfies A'_p. Let k be a positive integer and let's fix a rectangle with base B and length $4k$. We consider, for each integer n, the subset of B given by

$$B_n = \left\{ x \in B: 2^n \leq (2k)^{-1} \sum_{l=0}^{k-1} w(T^l x)^{-1/(p-1)} < 2^{n+1} \right\}. \quad (2.4)$$

It's obvious that $B = \bigcup_n B_n$.

Now fix n and let $A \subset B_n$ be an arbitrary measurable subset with positive measure. Consider

$$Q_1 = A \cup TA \cup \ldots \cup T^{k-1}A,$$

$$Q_2 = T^k A \cup T^{k+1} A \cup \ldots \cup T^{2k-1} A.$$ If f is a non-negative function we have

$$Hf(T^j x) \geq (2k)^{-1} \sum_{l=0}^{k-1} f(T^l x) \quad (x \in A, \sup f \subset Q_1, k \leq j \leq 2k - 1), \quad (2.5)$$

$$Hf(T^j x) \geq (2k)^{-1} \sum_{l=k}^{2k-1} f(T^l x) \quad (x \in A, \sup f \subset Q_2, 0 \leq j \leq k - 1). \quad (2.6)$$

Applying (2.6) to χ_{Q_2} we obtain

$$Hf(T^j x) \geq \frac{1}{2} \quad (x \in A, 0 \leq j \leq k - 1). \quad (2.7)$$

It follows immediately that

$$\left(\frac{1}{2} \right)^p \int_A w(T^j x) \, d\mu \leq \int_A (Hf(T^j x))^p w(T^j x) \, d\mu. \quad (2.8)$$

Summing over j, $j = 0, \ldots, k - 1$, and using the boundedness of our operator we have

$$\int_{Q_1} w \, d\mu \leq 2^p C \int_{Q_2} w \, d\mu. \quad (2.9)$$
Throughout this paper \(C \) will denote an universal constant not necessarily the same at each occurrence. Applying now (2.5) to \(f = w^{-1/(p-1)} \chi_{Q_1} \) we find that

\[
Hf(T^j x) \geq (2k)^{-1} \sum_{i=0}^{k-1} w(T^i x)^{-1/(p-1)} \geq 2^n,
\]

since \(k \leq j \leq 2k - 1 \) and \(x \in A \subset B_n \). Thus, for \(f = w^{-1/(p-1)} \chi_{Q_1} \) it follows that

\[
2^n \int_A w(T^j x) \, d\mu \leq \int_A Hf(T^j x)^p w(T^j x) \, d\mu.
\]

Adding up in \(j \) for \(j = k, \ldots, 2k - 1 \) and applying again our assumption of boundedness we can write

\[
2^n \int_{Q_2} w \, d\mu \leq C \int_{Q_1} w^{-1/(p-1)} \, d\mu
\]

which, because of (2.9) yields

\[
2^n \int_{Q_1} w \, d\mu \cdot \left(\int_{Q_1} w^{-1/(p-1)} \, d\mu \right)^{-1} \leq 2^n C^2.
\]

On the other hand we also have:

\[
\mu(A)^{-1} \int_A (2k)^{-1} \sum_{i=0}^{k-1} w(T^i x)^{-1/(p-1)} \, d\mu \leq 2^{n+1},
\]

raising to the power \(p \) and applying (2.12) it follows that

\[
\left(\left(k \mu(A) \right)^{-1} \int_A \sum_{i=0}^{k-1} w(T^i x)^{-1/(p-1)} \, d\mu \right)^p
\]

\[
\cdot \int_{Q_1} w \, d\mu \left(\int_{Q_1} w^{-1/(p-1)} \, d\mu \right)^{-1} \leq 2^{3p} C^2
\]

or equivalently

\[
\left(\mu(A)^{-1} \int_A \sum_{i=0}^{k-1} w(T^i x)^{-1/(p-1)} \, d\mu \right)^{p-1}
\]

\[
\cdot \left(\mu(A)^{-1} \int_A \sum_{i=0}^{k-1} w(T^i x) \, d\mu \right) \leq 2^{3p} C.
\]
This, immediately, gives
\[
k^{-1} \sum_{i=0}^{k-1} w(T^i x) \circ \left(k^{-1} \sum_{i=0}^{k-1} w(T^i x)^{-1/(p-1)} \right)^{p-1} \leq 2^3 p C^2 \quad \text{(a.e. in } B_n \text{)}.
\]

Now a straightforward application of Lemma (2.3) gives us that \(w \) satisfies condition \(A'_{\infty} \).

