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Let T be a differentiable curve in a real projective plane P2
intersected by every line at a finite number of points. A point of T is
ordinary if T is locally convex at that point; otherwise, the point is
singular. Let the singular points of T" consist of #, inflections, n, cusps
(cusps of the first kind) and 7, beaks (cusps of the second kind). Then '
is singular if n(T") = n, + n, + n, > 0; otherwise, I" is non-singular.
The following questions arise naturally: Under what conditions is T
singular? What is then the minimum value of n(T') and is it dependent or
independent of the type of singularities that I' may possess? Presently,
we determine a class of curves I' for which n(I') =2 but n, + 2n, + n,
=4,

1. Introduction. Since T is intersected by every line at a finite
number of points, all lines of P? which contain no singular points and are
not a tangent at any point of I' have the following property: either all
meet I' at an odd number of points or all meet I' at an even number of
points. In the case of the former [latter], we say that I' is of odd [even]
order. Then with regard to the questions posed, curves of odd order are
singular, there exists a curve of odd order containing exactly one singular
point (cf. pp. 1-7, [1]), and a theorem of Mobius [2] states that a simple
(without self-intersections) curve of odd order with no cusps or beaks
contains at least three inflections.

Henceforth we assume that our curves are of even order. Since those
conics not met by some line of P? are trivially non-singular, we also
assume that the curves of even order consideration are met by every line
in P2, The last restriction is associated with the number m(T") of multiple
(self-intersection) points that I' may possess. In Figure 1, we present a
non-singular T of even order which is met by every line in P? and contains
three double points. Thus we may certainly restrict our attention to curves
I' for which m(T") is finite. We also observe in this example that each
double point decomposes the curve into two (not necessarily differentia-
ble) closed curves, each of which is not met by some line. Thus we are
faced with two possible restrictions: assume that m(T') =<2 or that no
multiple point of I' has the mentioned property of the double points in
Figure 1. In subsequent papers we will consider the case m(I') < 2.
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Presently we assume that IT' is almost-simple; that is, each multiple point
of T decomposes T into curves, each of which is met by every line in P2,
Under these hypotheses, our main theorem states that n(I') =2 and
n, + 2n, + n; = 4. As examples of the minimal cases, we refer to Figure
3(n,=2,n, =n,=0),Figure 4 (n, = n, = n; = 1) and Figure 5 (n, =
ny=2,n,=0).

FIGURE 1

2. Differentiable curves. In this section we introduce our notation,
present formal definitions and list results required for the proof of the
main theorem. As these results are known or readily evident, they are
presented without proofs. For a rigorous and complete treatment, we refer
the reader to [3].

We assume that P2 has the usual topology. Let p, ¢q,... and L, M, ...
denoted the points and lines of P? respectively. The flat of P? spanned by
p,L,...isdenoted by ( p, L,...).

Let T C P be an oriented line. For ¢, # t, in T, let [¢,, £,] denote the
oriented closed segment of T with initial point ¢, and terminal point ¢,.
We put (2, £,) = [to, 1, 1\{20> 1}, [ 20, 1)) = [t 6, 1\{#;} and (z,, ;]\ {?}.
Hence T = [t,, ;] U (¢, ty) = [tg, t)) U [t ty). If U(t) =(ty,¢) is a
neighbourhood of ¢ in T then U~(¢) = (¢,, t), U (¢) = (¢, t,) and U’(¢)
=U(t) U U"(2).

A curve T is a continuous map from T into P2 T is (directly)
differentiable if the tangent line I'/(¢) = lim(I'(z), I'(¢")), as ¢’ # t tends to
tin T, exists for each € T and any line of 22 meets I at a finite number
of points. Henceforth I' is differentiable and we identify I'(7") with I'.

Let 9 C T be a segment. We call T' /9 a subarc of T and identify
T /9% with T(ON). If n = sup, p2| L N T(DMN) | is finite, we say that I,
or equivalently I'(9W), is of order n. The order of a point t € T, ord(t), is
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the minimum order which an U(?) can possess. Clearly ord(z) = 2. Then ¢
is ordinary if ord(t) = 2; otherwise, ¢ is singular. We say that ¢ is
elementary if there exist U (¢) and U™ (¢) of order two. A subarc of T is
ordinary [ elementary] if each of its points is ordinary [elementary].

Let t € T and L C P2 We say that L supports T at t if there is an
L’ % L with T'(¢t) ¢ L’ and an U’(¢) such that T'(U’(¢)) is contained in
one of the open half-planes of P? determined by L and L’. When L does
not support I at 7, we say that L cuzs T at ¢. Let S(z) = (L C P*|T(¢) €
L 5 T'(¢)}. It is known that either all L € S(¢) cut I' at ¢ or all L € S(¢)
support I' at ¢. Thus there are four types of points in 7 with respect to I': ¢
is regular if L € S(z) [I'\(¢)] cuts [supports] I' at ¢; ¢ is an inflection if
L € S(¢t) and I'/(¢) both cut I at #; ¢ is a beak if L € S(¢) and I'|(¢) both
support I" at ¢; ¢ is a cusp if L € S(¢) [I',(¢)] supports [cuts] I" at 7. In
Figure 4, ¢, is a cusp, ¢, is a beak, #; is an inflection and all other points
are regular. Trivially, an ordinary point is regular and hence inflections,
cusps and beaks are singular.

Next, T is of odd [even] order if every line in P? cuts I' at an odd
[even] number of points. Since every line meets I' at a finite number of
points, I' is clearly of odd or even order. Let 9 C 7. The index of I'(IN),
ind(T'(91)), is the minimum number of points of I'(9L) which can lie on
any line of P*. Thus if I' is of odd order, ind(T') > 0. Let t € 9. Then
I'(¢) is a simple point of T(OM) if I'(¢) # I'(r) for t’ € M\ {¢}; otherwise,
I'(¢) is a multiple point of T(9I). We similarly define a multiple tangent of
(D). We say that I'(9N) is simple if each of its points is simple. Finally
I is almost-simple if T(t) = I'(¢') for ¢ ¢’ implies that ind(I'[7, ¢']) and
ind(I'[#’, t]) are both positive.

