THE REGULAR REPRESENTATION OF LOCAL AFFINE MOTION GROUPS

BRUCE BLACKADAR
THE REGULAR REPRESENTATION
OF LOCAL AFFINE MOTION GROUPS

BRUCE E. BLACKADAR

Let F be a nondiscrete locally compact topological field. Then the regular representation of the group of invertible affine motions of F^n, the semidirect product of F^n by $GL_n(F)$, is a type I_∞ factor. An explicit transformation formula is obtained.

1. Introduction. It is of some interest [4] to examine the regular representation of the group of affine motions of F^n for a nondiscrete locally compact field F. We show that the regular representation of such a group is a type I_∞ factor, i.e. is a multiple of an irreducible representation on an infinite-dimensional Hilbert space.

The results of this paper were part of the author's doctoral dissertation at the University of California, Berkeley, June 1975, under the direction of Calvin C. Moore.

2. Preliminaries. Let F be a nondiscrete locally compact field. It is known (see, for example, [3, Theorem 9.21]) that F is either \mathbb{R}, \mathbb{C}, a finite extension of the field \mathbb{Q}_p of p-adic numbers, or the field of formal Laurent series in one variable over a finite field. In particular, if F is not \mathbb{R} or \mathbb{C} it has the following properties:

(i) F is the quotient field of a compact open subring R.
(ii) R has a unique maximal ideal M, which is principal; let $M = (\pi)$.
(iii) R/M is a finite field with (say) q elements.
(iv) There is a character χ on the additive group of F with $R \subseteq \ker \chi$, $\pi^{-1} \not\in \ker \chi$; any other character on F is of the form $\chi_u(x) = \chi(ux)$ for some $u \in F$.
(v) R has a nonarchimedean absolute value $| \cdot |$ with $|\pi| = 1/q$.
(vi) If μ (usually denoted dx) is additive Haar measure on F, normalized so that $\mu(R) = 1$, then $\mu(M) = 1/q$ and $dx/|x|$ is multiplicative Haar measure μ^* on F^*, with the measure of R^* equal to $1 - 1/q$.

If F is \mathbb{R} or \mathbb{C}, let dx denote Lebesgue measure normalized to make the Fourier inversion formula valid, $|\cdot|$ the ordinary absolute value (squared if $F = \mathbb{C}$), and $\chi(x) = e^{2\pi i \text{Re} x}$.

265
We now let G_n be the group of invertible affine motions of F^n (the n-dimensional “ax + b” group), i.e. $G_n = F^n \cdot GL_n$, the semidirect product of F^n by $GL_n = GL_n(F)$. It will frequently be useful to consider G_n as a subgroup of GL_{n+1} by the identification

$$(b, A) \mapsto \begin{bmatrix} 1 & 0 & \cdots & 0 \\ b & A \end{bmatrix}.$$

Using this identification, we will think of $G_2 \subseteq GL_2 \subseteq \cdots \subseteq GL_n \subseteq G_n \subseteq GL_{n+1}$.

3. The results.

Theorem 3.1. The right regular representation ρ_{G_n} of G_n is a type I_∞ factor.

Proof. By induction on n. The case $n = 1$ was done in [2, §3]; we briefly outline the argument for completeness. $G_1 \cong F \times F^*$ topologically, and $\mu \times \mu^*$ is right Haar measure. If $f \in L^2(G_1)$, set $\hat{f}_u(y, x) = \chi(yx)f(z, x)\chi(-uz)\,dz$; then $[\rho_{G_1}(b, a)f]_u(y, x) = \chi(ubx)f_\pi(y, ax)$. If $\rho_u = \text{ind}_{F \times GL_n} \chi_{-u}$, then $\rho_u \cong \rho_v$ for $u, v \neq 0$; since $f(y, x) = \int_F \hat{f}_u(y, x)\,du$, we have $\rho = \int_F \rho_u\,du$.