In order to prove the converse we first assume that \(w \) satisfies condition \(A'_{\infty} \) and for that we mean that there are positive constants \(C, \delta > 0 \) so that given any finite set \(I \) consisting of consecutive integers and any subset \(E \subseteq I \)
\[
\frac{\sum_{i \in E} w(T^i x)}{\sum_{i \in I} w(T^i x)} \leq C \left(\frac{\# E}{\# I} \right)^{\delta} \quad \text{(a.e. in } X\text{)}
\]
where \(\# E \) is the number of elements of \(E \).

In the following the subsets \(I \) above described will be called intervals in the integers. Theorem (1.2) will, then, be a consequence of the following results:

(2.13). Theorem. If \(w \) satisfies \(A'_{\infty} \) then
\[
\int_X (Hf)^p w d\mu \leq C \int_X (f*)^p w d\mu
\]
where \(f^* \) is the ergodic no centered maximal function associated to the transformation \(T \).

(2.15). Lemma. Condition \(A'_p \) implies condition \(A'_{\infty} \).

(2.16). Theorem.
\[
\int_X (f*)^p w d\mu \leq C \int_X |f|^p w d\mu, \quad \text{if } w \text{ satisfies } A'_p.
\]

Theorem (2.16) has been proved in (1).

The proof of Lemma (2.15) runs as follows:

Let's call \(I \) to the interval \(\{0, 1, \ldots, k-1\} \) and let \(E \) be an arbitrary subset of \(I \).

It was shown in (1) that if \(w \) satisfies \(A'_p \) then the following "reverse Hölder" inequality holds:
\[
k^{-1} \sum_{j=0}^{k-1} w(T^j x)^v \leq C k^{-v} \left(\sum_{j=0}^{k-1} w(T^j x) \right)^v,
\]
with constants \(C, v > 1 \) independent of \(k \).
Applying Hölder's inequality we obtain
\[
\sum_{j \in E} w(T^j k) \leq \left(\sum_{j \in E} w(T^j x)^\frac{1}{v} \right)^{1/v} (\# E)^{1 - 1/v} \\
\leq \left(\sum_{j=0}^{k-1} w(T^j x)^\frac{1}{v} \right)^{1/v} (\# E)^{1 - 1/v}.
\]

The result now holds using inequality (2.17).

In the proof of Theorem (2.13) we will use the fact (4) that there exists a constant \(C \) such that for any sequence \(\{b_k\}_{k=-\infty}^{\infty} \) and any \(\lambda > 0 \) holds
\[
(2.18) \quad \sum_{k : Hb_k > \lambda} \leq \frac{C}{\lambda} \cdot \sum_{k=-\infty}^{+\infty} |b_k|
\]
where
\[
Hb_k = \sup_{s,t \geq 0} \left| \sum_{s < |k-j| < t} \frac{b_j}{k-j} \right| \quad (s, t \in \mathbb{Z}).
\]

Combining this result with condition \(A'_\infty \) we will prove, for any \(f \in L^1(d\mu) \), the following fundamental inequality
\[
(2.19) \quad \int_{\{x : Hf(x) > \lambda, f^*(x) \leq \gamma \lambda\}} w \, d\mu \leq C \left(\frac{\gamma}{\beta'} \right)^{\delta} \int_{\{x : Hf(x) > \lambda\}} \, d\mu.
\]
where \(\beta' \) depends on \(\beta \) and \(\gamma \).

If \(\mu\{x : Hf(x) > \lambda\} = 1 \) the weak type \((1 - 1) \) of \(H \) with respect to the measure \(\mu \) tells us
\[
1 \leq \frac{C}{\lambda} \int_X |f| \, d\mu
\]
and choosing \(\gamma < C^{-1} \) we have
\[
\gamma \lambda < \int_X |f| \, d\mu.
\]

By the individual ergodic theorem:
\[
\gamma \lambda < f^*(x) \quad \text{a.e. in } X
\]
and that implies (2.19)

Therefore we may assume that \(\mu\{x : Hf(x) > \lambda\} < 1 \). In particular, if
\[
D = \{x : T^i x \in O_\lambda : i = 0, -1, -2, \ldots\}
\]
where \(O_\lambda = \{x : Hf(x) > \lambda\} \), then \(\mu(D) = 0 \), since \(T \) is ergodic.
From this fact is clear that if we call
\[B_t = \{ x: x, Tx, \ldots, T^{-1}x \in O_\lambda, T^{-1}x, T^i x \notin O_\lambda \} \]
and \(R_i = B_i \cup \cdots \cup T^{-1}B_i \) then \(O_\lambda = \bigcup_{i=1}^{\infty} R_i \) (a.e.).

