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It is shown that an elliptic curve defined over a complex quadratic
field X, having good reduction at all primes, does not have a global
minimal (Weierstrass) model. As a consequence of a theorem of Setzer it
then follows that there are no elliptic curves over K having good
reduction everywhere in case the class number of X is prime to 6.

1. Introduction. An elliptic curve over a field KX is defined to be a
non-singular projective algebraic curve of genus 1, furnished with a point
defined over K. Any such curve may be given by an equation in the
Weierstrass normal form:

(1.1) yi4+axy +ay=x+a,x*+a,x + ag

with coefficients a, in K. In the projective plane P2, the point defined over
K becomes the unique point at infinity, denoted by 0. Given such a
Weierstrass equation for an elliptic curve E, we define, following Néron
and Tate ([12], §1; [6], Appendix 1, p. 299):

(1.2) { by = a2 + 4ay,

by = ajas — a,a;a, + da,a4 + a,a? — a?,
= _b2b, — 8] — 2762 + Ob,b,b,, = c3/A.

The discriminant A, defined above, is non-zero if and only if the curve E
is non-singular. In particular, we have

(1.3) 4by = byb, — b? and 3 — 2 = 253°A.

The various representations of an elliptic curve over K, with the same
point at infinity, are related by transformations of the type

— 2.
(1.4) XxX=ux"+r

5, s withr,s,t € Kand u € K*.
y=uy +usx"+t
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Let E be an elliptic curve defined over a field K. An equation for E of
type (1.1) is called minimal with respect to a discrete valuation » of K iff
v(a;) = 0 for all i and »(A) minimal, subject to that condition. For each
discrete valuation of K, there exists a minimal equation for E. This
equation is unique up to a change of co-ordinates of the form (1.4) with r,
s, t € R and u invertible in R. Here R stands for the valuation ring. An
equation for an elliptic curve E defined over K is called a global minimal
equation for E over K iff this equation is minimal with respect to all
discrete valuations of K simultaneously. We have the following theorem
due to Néron and Tate.

(1.5) THEOREM. Let Oy be the ring of integers of an algebraic number
field K. If O is a principal ideal domain, then every elliptic curve defined
over K has a global minimal equation over K.

It is not true, in general, that an elliptic curve defined over an
algebraic number field K has a global minimal equation over K. Following
Tate [13], define the minimal discriminant ideal for an elliptic curve E
over a number field K by

AE = H p:(Ay)’

finite »

where A, is the discriminant of a minimal equation for E at » and p,, is the
prime ideal of Oy associated with ». If a global minimal equation for E
over O exists, then A is principal, for it is generated by the discriminant
of any global minimal equation.

For a discrete valuation » of a field K, let R be the valuation ring, P
the unique prime ideal of R and k = R/P the residue class field. Assume
v is normalized and let 7 € R be a prime with »(7) = 1. If E is an elliptic
curve over K, let I be a minimal equation for E with respect to » of type
(1.1). Reducing the coefficients a; of I' modulo P = 7R, one obtains an
equation T' for a plane cubic curve E defined over k. This equation is
clearly unique up to a transformation of the form (1.4) over k. If T is
non-singular (over k) then E is an elliptic curve over k and T is an
equation for E over k. In that case A # 0 or, equivalently, »(A) = 0. We
say that E has good (or non-degenerate) reduction at ». In case A = 0, i.e.
»(A) >0, then E is a rational curve and E has bad (or degenerate)
reduction at ». In particular, if »(A) > 0 and »(c,) = 0, then E has a node
and we say that E has multiplicative reduction at »; if »(A) >0 and
»(c,) # 0, then E has a cusp and the reduction of E at » is additive.
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(1.6) THEOREM (Tate). There is no elliptic curve defined over Q with
good reduction at all discrete valuations of Q.

Proofs of this theorem may be found in [7] and [10], p. 32.

In this paper we will prove and discuss a generalization of Tate’s
result for elliptic curves defined over imaginary quadratic number fields.
More precisely, the purpose of this paper is to prove

(1.7) MAIN THEOREM. Let K be an imaginary quadratic number field
and let E be an elliptic curve defined over K. If E has a global minimal
equation over K, then E has bad reduction at v for at least one discrete
valuation v of K.