As stated in the introduction, we are interested in almost-simple
curves I' with the property that I' is of even order, n(I') < oo and
m(I") < co. The conditions that n(1') and m(T") are finite however imply
that I" is elementary, that is, not only is I" locally convex at all except a
finite number of points but each point of I' also has one-sided neighbour-
hoods of order two. Such curves have been extensively studied and we list
some of their important properties.

1. A regular point is ordinary and hence the singular points of I’
consist of n; inflections, n, cusps and »; beaks.

2.n, + 2n, + nyiseven if and only if I' is of even order.

3. The tangents I',(#) of I' depend continuously on ¢t € T.

4. Let I'(¢) be simple and let L = lim{I'(¢’), I'(¢+”")) as t" % ¢” tend to
t. If ¢ 1s an ordinary or an inflection point then L = I',(¢).

5.Lett € T'and p € P2 Then there is an U’(z) such that p & T'(¢)
fort € U'(t).
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6. Let I'(¢,, ¢,) be a regular (ordinary) simple subarc such that there is
a line through I'(z,) and I'(z,) not meeting I'(z,, ¢,), I'(¢,) # I'(¢,). If
I'(t)) @ I'\(¢) for t € (¢,,t,) or I'(¢,) & I'(¢) for t € (¢, t,), then (¢, ¢,)
is of order two.

Finally we note that our definitions and results were presented in
terms of continuity and the manner in which lines of P?meet the curve.
As the basic subarc of these curves is a subarc of order two, we also list
some of the properties of such a subarc.

Let (2,, t,) be of order two and let N be an oriented line such that
NN TI(t,,¢t)= 3. For t € (¢,,¢,), I'(t) meets N at exactly one point
which we denote by ¢(?).

7.1T(1) N Tltg, ,]|= 1 for € (10, 1,), im(T(r) N Ty(1,) = (I(£,))
as ¢ tends to ¢, and im({I'(¢"), I'(¢")) N I')(z,)) = {I'(¢,)} as ¢’ ¥+ t” tend
tot;in (¢, ¢,),i =0, 1.

8. If ¢ is not onto then ¢ is a strictly monotone map.

3. The main theorem.

1. THEOREM. Let I' be almost-simple, elementary with positive index and
of even order. Then

HnT)y=2
and

(i) n, +2n, + n; =4

Henceforth let T': T — P? satisfy the hypothesis of 3.1. Let t € T.
Then there is an U(7) = (¢,, t;) such that both (¢, ¢) and (¢, ¢,) are of
order two. Let N be an oriented line such that N N I'(¢z,,¢) = @, N
meets I',(¢’) at the point ¢(¢') for ¢’ € I'(¢,, ¢,) and ¢ is not onto. If 7 is
regular (equivalently ordinary), then we may assume that (z,, ;) is of
order two and thus ¢ is strictly monotone by 1.8. In any case, ¢ /(¢, ]
and ¢/[¢, t,) are both strictly monotone. As ¢ is not onto, ¢((Z,, t)) N
o((t, 1)) #* @ implies that either @((¢,, t)) C ¢((7, ;) or @((¢,¢)) C
¢((ty, 1)). It is easy to check that.

2. LeMMA o((2,, ) N o((t, t,)) = @ if and only if t is a regular or a
cusp point.

We wish to relate this monotone intersection property of the tangents
of U(t) with N to the subarcs of I met by these tangents. To this end, we
introduce the following definitions.
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Let O and 9N’ be segments of T such that (M) N T(IM) = &
and T,(t) N T(M') # @ for each t € M. If [T,(1) N T(OM)|=1 for
each 1 € M, we write I — M. (Since T is elementary, M — M’ and
1.3 readily imply that I',(z) cuts 9" at the point of intersection.) If for
each ¢’ € O’ there is exactly one ¢ € O such that I'(z) € I'|(¢) and
moreover I'(7) cuts M’ at ¢/, we write M « M. If both I - I’ and
ML « M, then clearly I',(7), t € M, meets ['(IN’) in a strictly monotone
manner and we write M < M.

3. LEMMA. Let I'\(sy) cut I' at I'(ty) # I'(sy). Then there exist U(s,)
and U(t,) such that U(s,) = U(t,) and I'(t,) & T'\(s) for any s € U'(s,).

Proof. Clearly there exist open neighbourhoods V(s,) and V(¢,) in T
such that I'(V(s,)) N T(V(¢,)) = B, T'\(sy) N T(V(¢,)) = {I'(¢y)} and by
1.5, I'(z,) & T'\(s) for s € V(s,). As I is elementary, we may assume that
V(so), V*(s4), V(2,) and V™ (2,) are all of order two. Finally as I' (s,)
cuts I at 7,, we may assume that I'(s) N I'(V(z,)) # 2 fors € V(s,).

Suppose there exist s, tending to s, in say V' 7(s,) such that I'\(s,)
meets V(t,) at t, # t{ for each s,. By 1.3, both 7, and f; tend to ¢, as s,
tends to s,. Since I'(s,) cuts I" at 1, 7, is not a beak. If 7 is a cusp, then
I'\(sy) = T'y(2,). If ¢, is not a cusp, then 1.4 implies that

T\(s,) = lim Iy(s,) = lim(T(z,), T(2;)) = T\(z)

as s, tends to s, and thus ¢, is an inflection point. In any case, I',(s,) =

I'\(#,) and ord(z,) = 3. From this, it readily follows that for I'(s,) =

(I(ty), I(23)) close to I'y(¢,), either I'(s,) supports and cuts I" in V'(¢,)

or I'(s,) cuts I' at three points of ¥(¢,). Since V' (t,) and V™ (¢,) are of

order two and I'(¢,) & I'\(s,), such I'j(s,) is either a tangent of I'(V (¢,))

or cuts I' at two points of V' °(¢,) say. In either case, 1.7 implies that
{T(s0)} = lim (T\(s,) N T(sp))

Sx—So

= lim (T,(s,) N Ty(2,)) = {T(2,)},
SA—So
a contradiction. Hence |T'(s,) N I'(V(z,)) |= 1 for s, sufficiently close to
Sy in V(s;).