Now assume $\rho_{G_{n-1}}$ is a factor. Regard F^n as a subgroup of G_n by identifying b with $(b, 1)$. $\rho_{G_n} = \text{ind}_{F^n \times G_n} \rho_{F^n}$. $\rho_{F^n} = \int_{F^n} \chi_u\,du$, where $\chi_u (u \in F^n)$ is the character given by $\chi_u(v) = \chi(u \cdot v)$. By moving the direct integral past the induction, we get $\rho_{G_n} = \int_{F^n} (\text{ind}_{F^n \times G_n} \chi_u)\,du$. If u and v are nonzero vectors in F^n, $\text{ind} \chi_u \cong \text{ind} \chi_v$, since u and v are conjugate under the action of GL_n on F^n. Set $e_1 = (1, 0, \ldots, 0)$. We then have $\rho_{G_n} \cong \int_{F^n} (\text{ind}_{F^n \times G_n} \chi_{e_1})\,du$. $G_n = F^n \cdot GL_n$, so, regarding $G_{n-1} \subseteq GL_n$, let $H_n = F^n \cdot G_{n-1}$. Since the action of G_{n-1} on F^n leaves the first coordinate fixed, we have $H_n = F \times (F^{n-1} \cdot G_{n-1})$.

We split the induction into two steps,

$$\rho_{G_n} \cong \int_{F^n} \text{ind}_{H_n \times G_n} (\text{ind}_{F^n \times H_n} \chi_{e_1})\,du.$$

Let us examine $\pi = \text{ind}_{F^n \times H_n} \chi_{e_1}$. $\chi_{e_1} = \chi \otimes 1$ on $F^n = F \times F^{n-1}$, and $H_n = F \times (F^{n-1} \cdot G_{n-1})$, so $\pi \cong \chi \otimes (\text{ind}_{F^{n-1} \times (F^{n-1} \cdot G_{n-1})} 1) \cong \chi \otimes \rho_{G_{n-1}}$ (where $\rho_{G_{n-1}}$ is considered as a representation of $F^{n-1} \cdot G_{n-1}$ with kernel F^{n-1}). By the induction hypothesis, $\rho_{G_{n-1}}$ is a I_∞ factor representation of G_{n-1}, so π is a I_∞ factor representation of H_n. We now use Mackey’s theorem ([1], Theorem 6, p. 58) to show that $\text{ind}_{H_n \times G_n} \pi$ is a I_∞ factor representation of G_n, since H_n is precisely the stability group of χ_{e_1} under the action of G_n on F^n. \qed
We now get an explicit formula for this transformation. Throughout, we will always consider $GL_k \subseteq G_k \subseteq GL_{k+1} \subseteq G_{k+1}$, so that all groups will be thought of as being embedded in GL_{n+1}. Let $f \in L^2(G_n)$. We first take the Fourier transform along F^n: define

$$\hat{f}_u(y, X) = \chi(u \cdot y) \int_{F^n} f(z, X) \chi(-u \cdot z) \, dz.$$

Then

$$\hat{f}_u \in \mathcal{H}_u^n = \left\{ f: G_n \to \mathbb{C}: f(y, X) = \chi(u \cdot y)f(0, X), \right.$$

$$\left. \int_{GL_n} |f(0, X)|^2 \, dX < \infty \right\}$$

where dX is Haar measure on GL_n.

By the Fourier inversion formula, $f(y, X) = \int_{F^n} \hat{f}_u(y, X) \, du$.

$$[\rho(b, A)f]_u(y, X) = \chi(u \cdot y) \int_{F^n} [\rho(b, A)f](z, X) \chi(-u \cdot z) \, dz$$

$$= \chi(u \cdot y) \int_{F^n} f(z + Xb, XA) \chi(-u \cdot z) \, dz$$

Set $t = z - Xb$.

$$= \chi(u \cdot y) \int_{F^n} f(t, XA) \chi(-u \cdot t) \chi(u \cdot Xb) \, dt$$

$$= \chi(u \cdot Xb) \hat{f}_u(y, XA).$$

This is precisely the representation $\text{ind}_{F^n \cdot G_n} \chi_u$ on $\mathcal{H}_u^n[\chi_u(v) = \chi(u \cdot v)]$. So we have written

$$L^2(G_n) \cong \int_{F^n} \mathcal{H}_u^n \, du, \quad \rho_{G_n} \cong \int_{F^n} \left(\text{ind} \chi_u \right) \, du.$$