In fact when E has everywhere good reduction over a number field X,
then A = (1). The condition placed upon E in the Main Theorem (1.7),
to the effect that E must have a global minimal equation over K, is not
superfluous. This is shown by the following theorem, first formulated by
Tate.

(1.8) THEOREM. Let n be a rational integer prime to 6 and suppose
j? — 1728 = n'? = 0. Then the elliptic curve with equation

36 1
j—1728% = 1728

yi+xy=x3—
over Q( j) has good reduction at every discrete valuation of Q( j).

For a proof we refer to [11] or [10], p. 31. See also Setzer [9], Theorem
4(b).

In this context we have the following theorem, which is a direct
consequence of the Main Theorem (1.7) and a theorem of Setzer (cf. [9],
Theorem 5).

(1.9) THEOREM. Let K be an imaginary quadratic number field with class
number prime to 6. Then there are no elliptic curves over K having good
reduction everywhere.

Indeed, when the class number of a number field K is prime to 6, the
condition ‘A is principal’ is equivalent to the existence of a global
minimal model over K.



454 R. J. STROEKER

In Ishii [4] a similar but less general result is obtained.

Throughout the rest of this paper, K will stand for the imaginary
quadratic number field Q(y=m ), where m is a squarefree positive integer.
The symbol O will always denote the ring of integers of K with basis
{1, w}, ie. 0 = Z[w].

2. Proof of the main theorem in case m # 1 or 3. Let E, denote an
elliptic curve, defined over K, with an equation of type

I:x*—y>=r (reK»).

As usual E(K) will stand for the group of K-rational points of E,; the
group operation in E (K) will be written additively.

(2.1) LemMmA. If r € Q, then (x, y) + (X, y) € E(Q) for each point
(x, y) € E(K).

Proof. Let (x, y) € E(K) and put P = (x, y) + (X, y). Then P €
E (K) because r € Q. Clearly, P = P and since K N R = Q, we conclude
P € E(Q). O

Some easy consequences of the group structure on E, are laid down in
the following formulas. A straightforward calculation shows their validity.
Ifr € Q,(x, y) € E(K)and(x, y) + (X, ) = (p, q) € E(Q), then

[ . —5 g%
x+)?+p=(y )i) and p-2—L+2 -4 4=0

x—x xX—X x—X
(2.2) A in case X # x,
2x +p = (3x%/2y) incasex =x,y =y #0,
(p.q)=0 in case X = x, j = —y.

(2.3) LeMMA. If (x, y) € E(K) withr = *=2°33 such that x, y € O and
xX Z 0 (mod 2), then x € Z and y & Z.

Proof. Lemma (2.1) shows (x, y) + (X, ) € E(Q). Now E(Q) =Z,
(cf. {3]) and thus £(Q) = {0,(=12,0)}, where the + sign corresponds to
that of r. Consequently, we have to consider two possibilities; first, if
(x,y)+(x,y) =0 then x =x and y = —y. If y =0, then x does not
satisfy the condition xX Z 0 (mod 2). If (x, y) + (X, y) = (£12,0), put
x=a+bw and y=c+dw (a,b,c,d € Z). Then clearly b # 0. We
distinguish between the cases:

(1) m =1 or 2 (mod 4);
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(ii) m = 3 (mod 4).
In case (i), w = y=m . Put T = d/b. We obtain from (2.2):

(i),2a =12 =T%

(@), ¢ = -T?*+ 3aT;

(i), mb* = 3a* — 2cT.
Clearly, a and T are even because of (i), (note that T € Z). Hence
mb? = 0 (mod 4). This follows from (i),. Thus b is even, which implies
x =0 (mod 2).