4. LEMMA. Let T'\(s,) cut T at T'(ty) % I'(s,). Then there exist U(s,)
and U(t,) such that either U" (sy) & U™ (1y) or U (sy) « U (¢,) and
either U (s,) © U (ty) or U(s,) < U™ (1,).
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Proof. By 3.3, there exist V(s,) and V(z,) such that V¥ (s,) and
V(s,) are both of order two, V(s,) — V(¢,) and I'(z,) & I'|(s) for
s € V'(sy). By 1.3, Ty(s) N T(V* (1)) = @ fors € V7 (s,) say and hence
V¥ (sy) = V7 (2,)- Set V(t,) = (1,,¢,) and let U" (s,) C V7 (s,) such
that some ¢ € (z,, ¢,) does not lie on any tangent of U™ (s,).

Suppose there is a t* € (¢, ¢,) such that I'(+*) = I',(s,) N I'\(s,),
s, <s,1in U (s,). Let P, and %, be the closed half-planes determined by
I'y(s,) and T'(s,). Since U* (s,) is of order two, T(U™" (s,)) C &, say by
1.7. Let @,, and ?,, be the open disjoint regions of int(%,) determined by
I'(sy, 5,), I'(s9, 5,) C P,, say. Then each point of P, U P, lies on at least
one tangent of U™ (s,). Hence TI'y(s) N I'(V* (¢,) U {#,})) = @ for s €
U™ (s,) implies that T(V* (£5) U {£,)) C D,,. As U™ (s4) = V(2,), T(1%)
= Iy(s)) N Ty(s,) and T'(¢,) € P, yield that ['(r*, 1) C 9,,. Clearly each
point of (1*,1,) lies on a tangent of U™ (s,) by 1.3 and thus = (t;, ).
But as both I'(s,) and T',(s,) cut T at ¢*, T'(¢*, 1,) C 9P, andT(U* (s,)) N
T(V (1)) = @ imply that I'(z,, t] C T(¢,, t*) C 9,,, a contradiction.

Since each point of ¥ (¢,) lies on at most one tangent of U™ (s,), it is
clear that there is an U~(¢,) C V(7,) such that U (s,) « U~(¢,) and
thus U™ (s4) © U(t,).

The preceding is symmetric in U™ (s,) and U <(s,).

COROLLARY. Under the hypothesis of 3.4, there exist U(s,) and U(t,)
such that U(sy) < U(t,) if and only if s, is a regular or a cusp point.

Proof. Let U(s,) — U(t,). Then clearly U(s,) < U(t,) if and only if
either U™ (s,) < U" (¢,) and U(sy) © U(t,) or U (s,) « U (t,) and
U(s,) < U"(2,). We now apply 3.2.

Let I',(s) meet I' at I'(¢) # I'(s). We say that ¢ is s-negative [s-posi-
tive] if there exist U™ (s) of order two and U~(¢#)[U" (¢)] such that
U (s) « U()[U(s) U (1))

By 3.4, if T'/(s) cuts I' at T'(¢) # I'(s) then ¢ is either s-positive or
s-negative. We note that ¢ may be both s-positive and s-negative or neither
s-positive nor s-negative. In either case, I'|(s) supports ' at 7 if I'(s) # I'(z).

Finally we observe that the following two lemmas are a direct
consequence of 3.4 and the definitions.

5. LEMMA. Let t, be sy -negative [s,-positive]. Then there exist U™ (s,)
and U(t,) [U" (1y)] such that U" (sq) < U (uy) [U" (5,) « U (2,)] and
each t € U(t,) [U" (1,)] is s-negative [s-positive] where T(t) € T (s),
s € Ut (sg)-



ALMOST-SIMPLE PLANE CURVES 263

6. LEMMA. Let t, be sy-negative, U" (s,) < U (t,) and each t € U~(t,)
be s-negative where T'(t) € T'\(s), s € U (s,). Let T'\(s;) cut T at t, €
U (ty), i =1,2. Then s, <s, (s, precedes s,) in U" (s,) implies that
t, <t in U (ty) and I'[s,, t,] C I'[s,, ¢,].

We now present another characterization of singular points and give
sufficient conditions for their existence. With that purpose, let 91 and O’
be open segments in T such that T(9) N T(OM') = & and Iy(s) N
T(9N) # @ for each s € OMN. If each point + € N lies on a tangent of
O and T'(¢) € T'y(s) N T(IN), s € I, implies that T'(s) cuts N at ¢
and ¢ is s-negative, we write I ~ ",

7. THEOREM. Let t, € T. Then t is singular if and only if there exists
an U(t,) of minimum order such that both U (1,) and U™ (1,) are of order
two and (with T possibly reoriented) U™ (t,) ~ U~(t,).

Proof. Since t, is elementary, there exists a V(z,) of minimum order
such that V' (¢,) and V7 (¢,) are both of order two.

If ¢, is regular then V(¢,) is of order two and |T',(z) N T'(¥(¢,)) |= 1
fort € V(t,) by 1.7. Hence the sufficient condition follows.

If 1, is an inflection or a cusp then V(¢,) is of order three, |I',(z,) N
I'(V(¢y))|= 1 and I'|(¢,) meets, and cuts, I' at exactly 7, in V(7). Let
s € V' (1,) tend to t,. Then lim I',(s) = T'(z,) by 1.3 and this readily
implies that I'\(s) meets, and cuts, V' 7(z,) at exactly one point ¢ for
sufficiently close to s,. Hence there exist W™ (1)) C V' (1,) and W <(t,)
C V(t,) such that W* (¢,) = W(¢,). By arguing as in the proof of 3.4,
there exist U™ (1,) C W (¢,) and U (z,) C W(t,) such that U* (z,) <
U~(t,). Since t € U(¢,) tends to t, as s € U* (1,) tends to ¢, it is
immediate that each 7 is s-negative.