Let $e^n_1 = (1, 0, \ldots, 0) \in F^n$. We now take an equivalence in each piece, $\mathcal{H}_u^n \to \mathcal{H}_{e^n_1}$, $\text{ind} \chi_u \to \text{ind} \chi_{e^n_1}$ by setting $\hat{f}_u(y, X) = \hat{f}_u(B_u(y, X))$ where

$$B_u = \begin{bmatrix} 1/u_1 & -u_2/u_1 & \cdots & -u_n/u_1 \\ 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 1 \end{bmatrix} \quad \text{for } u = (u_1, \ldots, u_n), u_1 \neq 0.$$

We interchangeably think of B_u as an element of GL_n, G_n, and GL_{n+1} to simplify notation. The reason for choosing this B_u is that $u \cdot B_u v = B_u^t u \cdot v = e^n_1 \cdot v$ for all v.

\[\hat{f}_u \to \hat{f}_u \] is an isometry of \(\mathcal{K}_u \) onto \(\mathcal{K}_{e_r} \); this can be seen most easily by identifying \(\mathcal{K}_u \) with \(L^2(\text{GL}_n) \) by \(\hat{f}_u \mapsto \hat{f}_u(0, \cdot) \) and noting that \(\text{GL}_n \) is unimodular (we have assumed right Haar measure). By associating \(f \) with \(\int_{F^n} \hat{f}_u \, du \), we get

\[L^2(G_n) \simeq \int_{F^n} \mathcal{K}_{e_r} \, du, \quad \rho_{G_n} \simeq \int_{F^n} \left(\text{ind } \chi_{e_r} \right) \, du. \]

\[\hat{f}_u(y, X) = \chi(e^n_1 \cdot y) \int_{F^n} f(v, B_u X) \chi(-u \cdot v) \, dv. \]

We now change variables, setting \(v = B_u t \), \(dv = 1/|u_1| \, dt \).

\[\hat{f}_u(y, X) = \chi(e^n_1 \cdot y) \int_{F^n} f(B_u(t, X)) \chi(-u \cdot B_u t) \frac{1}{|u_1|} \, dt \]

\[= \chi(e^n_1 \cdot y) \int_{F^n} f(B_u(t, X)) \chi(e^n_1 \cdot t) \, dt. \]

Now we split the induction into two steps,

\[\text{ind } F^n \to G_n \chi_{e_r} = \text{ind } H_n \uparrow G_n \left(\text{ind } F^n \uparrow H_n \chi_{e_r} \right). \]

Set

\[\hat{f}_u(y, X)(Z) = \hat{f}_u(y, ZX) \quad \text{for } y \in F^n, X \in \text{GL}_n, Z \in G_{n-1} \subseteq \text{GL}_n. \]

\[\hat{f}_u \in \left\{ f : G_n \to L^2(G_{n-1}) : f([((b, C)(y, X)])(Z) = \chi(e^n_1 \cdot b) f(y, X)(ZC) \right\}. \]

for \(X \in \text{GL}_n, Z, C \in G_{n-1}, b, y \in F^n; \int_{\text{GL}_n} |f(X)(1)|^2 \, dX < \infty \).

If we look at the representation \(\sigma^n \) of \(H_n \) on \(L^2(G_{n-1}) \) given by \([\sigma^n(b, C)g](Z) = \chi(e^n_1 \cdot b) g(ZC) \) for \(b \in F^n, C \in G_{n-1} \), we see that

\[\sigma^n \simeq \text{ind } H_n \uparrow G_n \chi_{e_r}, \quad \text{and } \text{ind } H_n \uparrow G_n \chi_{e_r} \simeq \text{ind } \sigma^n. \]

Also, \(\sigma^n \simeq \chi_{e_r} \otimes \rho_{G_{n-1}} \) as an inner tensor product.

We now decompose \(\rho_{G_{n-1}} \) in the same manner as before. Let

\[\hat{f}_{u,r}(y, X)(t, S) = \chi(r \cdot t) \int_{F^n} \hat{f}_u(y, X)(w, S) \chi(-r \cdot w) \, dw \]

\[(t \in F^{n-1}, S \in \text{GL}_{n-1}). \]

Then

\[\hat{f}_u(y, X)(t, S) = \int_{F^{n-1}} \hat{f}_{u,r}(y, X)(t, S) \, dr; \quad \hat{f}_{u,r}(y, X) \in \mathcal{K}_{e_r} \].
Let

\[
B_r = \begin{bmatrix}
1/r_1 & -r_2/r_1 & \cdots & -r_{n-1}/r_1 \\
0 & 1 & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & 1
\end{bmatrix} \in GL_{n-1}
\]

(for \(r \in F^{n-1}, r_1 \neq 0 \)).