In case (ii), w = 3(1 + y=m). Again put T = d/b and a, = 2a + b,
¢, = 2¢ + d. Formulas (2.2) give

(i), q, = 12=T%

(i), ¢, = -2T? + 3a,T;

(ii); mb* = 3ai — 4¢,T.
Again T € Z and a,, b and T have the same parity as can be seen from
(ii), and (ii);. Moreover it follows from (ii), that a, and ¢, have the same
parity. If a;, b, ¢, and T are even, then a; = b = 0 (mod 4) as is clear from
(i), and (ii);. Hence 4xx = a? + mb* =0 (mod 8). And if a;, b, ¢, and T
are odd, then m =7 (mod 8), which is a consequence of (ii);. Again
4xx =0 (mod 8). We may conclude (x,y)+(x,5)=0 if xx=0
(mod 2). O

(2.4) LEMMA. Let (1.1) be a global minimal equation for the elliptic
curve E over K with v(A) = 0 for every discrete valuation v of K. Further,
let p, be a prime ideal divisor of 2 in O. Then p, does not divide a,.

Proof. Since »(A) = 0 for every discrete valuation of K, A is a unit in
0. Suppose p,|a,. Then we see from (1.2) that p3|b, and p,|b, and hence
p3l(A + 27b2). 1t is clear that p, does not divide a,. For p,|a, implies
p,|bs and thus p,|A. However, A is a unit. From (1.2) we also obtain
b} = a; (mod 8). We observe that we may restrict the values of the
coefficients a,, a, and a, to

a,a;=0,l,worl+w and a,=0, =1, xwor =1 * w.

We consider the following cases separately:
(i) m = 1,2 (mod 4).

The principal ideal (2) factors as p3. Further, b =1 (mod p3)
because a; = 1 or w in case mis odd and a; = 1 or 1 + w if m is even. If
p3 does not divide a,, then A — 1 = A + 27h? = 0 (mod p3). But A — 1
=0 (mod p3) implies A = 1, because A is a unit, contradiction. And if
p3|a, then A + 272 = 0 (mod p$). But then A + 3 = 0 (mod p3) and this
is clearly impossible.
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(i1) m = 3 (mod 8).

Now p, = (2). If a, = 1 then b7 =1 (mod 8) and hence A +3 =0
(mod 8), an impossibility. Further, if a; = w, 1 + w, then b} =w, 1 + @
(mod 2) and hence A = w,]1 +w (mod 2). This is contradictory in case
m # 3. However, if m = 3, then b7 = —w, «* (mod 8) and this implies
4 = 3w, -3w? (mod 8), again a contradiction.

(iii) m = 7 (mod 8).

We now have (2) = p, b} with p, = (2, w) and b5 = (2, w). If p,|q,
then a, =1 implies b7=1 (mod 8) and a, =1+ w gives B} =1
(mod p3). Both cases are impossible. An analogous argument may be used
in case pj|a,. O

We are now in a position to prove the main theorem for K = Q(y=m)
with m 5 1 and m # 3.

Suppose that E has good reduction at every discrete valuation of K.
Let (1.1) be a global minimal equation for E. Then »(A) = 0 for every
discrete valuation » of K. Hence A is a unit of 0, i.e. |A| = 1 since m # 1
and m # 3. Now from (1.3) we have

32— 49693
c; —cg = =2°3

and this yields ¢,¢, Z 0 (mod 2) because of (2.4). Lemma (2.3) then shows
that ¢, € Z and ¢4 & Z. Thus ¢, = yy—m with y % 0 and y € Z, because
¢z € Z. From (1.2) we obtain

y-m = —af (mod 4).

Checking the possibilities @, = 1, @ and 1 + w, we find an impossible
congruence in each case. ad

The proof of the main theorem as given above (m # 1 and m # 3)
depends largely on the fact that the only units of O are +1 and -1.
However, in Z[i] and Z[p], where p = (1 + V-3, we have the additional
units =i and *p, *p?, respectively. Consequently, in order to complete
the proof of the theorem, it suffices to show that no point (x, y) € O X 0
of the curve with equation

(2.5) x3 —y? =£2033,

where O = Z[i] and ¢ = %/ in case K = Q(/), and where O = Z[p] and
e = *p, +=p?in case K = Q(p), comes from an elliptic curve with global
minimal equation of the form (1.1) and (x, y) = (¢4, ¢s). This will be
done in §3.
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3. The exceptional cases. First proof. First, we consider K = Q(i).
Let (x, y) be a solution of (2.5) with ¢ = =i that comes from an elliptic
curve over K with global minimal equation (1.1) such that (x, y) = (c,, ¢4)-
Then (x, y) must satisfy
(3.1) 1+itx, 3ly=3%y.