If 1, is a beak then V(#,) is of order two and I'\(z,) meets, and
supports, I' at exactly 7z, in V(z,). It is easy to check that for all
s € V7 (1,) close to ¢, either I',(s) N T(V (¢,)) = @ or I'(s) meets, and
cuts, V(1) at exactly two points. By reorienting 7T if necessary, we may
assume that |I,(s) N I(V(z4))|= 2 for s € V7 (¢,) close to t,. Then by
arguing as in the preceding, we obtain that there exist U (z,) C V' (¢,)
and U(¢,) C V (t,) such that each point of U(¢,) lies on a tangent of
U™ (1,) and every tangent of U™ (¢,) cuts U (t,) at each point of contact.
Then im(T',(s) N T(U(1,))) = {I'(¢,)} as s € U* (¢,) tends to ¢, implies
that U" (1) ~ U(t,).
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8. LEMMA. Let T'(s,, t,) be simple. Let U" (sy) = (54, 5), So 7 5y, be
the maximal (open right-neighbourhood of s,) in (s, t,) such that there
exists an U~ (t,) = (¢, ty) with U (sy) ~ U(¢,). Then s, = t, or I'(s))
supports I at a point t € [t, ty) or s, is a beak or an inflection point.

Proof. Let (s, s,) ~ (4, ty), §; # t,. Then for any s, € (s, ¢,) there is
an s € (s,, s,) such that (1) I'i(s) N I'(¢,, t,) = & or (2) I'/(s) supports I’
at a point ¢ € (¢,, ty) or (3) I'i(s) cuts I' at a point ¢ € (¢,, ¢,) and ¢ is
s-positive.

If (1) for any s, € (s,, ¢,), then 1.3, 3.3 and the hypotheses yield that
I'(s)) NI(¢,t,) = & and I'\(s,) supports I' at ¢,. If (2) for any s, €
(s, t,), then s € [s,, 5,) by the hypotheses and I'\(s,) supports I" at a
point ¢ € {7, t,) by 1.3. If (3) for any s, € (s, ), then again s € [s,, 5,)
and thus I'(s,) cuts I' at a point ¢ € [1,, ;) such that ¢ is s,-positive. By
the Corollary of 3.4, s, is clearly a beak or an inflection.

REMARK. Since (s, s;) ~ (¢, t,) implies that each tangent of (s, s,)
meets (1, t,), the choice of (¢, #,) in 3.8 is not arbitrary. In fact if s, is
not singular, then (¢, ¢,) is the maximal U~(¢,) in (s, f,) such that
(89, 81) ~ (1), ty). We also note that I'(s,) supporting I' at a point
t €[, t,) does not exclude I'|(s,) meeting I" at 7, in some fashion.

9. LEMMA. Let I'(s,, ty) be a simple subarc such that t, is s,-negative
and no tangent supports I' at more than one point. Then (s, t,) is not
regular (contains a singular point).

Proof. By 3.5, there is a mximal U™ (s,) = (s, 5,) in (s, ¢,) such that
U™ (s4) ~ U(2,) for some U~(¢,) = (,, t,) C (8, ;). By 3.8, 5, = ¢, or
I'(s,) supports I" at some ¢ € [, t,) or 5, is singular.

If s, =t,, then (s, #y) = (50, 5,) U {s5,} U (s, ;). Then (sy, 5,) ~
(s, 1) and 3.6 (with T reoriented) imply that s, is singular. If s, 5 ¢, and
I'\(s,) supports I" at t € [¢,, t,), then I'|(s,) # I'|(¢) or I',(s,) cuts I' at s,
by the hypotheses. If I',(s,) # I'|(¢), then ¢ is a cusp or a beak. If I'(s,)
cuts I' at 5, then s, is an inflection or a cusp.

10. LEMMA. Let I'(sq, ty) be a subarc such that t is sy,-negative and
I(sg) N IT(sy, ty) = D. Then (s,, t,) is not regular.

Proof. Since T' is almost-simple, I'(s,, ¢,) is simple and we may
assume that 3.9 does not apply to I'(s,, ;).
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Since I’ is elementary, 3.5 implies there exist V" (s,) and V ~(¢,), both
of order two, in (sg, #y) such that V' (sy) ~ V7 (z,). Let s € V' (s).
Then I'\(s) N I'(s, t,) # @ and there is a ¢ € (s, ¢,) such that I'|(s) N
I'(s,t]1={I'(x)}. By 1.3 and 1.7, I',(sy) N I'(sy, t,) = & clearly implies
that 7 tends to ¢, as s tends to s,. Hence we may assume that r € V (¢,)
(hence ¢ is s-negative) for s € V' (s,) arbitrarily close to s,. Let s* > s be
arbitrarily close to s, in ¥ (s,). Then I'\(s”) cuts T at a point ¢’ € V(1)
such that I'/(s") N I'(s’, ¢) = @ and by 3.6, (s',t") C (s, ) C (s, )

It is now immediate that there is a maximal U" (s,) = (s,, 5;) in
(89, to) such that (s, s,) is regular and for each s € (s, 5,), I'(s) cuts I’
at a point ¢ € (s, t,) such that ¢ is s-negative and I'\(s) N I'(s, 1) = &.
Let #{ be an accumulation point of t as s € (s, 5,) tends to s,. By 1.3 and
3.6, I'(¢t]) CI'i(s,) and ¢ € (¢}, t,) for s € (s, 5,). Hence ¢’ is the limit
point of 7. (At this point, one should note that we do not claim that
(89> 5,) ~ (2], ty). We are only concerned with how I'|(s,) meets ['(s,, 7{].)
From the maximality of (s, s,), it readily follows that either s, is singular
or s, # t; and I',(s,) supports I" at ¢; or I',(s,) N I'(s,, ¢]) # . Assuming
that s, is regular, s, # ¢] and I'((s,) supporting I' at ¢] also yield that
I'(s) NT(s,, t)) # D. Clearly I'|(s,) supports I'(s,, ¢{) at each point of
contact and there is a ¢, € (s, ¢]) such that I'\(s,) N I'(s,, ¢,] = {T'(¢))}.
Then s, regular and (s, s,) maximal imply that ¢, is both s,-positive and
s,-negative. We note that if I'|(s,) # I'|(¢,), then ¢, is a beak or a cusp.

In summary, (s, ¢,) is not regular or there exist s, <¢, in (s, ¢,)
such that 7, is s,-negative, I'l(s,) N I'(s, ;) = & and I'|(s,) is a multiple
tangent supporting I'(s,, 7,) at least twice.