The former decomposition of \(O_\lambda \) and the study of distribution function inequalities in the integers (2), that we now proceed to develop, will be used in the proof of (2.19). So we consider a function \(F \) defined in the integers and the associated maximal Hilbert transform

\[
(2.20) \quad HF(k) = \sup_{s,t \geq 0} \left| \sum_{s < |k-j| < t} \frac{F(j)}{k-j} \right| \quad (s, t \in \mathbb{Z})
\]

and the maximal function

\[
(2.21) \quad F^*(k) = \sup_{n,m \geq 0} \frac{1}{n+m+1} \sum_{j=-n}^{m} |F(k+j)|.
\]

Let \(\lambda \) be a positive number. The set
\[
\{ k: HF(k) > \lambda \}
\]

can be written as a countable union of disjoint intervals \(I_i \) in the integers and of maximum length. In this situation we can state the following lemma.

\[
(2.22). \text{Lemma. There exists positive constants } C \text{ and } C' \text{ such that}
\]

\[
\# \{ j \in I_i: HF(j) > \beta \lambda, F^*(j) \leq \gamma \lambda \} \leq C \frac{\gamma}{\beta - 1 - \gamma C'} \# I_i
\]

for any \(I_i \) and where \(\beta \) is bigger than 1.

For the proof just look at the proof of inequality (4) in (2) and write it in the integers.

\[
\text{Proof of inequality (2.19). For } n \text{ fixed we call } E_{n,l} \text{ the nonempty subsets of } \{0, 1, \ldots, n-1\} \text{ (} l = 1, 2, \ldots, 2^n - 1 \text{).}
\]

For each \(x \) of \(B_n \) we write
\[
E_n^x = \{ i: 0 \leq i \leq n - 1: HF(T^i x) > \beta \lambda, f^*(T^i x) \leq \gamma \lambda \}
\]

and
\[
B_{n,l} = \{ x \in B_n: E_n^x = E_{n,l} \}.
\]

By Lemma (2.22) if \(x \in B_n \) we have
\[
\# E_n^x \leq \frac{C \gamma}{\beta'} \# \{0, 1, \ldots, n - 1\}
\]
which implies
\[
\sum_{j \in E_n^x} w(T^j x) \leq C \cdot \left(\frac{\gamma}{\beta'} \right)^{\delta n - 1} \sum_{j=0}^{\delta n - 1} w(T^j x) \quad (x \in B_n)
\]
since \(w \) satisfies \(A'_\infty \). Integrating over \(B_n \) we obtain
\[
\int_{\bigcup_{j \in E_n, T^j B_n,j}} w \, d\mu \leq C \cdot \left(\frac{\gamma}{\beta'} \right)^{\delta} \int_{\bigcup_{j=0}^{\delta n - 1} T^j B_n,j} w \, d\mu.
\]
Summing first over \(l \) and then over \(n \) and keeping in mind that \(O_{\lambda} = \bigcup_{n=1}^{\infty} R_n \) (a.e.) we get inequality (2.19).

As is well known a standard argument shows that the "good-\(\lambda \) inequality" (2.19) implies (2.14) (see for example (2)). Therefore we have Theorem (2.13) for \(f \) in \(L^1(d\mu) \).

Theorem (1.2) now follows combining Theorem (2.16) with standard density arguments.

The authors wish to thank A. de la Torre for his helpful comments and suggestions and the referee for his indications.

REFERENCES

Received April 8, 1981 and in revised form May 13, 1982.

DEPARTAMENTO DE ANALISIS MATEMATICO
FACULTAD DE CIENCIAS
UNIVERSIDAD DE MALAGA
SPAIN
PACIFIC JOURNAL OF MATHEMATICS
EDITORS
DONALD BABBITT (Managing Editor) J. DUGUNDJI
University of California Department of Mathematics
Los Angeles, CA 90024 University of Southern California
Los Angeles, CA 90089-1113
HUGO ROSSI R. FINN and H. SAMELSON
University of Utah Stanford University
Salt Lake City, UT 84112 Stanford, CA 94305
C. C. MOORE and ARTHUR OGUS
University of California Stanford, CA 94305
Berkeley, CA 94720

ASSOCIATE EDITORS
R. ARENS E. F. BECKENBACH B. H. NEUMANN F. WOLF K. YOSHIDA
(1906–1982)