This follows immediately from Lemma (2.4) and (1.2). Now (-x, iy) is
also a solution of (2.5) satisfying (3.1). So we need only consider solutions

(x, y) of
(3.2) x3 = y? — 3i(24)’.

(3.3) LemMA. If 0 = 1(1 + i)6, then 6 = 3i and the number field
Q(8) has the following properties:

(1) The set {1, 0, i, i0} is an integer basis for Q(8).

(2) The principal ideals (2)and (3) factor as b5 and p3, respectively.

(3) The class number of Q(8) equals 2.

(4) The unit n = 1 + i + 0 is fundamental.

The proof of this lemma is a straightforward exercise (cf. [2]).

We turn our attention to (3.2) and write
(3.4) x3=(y —240)(y + 240).

The only possible prime divisor that y + 246 and y — 240 have in
common is p, because of (3.1) and (3.3). We deduce that

(y +2460) = p5A°3,

where a = 0, 1 or 2 and ¥ is an integral ideal. Also
(y —240) = psA*~,

where i and A’ are conjugate ideals. Multiplication yields
(x)’ = p3*(a)’,

hence 2a =0 (mod 3) and thus a = 0. Since the class number of Q(#)
equals 2 and % is a principal ideal, we deduce that % is principal. Then

y + 240 = e(a + b8)’,

where ¢ is a unit and a, b € Z[i]. By Dirichlet’s unit theorem & can be
expressed in the form {#* with k € Z and root of unity {. The only roots
of unity in Q(#) are =1 and =i, all of which may be written as a cube.
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Furthermore, the conjugation map 6 > -8 takes 7 into n~!. Consequently,
we need only consider

+y + 240 = (1orn)(a + b)’
with a, b € Z][i].
(1) £y + 240 = (a + bO)°.
Equating coefficients of 1 and 4 yields:
+y=a>+ 9ab* and 24 = 3a’b + 3b°%.

Then b|8 and the solutions (x, y) are easily obtained. However, none of
those satisfies (3.1).

(2) =y + 240 = (1 + i+ 6)(a + bB)>.

Equating coefficients of 1 and @ yields:

+y = (1+i)a’® + 9ia’h + 9(-1 + i)ab*> — 9b*
and
24 = a* + 3(1 + i)a®b + 9iab® + 3(~1 + i)b>.

Clearly 3|a and hence 3|y. However, 3%|y implies 3°]24. Hence a solution
(x, y) of (2.5) cannot possibly satisfy (3.1). This completes the case

K = Q(i).

Next we consider K = Q(p); we recall that p = (1 + y=3). Let
(x, y) be a solution of (2.5) with e = *p, *=p?, coming from an elliptic
curve over Q(p) with a global minimal equation (1.1) and (x, y) = (¢, ¢4)-
According to (1.2) and Lemma (2.4), (x, y) must satisfy

(3.5) 2tx,  (@2p—ly=2p— 1)y

Clearly, also (X, y) solves (2.5) and satisfies (3.5). Since p = —p* and
p = —p°, we need only consider the equation

(3.6) x3 — 0p263% =2,

with 6 = =1.

(3.7) LeMMA. If § = &y = —exp mi/9, then the cyclotomic field Q({) has
the following properties:

(1) The set {1, ¢, £%, §3, ¢4, §°) is an integer basis for Q($).

(2) The principal ideal (2) is prime and the ideal (3) factors as »S.

(3) The class number of Q($) equals 1.

(4) The set {1 + &, 1+ §°} is a set of fundamental units.
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The above statements are all well known. For (1) and (2), see [5], p.
39; for (3) see [14], Ch. 7, and for (4) see [1], p. 378.