By reiteration of the preceding arguments and 1.1, there exist 5§ < {in
(s, 2,) C (8g, ty) such that 1 is §-negative, T'y(s) N I'(s, 1) = @ and I'(5, 1)
possesses no multiple tangents. Then either the lemma follows by 3.9 or
there exist s’ < ¢’ in (5, 7) such that I',(s") supports T at #’. If s is regular,
then I'\(s") # I'(¢") and ¢’ is singular.

Let I'(z), ¢,) be a subarc of order two. By 1.7, |I',(¢) N I'[¢,, 2,]|= 1
for t € (¢, t,) and thus there is an L C P? such that L N T'[z,,£,] =0
and I'[¢), ¢,] is simple. Lety H(I'[¢,, ¢,]) be the convex hull of I'[7,, ¢,] (in
P>\ L). Then } = H(T[t,, t,]) is the closed region in P2 bounded by
I'[¢,, ¢,] and (T'(¢,), I'(z,)) such that |I'\(z) N R|=1 for t € (¢, 1,). We
note that any line through any point of int() meets I'(¢, ¢,) at least
once.

The following result should be well-known.

11. LEMMA. Let I'(¢,, t,) be a regular subarc such that T'\(t,) N I'(z,, t,]
= {I'(t,)}. Then I'(t,, t,) is of order two.
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Proof. I'[t,,t,] is clearly simple. As (z,,¢,) is regular, I'|(z,) N
I'(¢,,¢t,) = @ and 3.10 imply that ¢, is not ¢,-negative. Then ¢, elemen-
tary, 1.7, 3.5 and 1.3 readily yield that there exists a maximal U™ (7)) =
(t,, s;)in(¢,, t,) such that|I'|(s) N I'[¢,, t,]|= 1 fors € (¢, 5)). If 5, = ¢,,
the lemma follows by 1.6.

Suppose s, # ¢,. Then I'(z) € I'|(s,) for some ¢ # s, in (7, ¢,]. If
t € (1, t,), then clearly I'\(s,) supports I" at 7 and ¢ is both s,-positive and
s,-negative. By the maximality of (¢, s,), ¢ & (¢,, s,) and hence we may
assume that I'\(s,) N I'(s,, #) = &. As ¢ is s,-negative, 3.10 implies that
(s, 1) C(z,,1,) is not regular, a contradiction. Hence ¢ € {¢,,¢,} and
Li(sp) N I(ey, 1) = {T(s))}

Suppose I'(t,) € I'/(s,) and choose U(¢,) C (s, ¢,). Then I'|(s) N
T(U(t,)) = @ fors € (¢, s,) yields that 7, is s,-negative [ s,-negative and
s,-positive] if I',(s,) cuts [supports] I" at s,. Hence (s,, #,) is not regular by
3.10, a contradiction.

Suppose I'\(s,) N I'[t,, t,] = {I'(#;), I'(s,)}. Then I'(¢,, s,) is of order
to by 1.6. Let & = H(T[¢,,s,]) (in P*\L, L N T[¢,s,] = &). Since
T(t) NI(ey, ) =2, I(zr,) €T(r,) yields that I'(z,) € R. But s,
ordinary implies there is an U(s,;) C (¢, t,) of order two. Then I'(U *(s,))
C bd(® ) and 1.7 imply that T',(s) N T(U* (s,)) = & for s € U~(s,) and
(U (s))) Cin(R). Thus bd(R) N I'(s,,t,) # . Then bd(R) C
I'[z), 5,] U I'(s)) and I'[7), £,] simple imply that I',(s,) N I'(s,, 2,) + &, a
contradiction.

12. LEMMA. Let I'(¢,, t,) be simple. Let s, € (t,, t,) such that I'|(s,) N
[z, t,] = {I(2)), I(s)), I'(¢,)}. Then (¢,, t,) is not regular.

Proof. We assume that (¢, s,] is regular. Then I'\(s,) N I'(¢,,5,) = @
yields that I'[z,, s,] 1s simple and by 3.11, I'(¢#,, s,) is of order two. Let
R = H(I'[t,, s,]). Arguing as in the proof of 3.11, we observe that T'(s,)
N I'(s,, 1,1 = {I'(¢,)} implies that (cf. Figure 2) I'[s,, t,] C R, ['[s,, #,] is
simple and r, is s,-negative. Hence by 3.10, (s,,7,) C (¢,,1,) is not
regular.

Fl(sl)

FIGURE 2
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Before proceeding with the proof of Theorem 3.1, we still need to
investigate the regular simple subarcs of I'.

13. LEMMA. Let I'(t,,t,) be a regular, simple subarc such that
(T(2), T(t,)yN T(¢t,,1,) = F. Then I'(¢,, t,) is of order two.

Proof. Suppose there is an s € (¢,, ¢,) such that I'(¢,) € I'/(s). Then
there is an s” € (s, ¢, ] such that I'i(s) N I'(s, s") = {I'(s")}. Then I'(s, s’)
is of order two by 3.11 and I'/(s) N I'[#,, s) = @ by 3.12. Hence I'(#)) €
int( H(I'[s, s'])) from the proof of 3.11. But then (I'(¢,), I'(z,)) N I'(s, s")
% &, a contradiction. The lemma now follows by 1.6.

14. LEMMA. Let I'(¢,, t,) be regular and simple. Then
(1) thereisat € (t,, t,) such that |I'\(¢t) N I'[t,, t,]|= 1 and
(2) there is an L such that L N I'[t,, t,] = O.

Proof. Clearly (1) implies (2).

If I')(¢,) N I'(¢,, t,] = 2 then ¢, elementary, 1.7, 1.3, and 1.5 imply
that there is a t € (¢,,t,), arbitrarily close to #,, such that |T\(¢) N
I, 611= 1.