Set \(\tilde{f}_{u,r}(y, X)(t, S) = \hat{f}_{u,r}(y, X)(B_r(t, S)) \).

\[
[\sigma^n(b, (d, C)) \tilde{f}_{u,r}(y, X)(t, S)]
\]

\[
= \chi(r \cdot t) \int_{F_{n-1}} [\sigma^n(b, (d, C))\tilde{f}_u(y, X)(w, S)] \chi(-r \cdot w) dw
\]

\[
= \chi(r \cdot t) \int_{F_{n-1}} \chi(e_1 \cdot b) \tilde{f}_u(y, X)(w + Sd, SC) \chi(-r \cdot w) dw.
\]

Set \(v = w + Sd \).

\[
= \chi(e_1 \cdot b) \chi(r \cdot t) \int_{F_{n-1}} \tilde{f}_u(y, X)(v, SC) \chi(-r \cdot v) \chi(r \cdot Sd) dv
\]

\[
= \chi(e_1 \cdot b) \chi(r \cdot Sd) \hat{f}_{u,r}(y, X)(t, SC).
\]

Thus by associating \(\tilde{f}_u \) with

\[
\int_{F_{n-1}} \tilde{f}_{u,r} dr, \quad \sigma^n \simeq \int_{F_{n-1}} \chi_{e_1^n} \otimes \left(\text{ind }_{F_{n-1} G_{n-1}} \chi_{e_1^{n-1}} \right).
\]

\[
\tilde{f}_{u,r}(y, X)(t, S) = \chi(e_1 \cdot t) \int_{F_{n-1}} \tilde{f}_u(y, X)(w, B_r S) \chi(-r \cdot w) dw.
\]

We want to pull the \(B_r \) past the \(w \), so we change variables as before. Set \(w = B_r v, dw = 1/|r_1| dv \). Then

\[
\tilde{f}_{u,r}(y, X)(t, S) = \chi(e_1 \cdot t) \int_{F_{n-1}} \tilde{f}_u(y, X)(B_r(v, S)) \chi(-r \cdot B_r v) \frac{1}{|r_1|} dv
\]

\[
= \chi(e_1 \cdot t) \int_{F_{n-1}} \tilde{f}_u(y, X)(B_r(v, S)) \chi(e_1 \cdot v) \frac{1}{|r_1|} dv
\]

\[
= \chi(e_1^n \cdot y) \chi(e_1^{n-1} \cdot t)
\]

\[
\cdot \int_{F_{n-1}} \left[\int_{F_{n-1}} f(B_u(w, B_r(v, S) X)) \chi(-w_1) \frac{1}{|u_1|} dw \right] \chi(-v_1) \frac{1}{|r_1|} dv.
\]
We now pull the B_r past the w, by letting $w = B_r z$, $dw = 1/|r_1| dz$. Note that $z_1 = w_1$ since B_r does not affect the first column.

\[
\tilde{f}_{u, r}(y, X)(t, S)
= \int_{F^n} \left[\int_{F^n} f(B_u B_r(z, (v, S) X)) \chi(-z_1) \frac{1}{|u_1 r_1|} dz \right] \chi(-v_1) \frac{1}{|r_1|} dv.
\]

We now repeat the process until we get down to F^1. We end up with

\[
\tilde{f}_{u, r, \ldots, s}(y, X)(t, S) \cdot \cdots (q, T)
= \chi(e_1^n \cdot y) \chi(e_1^{n-1} \cdot t) \cdots \chi(q)
\]

\[
\cdot \int_{F^1} \cdots \int_{F^n} f(B_u B_r \cdots B_s(w, (v, \ldots (z, T) \ldots), S) X))
\cdot \chi(-w_1 - v_1 - \cdots - z_1) \frac{1}{u_1 r_1^2 \cdots s_1^n} dw \, dv \cdots dz.
\]

\[
\tilde{f}_{u, r, \ldots, s} \in \mathcal{S}^n = \left\{ f: G_n \to \mathcal{S}^{n-1}: f([(b, C)(y, X)])(Z)
= \chi(e_1^n \cdot b) f(y, X)(ZC) \right\}.
\]