We return to (3.6) and observe it may be written as
2= (x + 126¢)(x + 120¢*)(x + 120¢7).
Since 2 does not divide x, we deduce that
(3.8) (x + 126¢) = psA?
with @ = 0 or 1 and integral ideal %. The conjugation maps { - {* and
¢ - ¢ take p into p while p; too remains unchanged. Hence from (3.8) we
obtain the conjugate ideal equations
(x + 120¢*) = p%(A’)* and (x + 120¢7) = p(A”)’.
Then (y)* = p3*(AA’A"")? and, consequently, 3a =0 (mod 2) or a = 0.
As a result (3.8) becomes
(x + 1208) = (a + B¢ + v§2)* withe, B,y € Z[p],

and this gives in integers of Q(¢):

x + 1208 = 781+ §)"(1+ %) (@ + BE + 187,
(39) x4 1208t = (1484 (14 ¢7) (@ + B8+ 95°),
x4+ 12087 = 787(1 + ¢7)°(1 + ¢8)(a + BET + v¢5),

where 7= =1,0=<a, b, c<1 and a, b, c € Z. All this is a consequence
of Dirichlet’s unit theorem and the fact that the only roots of unity of
Q(¢) are =¢*, k € Z. Multiplication of the three equations (3.9) yields

(3.10)  y?=r(-1)"""p 2 (o’ — pB* + pPy* + 3paBy)”.

We observe that we may assume a = 0 in (3.9). For { can be written as a
square and thus {¢ {*%, and {", respectively, may be absorbed in the
square on the right-hand side of the equations (3.9).

We investigate the four cases (b, c) = (0,0), (1,0), (0,1) and (1,1)
separately.

VHb=c=0.

Then (3.10) shows that 7 = 1. Equating coefficients of 1, {, {? in the
first equation of (3.9) gives

x=a*>—2Bvp, 120=2aB—v% and 0= 8%+ 2ay.
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It is clear that 2ta, 2|8 and 2|y. Put 8 =28, and y = 2y,. A common
prime divisor of a and y, divides 3. Thus ay, = -7 implies

a=¢g2p — 1)’s? and 7y, =¢,(2p — 1)%1?,

where p = 0 or 1 and ¢, ¢, are units such that ¢,e, = —82. Now, because
of (3.5), we have

x =a*=(-3)"els* (mod8),
which implies p = 0. Further 8, = 8(2p — 1)?st = &s¢ and thus
(3.11) 30 =aB, — yip = e,b‘"zt{(8s)3 + p(£2t)3}.

Apparently ¢|3 and hence we may write ¢t = ¢(2p — 1)? with ¢ = 0, 1 or 2.
Substitution of these values of ¢ in (3.11) gives a contradiction in all cases.

2b=1,c=0.
Now 7= -1 as can be seen from (3.10), and we arrive at the
equations

x = —a’ + 2ayp + B + 2Bvp,
-126 = a® + 2aB8 — 2Byp — Y%,
0=-B*—2aB —2ay + y%.
From the last two equations we find that « = 8 = yp? (mod 2). Elimina-
tion of « and 8 modulo 2, reduces the last equation to 2y%p* = 0 (mod 4).
And thus 2|y, 2|a and 2| 8. The first equation then shows that 2|x.
B3)b=0,c=1.
Again 7 = —1. As before we find
x = -a®> — y> — 2aBp* + 2Byp,
120 = -2a8 — B%* + v — 2ayp?,
0= —-a’ + B>+ 2ay + 2Byp*.

From the second and third equation we find that 8 = yp (mod 2) and
B = ap? (mod 2). Elimination of a« and 8 modulo 2, reduces the last
equation to 2y?> =0 and (mod 4). Consequently, 2|y, 2Ja and 2|8. The
first equation then shows that 2|x.

@b=c=1.

From (3.10) and (3.9) we obtain, respectively, 7 = 1 and

x =a’p — B% — v* + 200> — 2ayp — 2Bvp?,
120 = o’ + B%* — v%’ + 2aBp + 2avp® — 2Bvp,
0=0a’ — B% + v’ — 2aB — 2ayp — 2Byp’.
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The second equation shows a + Bp + yp =0 (mod 2), and the third
shows a + B + v = 0 (mod 2). Hence 2ja and 2|( 8 + y). The last equa-
tion then reduces to 28y = 0 (mod 4) and hence 2|8 and 2|y. Again the
first equation shows 2|x.