Let I'(¢,) N I'(z,, t,) # <. Then there is an s, € (¢,, ¢,] such that
L\(z) N I(¢y, 5,] = {I'(sy)}. By 3.11, I'(¢,, 5,) is of order two, I'[¢,, 5,] is
simple and (1) follows if s, = r,. Let s, % ¢,. If I'|(¢,) supports I at s,
then I'\(¢,) = I'\(s,) and by 3.12, I'|(s,) N I'(s), t,] = &. Hence (cf. the
proofs of 3.11 and 3.12) I(s,,t,] C H(I'[¢,,s,]) and any t € (¢,, s,)
satisfies (1).

Let I'i(¢,) cut I" at s,. Then s, is ¢,-positive by 3.10. Since I',(z,) N
I'(z,, s,) = @, 3.5 and 3.12 imply that there exist

(a) t € (1), t,), arbitrarily close to ¢,, such that I'/(¢) cuts I' at a point
s € (s, t,) C(t,,t,) where I'i(¢) N I'(z, s) = &, s is t-positive and T'|(¢)
NI[t,t)= 2.

The preceding argument is symmetric in ¢, and ¢, with the orientation
of T reversed; that is, we may assume that there is an s, € (7,, ¢,) such
that I'(¢,) cuts " at s, I'\(¢,) N I'(s,, ¢,) = @ and ¢, is s,-negative. Then
there eixst

(b) t € (¢,, t,), arbitrarily close to ¢,, such that I'|(¢) cuts I at a point
s € (1,5,) C(t, 1), I'i(t) NI(s,t) = &, s is t-negative and T'(z) N
I'(¢,1,] = 2.

Since either I'|(¢) N I'[¢,,¢) = @ or T'(z) N I'(¢,¢t,] = @ for any
t € (1,1, by 3.12, (1) readily follows from (a), (b) and 1.3.
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15. LEMMA. Let I'(¢,, t,) be regular and simple. Then there exist s, < s,
in [t,, t,] such that T'(s,, s,) is of order two and I'[¢,, t,] C H(I'[s,, s5,]).

Proof. By 3.14, there is a € (1,, 1,) such that | T,(¢) N I'[¢,, t,]|= 1.
Since 7 is ordinary, 1.7 and 1.3 imply that there is a maximal U( 1) = (s, 5,)
of order two in (¢,, ¢,) such that |I'\(¢) N I'[z,, £,]|= 1 for ¢ € (s, 5,).

Let R = H(I[s,, 5,]). If s, # t,, then I',(s,) meets either I'(s,, 7,] or
I'[¢,, 5,] by 3.12. From the proof of 3.11, we obtain that I'(s,) N I'(s,, #,]
= ¢ and hence thereis a ¢ € [7,, 5,] such that I'\(s,) N I'[¢, 5,) = {I'(¢)}.
If 1 = ¢, then clearly t, =5, and T[t,,2,] C H(T[),5,]) = R. If 1 # 1,
then TI'(s,) =T(¢) and by 3.12, T'(s,) N I'[¢,,t) = . Since I'(s,)
supports I' at ¢, we again obtain from the proof of 3.11 that r = s, and
I'[s, 5,] CAR.

The preceding argument is symmetric in s, and s,.

We call I'[s,, s,] in 3.15, the convex cover of I'[¢,, t,]. We note that
Lemmas 3.13-3.15 are known in some form or another. The proofs have
been included for the sake of completeness and because the approach is

new.
Since T is of even order with positive index, we observe:

16. LEMMA. If L supports T' at a simple point, then L meets I' at three
distinct points of T.

17. LEMMA. Let I'(t,, t,) be simple and regular. Let L N I'[t,,1,] = @.
Then L meets, and cuts, I' at exactly two points, at least one of which lies in
the convex cover of I'[t, t,].

Proof. Let I'[s,, 5,] be the convex cover of I'[¢,, 1,1, R = H(I'[s,, s5,]).
Then ind(T) >0 and L N I'[¢,, #,] = @ imply that L N R # . Since
I'[¢,, t,] C R is simple, | L N T'(z,, t,) |= 2 by 3.16 and L separates R into
two closed regions R, and R, such that R, UR, =R and R, N R, =
L N 4. Since T is of even order, L cuts I'(¢,, ¢,) at an even number of
points and thus {I'(¢)), I'(¢,)} C R, say.

We first observe that if L meets I'(z, #,) in less than three points,
then L cuts I'(z,, z,) exactly twice by 3.16. If |L N I'(¢,,¢,)|= 3, then L
supports I'(¢,, z,) at most once by 3.12.

Suppose that |L N I(¢),1,)[=3. Then R, convex implies that
in(R,) NI(¢,1,) # D. Let I'(s) € (R, N I(s,, s,))\L. Then I'\(s) N
int(R) = @ and I'(s) meets L\®R at a point p. We note that R, and R,
are contained in the different closed half-planes bounded by I',(s) and L.
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Hence I'y(s) Nint(R,) = @ and I'(s),1,) Nint(R,) #* & imply that
there is a line N such thatp € N, N N R, = @ and either (a) N supports
I' at some ¢ € (¢,, 1,)\(s,, 5,) or (b) I'(z,) or I'(¢,) lie on L. Suppose (a)
and 7 € (¢, s,) say. Then I'(¢) € int(R) and (s,,s,) C (7, s,) imply
thereisat’ € (¢, s,)suchthatI'(¢z’) e N =T(t)and I',(¢) N I'(1, 1) = .
By 3.11, I'(z, t) is of order two.

Let 8’ = H(T'[¢, t']). We note that I'(z) N I'[#,,7) = & by 3.12 and
thus I'(z,) € int(R’) (cf. the proof of 3.11). Since L separates I'(¢) and
['(z,) in R, L also separates I'(¢) and T'(¢,) in R’. Let R} and R, be the
closed regions of A’ determined by L, I'(z,) € R/ and I'(r) € R/, say.
The " N R, =R, i=12.Since LOAN={p} CR, LNNNR" =
@ and N = (I'(¢), I'(¢")) yield that there exist » <r’ in (¢, ¢) such that
Q1 is bounded by I'[r,r’] and L. Finally we observe that 3.14 and
R = H(I[s,, s,]) imply that there is an L’ such that L' N R = &.