\[
\tilde{f}_{u, r, \ldots, s} \in \mathcal{S} = \left\{ f: G_n \to \mathcal{S}: f(C(y, X)) = \phi(C) f(y, X) \right\}
\]

where

\[
\Gamma_n = \begin{bmatrix}
1 & 1 & 0 \\
\ast & \ddots & \ast \\
* & & 1
\end{bmatrix},
\phi \begin{bmatrix}
1 & 1 & 0 \\
\vdots & \ddots & \vdots \\
a_{n1} & \cdots & a_{nn}
\end{bmatrix} = \Sigma a_{ii}.
\]
\[
\bar{f}_{u,r,\ldots,s}(y, X) = \int_{F^s} \cdots \int_{F^s} f \left(B_u B_r \cdots B_s \begin{bmatrix}
1 \\
w_1 & 1 & 0 \\
\vdots & & \vdots \\
w_n & 0 & \cdots & 1
\end{bmatrix} \right) \\
\cdot \chi(-w_1 - v_1 - \cdots - z_1) \frac{1}{u_1 r_1^2 \cdots s_1^n} \, dw \, dv \, \cdots \, dz.
\]

\[
\int_{F^s} \cdots \int_{F^s} f \left(\begin{bmatrix}
1 & 0 & \cdots & 0 \\
u_1 & & & u_n \\
0 & 0 & r_1 & \cdots & r_{n-1} \\
\vdots & & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & s_1
\end{bmatrix} \right)^{-1} \\
\cdot \chi(-w_1 - v_1 - \cdots - z_1) \frac{1}{u_1 r_1^2 \cdots s_1^n} \, dw \, dv \, \cdots \, dz
\]

\[
= \int_{\Gamma_n} f \left(\begin{bmatrix}
1 & 0 & \cdots & 0 \\
u_1 & & & u_n \\
0 & 0 & r_1 & \cdots & r_{n-1} \\
\vdots & & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & s_1
\end{bmatrix} \right)^{-1} \gamma(y, X) \phi(-\gamma) \frac{1}{u_1 r_1^2 \cdots s_1^n} \, d\gamma
\]

since Haar measure on \(\Gamma_n \) is \(dw \, dv \, \cdots \, dz \).
\[\left[\rho(b, A)f\right]_{u, r \ldots s}(y, X)\]

\[= \int_{\Gamma_n} \left[\rho(b, A)f\right] \begin{bmatrix}
1 & 0 & \cdots & 0 \\
0 & u_1 & \cdots & u_n \\
0 & 0 & r_1 & \cdots & r_{n-1} \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & s_1
\end{bmatrix}^{-1} \gamma(y, X)\]

\[\phi(-\gamma) \frac{1}{\left| u_1 r_1^2 \cdots s_1^n \right|} d\gamma\]

\[= \int_{\Gamma_n} \begin{bmatrix}
1 & 0 & \cdots & 0 \\
0 & u_1 & \cdots & u_n \\
0 & 0 & r_1 & \cdots & r_{n-1} \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & s_1
\end{bmatrix}^{-1} \gamma(Xb, 1)(y, XA)\]

\[\cdot \phi(-\gamma) \frac{1}{\left| u_1 r_1^2 \cdots s_1^n \right|} d\gamma\]

\[\text{[Set } \beta = \gamma(Xb, 1).]\]

\[= \int_{\Gamma_n} \begin{bmatrix}
1 & 0 & \cdots & 0 \\
0 & u_1 & \cdots & u_n \\
0 & 0 & r_1 & \cdots & r_{n-1} \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & s_1
\end{bmatrix}^{-1} \beta(y, XA)\]

\[\cdot \chi(e_1 \cdot Xb) \phi(-\beta) \frac{1}{\left| u_1 r_1^2 \cdots s_1^n \right|} d\beta\]

\[= \chi(e_1 \cdot Xb) \hat{f}_{u, r \ldots s}(y, XA).\]

This is precisely \(\text{ind}_{\Gamma_n} \phi\) on \(\mathcal{K}\). So we have

\[L^2(G_n) \simeq \int_{F} \cdots \int_{F^n} \mathcal{K} du \, dr \cdots ds,\]

\[\rho_{c_n} \simeq \int_{F} \cdots \int_{F^n} \left(\text{ind} \phi\right) du \, dr \cdots ds.\]
Let

\[\Delta_n = \begin{pmatrix}
 u_1 & \cdots & u_n \\
 0 & r_1 & \cdots & r_{n-1} \\
 \vdots & \vdots & \ddots & \vdots \\
 0 & 0 & \cdots & s_1
\end{pmatrix} : u_1 \neq 0, \ldots, s_1 \neq 0 \]

= group of upper triangular invertible \(n \times n \) matrices.