This completes the case K = Q(p). g

4. The exceptional cases. Second proof. We will give yet another
proof of the Main Theorem (1.7) in the exceptional cases K = Q(i) and
K = Q(p). This proof depends on the appropriate parts of the following
theorem.

(4.1) THEOREM. Let E be an elliptic curve defined over K = Q, Q(i),
Q(/-2) or Q(p) with non-degenerate reduction at all discrete valuations of
K outside 2. Then E has a point of order 2 rational over K.

Proof. Since the class number of K equals 1, an elliptic curve E over K
has a global minimal equation (1.1) which coefficients a, belonging to the
ring of integers O of K. Let A be the discriminant of this equation. A

transformation (1.4) with u = 3, r = 0, s = — 1q, and t = - }a, leads to
an equation
(4.2) y?=x"?+a,x* + ayx’ + al,

for E with a; € O, which is minimal with respect to all discrete valuations
of K outside 2. In fact A’ = 2'?A. Assume the points (x’,0) of order two
on (4.2) are not rational over K, ie. x’ & K. Then the polynomial
f(x)=x*+a,x* + a,x + ag € O[x] is irreducible. If ¢ is a root of
f(x) = 0and L = K(§), then L /K is unramified at all primes not dividing
2. This is because the discriminant of f divides A’. Let M be the splitting
field of the extension L/K. Then M /K is Galois and [M: K] = 3 or 6.
Moreover M /K is unramified at all primes not dividing 2 (cf. [14], 4-10-9
and 4-10-10, p. 178). Let N be the subfield of M corresponding to the
subgroup of order 3 in the Galois group G(M/K). In case |G(M/K)| = 6,
the extension N /K is only ramified at the single prime above 2. For N/K
is unramified everywhere else and N /K cannot be unramified at all primes
by class field theory, since the class number of K equals 1. This knowledge
enables us to list all possible fields N for each of the given fields K:

() K=Q; N=1Q,Q(i), Q(V2) or Q(V-2). _

(2) K= Q(i); N =Q(i), Q(a), Q(B) or Q(B), where a and B are
roots of x* + 1 = 0 and x* — 2x? + 2 = 0, respectively.

(3) K = Q(/-2); N = Q(/-2), Q(a), Q(y) or Q(¥), where « and y

are roots of x* + 1 = 0 and x* + 2 = 0, respectively.
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(4) K= Q(p); N = Q(p), Q(p, i), Qp,v2) or Q(p,V-2).

All possible fields N have class number 1, as is easily established using the
Minkowski bound in each case. Consequently, the only prime that rami-
fies in M /N is the single prime p above 2. Now M/N is abelian and
G(M/N) =Z,. By class field theory, to be more precise, by Artin’s
reciprocity theorem (cf. [5], 5.7 p. 164), the order of G(M/N) divides the
order of the ray class group modulo p” for sufficiently large exponent n
(cf. [5], p. 109). In its turn, the order of the ray class group is a divisor of

in case K # Q(p) and of
h(N)Norm, o(p""') = 477!

in case K = Q(p). Here h( N) stands for the class number of N (cf. [5], 1.3
p. 111 and 1.6 p. 112). This contradicts the fact that |G(M /N )| = 3. This
completes the proof of the theorem.

We remark that Theorem (4.1) was proved by Ogg [7] in case
K=Q. a

We return to the problem at hand. Suppose K = Q(i) or K = Q(p),
and let E be an elliptic curve defined over K with good reduction
everywhere. According to Theorem (4.1) E has a point of order two
rational over K. Now E has a Weierstrass equation

2,3 2
Yo=XT F a,x” + agx + ag

with @, € O and A = €2'2, where ¢ is a unit of 0. Transforming the point
(¢, 0) of order two with ¢ € O to (0, 0) by means of (1.4), one obtains

Y?=X*+4,X>+4,X

with 4, € O for E. Expressing C, and C, in terms of 4, and 4, leads to
the equation

(4.3) AY (A2 —44,) =2 (see(1.3)).

The last equation is easy to deal with, because the only possible prime
divisor of A4, is the prime divisor of 2. In fact it follows easily that no
solution of (4.3) comes from an elliptic curve E defined over K having
good reduction everywhere.
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