Then ind(T') >0 and ®| C R’ C R imply that I'[z,, ¢,] ¢ R /. Hence
I'(z,)) €R| and L N I[¢,,1,] = @ yield that there exist r* € (r, r’) C
(t,, t,) and t* € (1,, 1) such that I'(r*) = I'(+*) and I'[*, 1,] C R ;. Then
[Cle*, r*1 = T[e*, ¢,] U [z, r*] CRand L’ N R = & imply that y is not
almost-simple. Similarly N N ((¢,, 5,) U (s,, ¢,)) = <, (b) and ind(I') > 0
imply that I is not almost-simple, a contradiction.

COROLLARY. Let I'(¢,, t,] be simple and regular. Let L = lim L, where
L, N TI(t,,t,] = & for each L,. Then L cuts I in at most two points.

Proof of Theorem 3.1. (i). If ' is simple, then ind(I") > 0 implies that
I'(T\{t}) contains a singular point for any ¢ € T by 3.14. Hence n(I") = 2.

If there exist r, # r, in T such that I'(»,) = I'(r,), then 1.3 implies
that there exist #, <t, in [r|, r,] and s, <s, in [r,, ;] such that I'(z,) =
I'(z,), T'(s,) = I'(s,) and both I'(¢,, ¢,) and I'(s,, s,) are simple. As T is
almost-simple, every line in P? meets both I'[#,, 7,] and T'[s,, 5,]. Hence
neither (7, 1,) nor (s,, s,) are regular by 3.14 and n(I') = 2.

Proof of Theorem 3.1 (ii). By 3.1 (i), I' contains at least two singular
points ¢, and ¢,. If 7, and ¢, are both cusps, then n, + 2n, + ny; =2n, = 4.
For the curve represented in Figure 3, n, = n; = 0 and n, = 2.

If say only ¢, is a cusp, then I' contains a beak or an inflection point
ty 7 t, by 1.2. Therefore n, + 2n, + ny =2 + n, + ny; = 4. For the curve
represented in Figure 4, n, = n, = n, = 1.
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FIGURE 4

If n,=0and n(I') = n; + ny; ¥ 2, then n(I') =4 by 1.2. Hence we
show that n(I') = 2 implies that n, > 0. Let (¢,, ¢,) and (¢,, ;) be regular.
Then I'[t, ¢,] and I'[#,, ¢,] are simple from the proof of 3.1 (i). By 3.15,
there exist points 7, < s, <s, <1, <u, < u, < ¢, such that I'[7,, 1,] C R,
= H(T[s,, s,]) and TI[z,, {,]1 C R, = H([u,, u,]). Let L, =
(I'(s)), I'(s,)) and L, = (I'(u,), I'(w;)). By 3.17 Corollary, L, and L,
each cut I at most twice.

We observe that I'[#,, 1,] C R, and ind(I") > 0 imply that I'[7,, #,] ¢
% ,. Hence there exist v, < v, in [7,, ;] such that I'[v,, v,] is the largest
subarc of I' contained in % ,. As T is almost-simple, I'[v,, v,] is simple.

Case 1. s, = t, and L, supports I at s,.

Then ¢, is a cusp or a beak and we may assume that 7, is a beak.

Suppose that L, supports I' at s, # ¢,. Then clearly I'(z,) € int(%)),
v, ¥ t,, L, cuts I' at v, (I'[v,, v,] is simple) and L, # I'|(v,). Since L,
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does not cut I' at any point of [¢#,, v,) and I’ is of even order, L, cuts I at
a point t" € (v,, t;). We note that L, cuts I' at exactly v, and ¢’. Hence
(v,, 1) C(2,,t)) and 3.12 imply that L, meets I' at only the points 7,, s,,
v, and ¢’. Since ¢, is a beak, L, N I'[¢’, s,] = {I'(¢"), I'(¢,), I'(s,)} readily
yields that either I'[¢,, s,] C H(T'[¢',1,]) C R, or T'[#, 1,] C H(T[z,, s,])
= @,,. The former yields that ®, C R, and ind(I') = 0 and therefore
I'[¢,1,] CR, and in particular I'[#’,v,] CR,. Since L, cuts I' at ¢/,
¢’ =v, and L, # I'(v,)). Let },, and R ,, be the closed regions of R,
determined by I'(v,); thatis, R |, UR , =R, and R,, N R, = I['(v))
N R,. LetI'(z)) € R,,. Then I'[v,, v,] simple implies that {I'(s,), I'(v,)}
C %R ,,. Since I'(¢,, t,) is regular and simple, 3.13 and L, N I'(v,, v,) =
@ =L, NI(v,,t) imply that both I'(v,, v,) and I'(v,, ¢,) are of order
two. Hence I'\(v,) # L, yields that I'(v,) does not cut I' at any point of
[v,, 1] But I'(¢;)) € R, T'(v,) € Ry, and I'(7,, v,) C R, simple imply
that I'(v,) cuts I'(¢,, v,), and hence I', at an odd number of points, a
contradiction.

Suppose that L, supports I' at 5, = ¢,. We may again assume that z, is
a beak. We observe that L, N I'(¢}, ¢t,) = & and by 3.12, L, does not
support I' at any point of (¢,, ¢;). By 3.16 and 3.17 Corollary, L, cuts I at
exactly two points, say ¢’ <t’, in (¢,, ¢;). Since ¢, and ¢, are beaks, we
argue as in the preceding and obtain that ¢’ = v,, 1 = v,, I'(v,, v,) and
I'(v,, t,) are of order two, I'|(v,) does not cut I' at any point of [v,, v,]
and I'(v,) separates I'(¢,) and I'(v,) in R |. Hence I',(v,) cuts I at an odd
number of points, a contradiction.

Suppose L, cuts I" at s,. Then s, = ¢, = v, and L, cuts I' at exactly
one other point ¢’ € (v,, ;). As in the preceding, v, = ¢’ and I'(v,) cuts
I' at an odd number of points, a contradiction. Thus ¢, must be a cusp.

Case2.s, =t and L, cutsI" ats,.

Then ¢, = v, and L, cuts I' at exactly one other point t” € [s,, f,).
We show that L, = T'\(¢,).