SUPPORTING INSTITUTIONS
UNIVERSITY OF ARIZONA UNIVERSITY OF OREGON
UNIVERSITY OF BRITISH COLUMBIA UNIVERSITY OF SOUTHERN CALIFORNIA
CALIFORNIA INSTITUTE OF TECHNOLOGY STANFORD UNIVERSITY
UNIVERSITY OF CALIFORNIA UNIVERSITY OF HAWAI'I
MONTANA STATE UNIVERSITY UNIVERSITY OF TOKYO
UNIVERSITY OF NEVADA, RENO UNIVERSITY OF UTAH
NEW MEXICO STATE UNIVERSITY WASHINGTON STATE UNIVERSITY
OREGON STATE UNIVERSITY UNIVERSITY OF WASHINGTON

The Supporting Institutions listed above contribute to the cost of publication of this Journal, but they are not owners or publishers and have no responsibility for its content or policies.

Mathematical papers intended for publication in the Pacific Journal of Mathematics should be in typed form or offset-reproduced (not dittoed), double spaced with large margins. Please do not use built up fractions in the text of the manuscript. However, you may use them in the displayed equations. Underline Greek letters in red, German in green, and script in blue. The first paragraph must be capable of being used separately as a synopsis of the entire paper. In particular it should contain no bibliographic references. Please propose a heading for the odd numbered pages of less than 35 characters. Manuscripts, in triplicate, may be sent to any one of the editors. Please classify according to the scheme of Math. Reviews, Index to Vol. 39. Supply name and address of author to whom proofs should be sent. All other communications should be addressed to the managing editor, or Elaine Barth, University of California, Los Angeles, California 90024.

There are page-charges associated with articles appearing in the Pacific Journal of Mathematics. These charges are expected to be paid by the author's University, Government Agency or Company. If the author or authors do not have access to such Institutional support these charges are waived. Single authors will receive 50 free reprints; joint authors will receive a total of 100 free reprints. Additional copies may be obtained at cost in multiples of 50.

The Pacific Journal of Mathematics is issued monthly as of January 1966. Regular subscription rate: $132.00 a year (6 Vol., 12 issues). Special rate: $66.00 a year to individual members of supporting institutions.

Subscriptions, orders for numbers issued in the last three calendar years, and changes of address should be sent to Pacific Journal of Mathematics, P.O. Box 969, Carmel Valley, CA 93924, U.S.A. Old back numbers obtainable from Kraus Periodicals Co., Route 100, Millwood, NY 10546.

The Pacific Journal of Mathematics ISSN 0030-8730 is published monthly by the Pacific Journal of Mathematics at P.O. Box 969, Carmel Valley, CA 93924. Application to mail at Second-class postage rates is pending at Carmel Valley, California, and additional mailing offices. Postmaster: Send address changes to Pacific Journal of Mathematics, P. O. Box 969, Carmel Valley, CA 93924.

PUBLISHED BY PACIFIC JOURNAL OF MATHEMATICS, A NON-PROFIT CORPORATION
Copyright © 1983 by Pacific Journal of Mathematics
Enrique Atencia and Francisco Javier Martin-Reyes, The maximal ergodic Hilbert transform with weights ... 257
Bruce Blackadar, The regular representation of local affine motion groups ... 265
Alan Stewart Dow, On F-spaces and F'-spaces 275
Yoshifumi Kato, On the vector fields on an algebraic homogeneous space .. 285
Dmitry Khavinson, Factorization theorems for different classes of analytic functions in multiply connected domains 295
Wei-Eihn Kuan, A note on primary powers of a prime ideal 319
Benjamin Michael Mann and Edward Yarnell Miller, Characteristic classes for spherical fibrations with fibre-preserving free group actions ... 327
Steven Alan Pax, Appropriate cross-sectionally simple four-cells are flat ... 379
R. K. Rai, On orthogonal completion of reduced rings 385
V. Sree Hari Rao, On random solutions of Volterra-Fredholm integral equations .. 397
Takeyoshi Satō, Integral comparison theorems for relative Hardy spaces of solutions of the equations $\Delta u = Pu$ on a Riemann surface 407
Paul Sydney Selick, A reformulation of the Arf invariant one mod p problem and applications to atomic spaces 431
Roelof Jacobus Stroeker, Reduction of elliptic curves over imaginary quadratic number fields ... 451
Jacob Towber, Natural transformations of tensor-products of representation-functors. I. Combinatorial preliminaries 465
James Chin-Sze Wong and Abdolhamid Riazi, Characterisations of amenable locally compact semigroups 479