Right Haar measure on \(\Delta_n \) is

\[
\frac{du_1 \cdots du_n dr_1 \cdots dr_{n-1} \cdots ds_1}{|u_1 r_1^2 \cdots s_1^n|}.
\]

We may identify \(\Delta_n \) with \(\Gamma_n \backslash G_n \) as a measure space, and hence we may regard \(\text{ind}_{\Gamma_n \backslash G_n} \phi \) as a representation \(\sigma \) on \(L^2(\Delta_n) \).

We now renormalize \(f_{u,r,\ldots,s} \) so that we can recapture \(f \) as an integral over \(\Delta_n \).

We have

\[
f = \int_F \cdots \int_{F^n} f_{u,r,\ldots,s} du \, dr \cdots ds.
\]

Set \(f_{u,r,\ldots,s} = \sqrt{|u_1 r_1^2 \cdots s_1^n|} \tilde{f}_{u,r,\ldots,s} \); then

\[
f = \int_F \cdots \int_{F^n} f_{u,r,\ldots,s} \frac{du \, dr \cdots ds}{|u_1 r_1^2 \cdots s_1^n|} = \int f_\alpha d\alpha;
\]

\[
f_\alpha(y, X) = (|u_1 r_1^2 \cdots s_1^n|)^{-1/2} \int_{\Gamma_n} f(\alpha^{-1} \gamma(y, X)) \phi(-\gamma) \, d\gamma,
\]

where

\[
\alpha = \begin{pmatrix}
 1 & 0 & \cdots & 0 \\
 0 & u_1 & \cdots & u_n \\
 0 & 0 & r_1 & \cdots & r_{n-1} \\
 \vdots & \vdots & \ddots & \vdots \\
 0 & 0 & \cdots & s_1
\end{pmatrix}.
\]

We thus have \(L^2(G_n) \simeq \int_{\Delta_n} L^2(\Delta_n) \, d\alpha, \ \rho_{G_n} \simeq \int_{\Delta_n} \sigma \, d\alpha. \) We may identify \(\int_{\Delta_n} L^2(\Delta_n) \, d\alpha \) with \(L^2(\Delta_n) \otimes L^2(\Delta_n), \ \rho_{G_n} \simeq \sigma \otimes 1. \)
REFERENCES

Received March 21, 1981.

UNIVERSITY OF NEVADA, RENO
RENO, NV 89557
Enrique Atencia and Francisco Javier Martin-Reyes, The maximal ergodic Hilbert transform with weights 257
Bruce Blackadar, The regular representation of local affine motion groups .. 265
Alan Stewart Dow, On F-spaces and F'-spaces 275
Yoshifumi Kato, On the vector fields on an algebraic homogeneous space 285
Dmitry Khavinson, Factorization theorems for different classes of analytic functions in multiply connected domains 295
Wei-Eihn Kuan, A note on primary powers of a prime ideal 319
Benjamin Michael Mann and Edward Yarnell Miller, Characteristic classes for spherical fibrations with fibre-preserving free group actions ... 327
Steven Alan Pax, Appropriate cross-sectionally simple four-cells are flat 379
R. K. Rai, On orthogonal completion of reduced rings 385
V. Sree Hari Rao, On random solutions of Volterra-Fredholm integral equations ... 397
Takeyoshi Satō, Integral comparison theorems for relative Hardy spaces of solutions of the equations $\Delta u = Pu$ on a Riemann surface 407
Paul Sydney Selick, A reformulation of the Arf invariant one mod p problem and applications to atomic spaces ... 431
Roelof Jacobus Stroeker, Reduction of elliptic curves over imaginary quadratic number fields ... 451
Jacob Towber, Natural transformations of tensor-products of representation-functors. I. Combinatorial preliminaries 465
James Chin-Sze Wong and Abdolhamid Riazi, Characterisations of amenable locally compact semigroups ... 479