If ¢ =s, then 5, = ¢, = v,, I'(¢}, t,) is of order two and I'|(¢;) N
I'(z,,t,) = @. By 3.12, L, does not support I' at any point of (¢,, ¢;) and
hence L, N I'(z,, t;) = @. Then I'(¢,, ¢,) is of order two by 3.13 and thus
T(t) NT(1,, 1) = . If I(1,) & I'(¢,), then T'(¢,) meets I' at exactly
the point I'(¢,), a contradiction. Hence I'\(¢2,) = (I'(¢,), I'(¢,))= L,.

If t” #s,, then L, supports I' at s, and either s, = ¢, or s, ¥ ¢, and
t” = v,. Asin (1), s, = t, and L, supports I at s, leads to a contradiction
and thus s, # ¢, and t” = v,. Then L, does not support I' at any point of
(v,, v;) by 3.12 and hence L, N I'(v,, t;) = & and I'(v,, ¢,) is of order
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two. If I'(s,) & T'(¢,), then |I'\(1,) N R, |= 1 and in particular | T\(#,) N
(R, U T(v,,t,))|= 1. This is impossible since I' = I'[¢, v,] U I'(v,, £;)
C %R, U I'(v,, 1) and therefore L, = (I'(¢,), I'(s,)) = I(¢)).

Since I'\(¢,) cuts I at ¢,, ¢, is a cusp or an inflection point. Since I'|(¢,)
cuts I' at ¢ = v,, there exist U(¢;) and U(v,) such that U(¢;) - U(v,) by
3.3. Since I'[7,v,]CR,, T(U"(¢,)) Cbd(R,) and T(U(v,)) CR,.
Then no tangent of U™ (z,) meets ['(U (v,)) and thus U™ (¢,) & U* (v,)
by 3.4. Since I'(v,, ;) is of order two, I'(U (#,)) U T(U™ (v,)) C I'(v,, t,)
implies that no tangent of U(¢,) meets (U™ (v,)) and hence U(¢,) <
U ~(v,). Therefore U(t,) < U(v,) and by 3.4 Corollary, ¢, is a cusp.

Case 3.5, # t,.

We note that (1) and (2) are symmetric in ¢, and 7,, hence we may
assume that s, # ¢,. Then L, = I'(s,), s, # v;, ['(¢,) € int(R,), L, sup-
ports [cuts] I at s,[v;] and L, = I'(v,), i = 1,2. Since L, cuts I at only v,
and v,, it readily follows from 3.10 and 3.12 that L, meets I" at exactly s,,
s,, v, and v,. By 3.13, I'(v,, v,) is of order two and thus {I'(v,), I'(v,)} C
%R , implies that either both or neither of I'(s,) and I'(s,) are contained in
K5 = H(I'[v,, v))).

As [I(v)), I'(v,)} CR,, R, convex implies that ['(v,) or I'(v,), say
I'(v,), lies in the boundary of R ,. Let R |, and R |, be the closed regions
of R, determined by I'\(v,); I'(s;) €R,,. Let L, be oriented so that
s, <s,in L, N R . Then I'[v,, v,] C R, simple implies that s, < v, < v,
<s,in L, N R, and in particular, I'(s,) € &, and I'(v,) € R ,,. Since
I'(v,) € bd(R,), I'(v,) = lim L, where L, N R, = @ for each L,. In
the proof of 3.17, we showed that L, N I'[z,, #,] = @ and T[¢,, 2,] C R,
imply that L, does not separate I'(¢,) and I'(z,) in ¢,. Similarly L, N
I'[v,, v,] = @ and I'[v,, v,] C R, imply that L, does not separate I'(v,)
and I'(v,), and hence separates I'(v,) and I'(s,), in R |. Then I'(v,) C R |,
implies that /, N R, CR,, and {I(s)), I'(s,)} N R} = @. It is im-
mediate that I'(¢,) € R ,,.

Let r € (s, v,). Since I'(s,, v,) C int(R,), 1 <|Ty(r) N I(s, 5,)|=<2
and I'(r) cuts I'(s, s5,) at each point of contact. Let I'(r) cut I at »” and
r’” in (s,, s,). Since (s,, t,) [resp. (¢,, 5,)] is regular, it readily follows
from 3.4 Corollary that either r* and r” are r-positive for all r €
(5,5, 1,)[(2,, 5,)] or v’ and r” are r-negative for all r € (s,, 1,)[(1,, 5,)].
Since I'(s,) supports I' at s5,, it is immediate that s, is both s,-positive and
s,-negative and hence r’ and r” are r-positive for all r € (s,, t,) by 3.5.

We note that (I'(v,), I'(r)) tends to L, and T',(r) tends to I',(v,) as
r € (t,, v,) tends to v,. Let r € (¢,, v,) be arbitrarily close to v,. Since L,
cuts I' at v, and v, and I'|(v,) cuts I' at exactly one point of (s, s,), we
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may assume by 3.3 that (I'(v)), I'(r))N I'(v,,r) = & and |T\(r) N
I'(s,, s,)|= 1. Then r’ = r” and by 3.13, I'(r, v,) is of order two with
R, C H(I'[r, v,]). Let I'}(v,) cut T' at the point r; € (s, 5,) and I'y(7)
meet L, at the point p. Since L, N R C R, and I'(s,) € R, 1.3 and
R, C H(I'[r,v,]) clearly imply that p & R ,,; that is, 5, <p <wv, in
L, N AR, Since I'[s;, s,] U (L, NR,) is convex, s, <p <v,in L, N R,
readily yields that s, <r’ <r, in (s, 5,). Since r’ tends to r, in (s,, 5,) as
r tends to v, in (¢,, v,), it follows that r’ and r” are r-positive for all
r € (1,, vy).

Let I'/(#,) cut T' at s € (s, 5,). By 3.3, there exist U(z,) C (s,, v,)
and U(s) C (s,, s,) such that U(t,) > U(s,). As U™ (t,) C(s,,¢,), U"
(z,) C(t,,v,), 1.3 and the preceding imply that U (¢,) <& U~(s,) and
U* (t,) < U* (s,). Hence t, is a cusp by 3.4 Corollary.

FIGURE 5

Thus n, = 0 implies that n(I') = 4. In Figure 5, we represent a curve
with n, =n; =2 and n, = 0.
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