CYCLIC GROUPS OF AUTOMORPHISMS OF COMPACT NONORIENTABLE KLEIN SURFACES WITHOUT BOUNDARY

Emilio Bujalance
CYCLIC GROUPS OF AUTOMORPHISMS OF
COMPACT NON-ORIENTABLE KLEIN SURFACES
WITHOUT BOUNDARY

EMILIO BUJALANCE

We obtain the minimum genus of the compact non-orientable Klein
surfaces of genus \(p \geq 3 \) without boundary which have a given cyclic
group of automorphisms.

1. Introduction. Let \(X \) be a compact Klein surface [1]. Singerman
[8] showed that the order of a group of automorphisms of a surface \(X \)
without boundary of algebraic genus \(g \geq 2 \) is bounded above by \(84(g - 1) \),
and May [7] proved that if \(X \) has nonempty boundary, this bound is
\(12(g - 1) \).

These bounds may be considered as particular cases of the general
problem of finding the minimum genus of surfaces for which a given finite
group \(G \) is a group of automorphisms. The study of cyclic groups is a
necessary preliminary to this, since it leads to limitations on the orders of
elements within a general group. In this paper we consider the above
problem for the case of cyclic groups of automorphisms of compact
non-orientable Klein surfaces without boundary. The corresponding prob-
lem for compact orientable Klein surfaces without boundary was solved
by Harvey [5].

2. Compact non-orientable Klein surfaces without boundary. By a
non-Euclidean crystallographic (NEC) group, we shall mean a discrete
subgroup \(\Gamma \) of the group of isometries \(G \) of the non-Euclidean plane, with
compact quotient space, including those which reverse orientation, reflec-
tions and glide reflections. We say that \(\Gamma \) is a proper NEC group if it is
not a Fuchsian group. We shall denote by \(\Gamma^+ \) the Fuchsian group
\(\Gamma \cap G^+ \), where \(G^+ \) is the subgroup of \(G \) whose elements are the orientation-preserving isometries.

NEC groups are classified according to their signature. The signature
of an NEC group \(\Gamma \) is either of the form

\[
(\ast) \quad \left(g; +; [m_1, \ldots, m_r]; \left\{ (n_{i1}, \ldots, n_{it_i}) \}_{i=1, \ldots, k} \right\} \right)
\]
or

\[
(\ast\ast) \quad \left(g; -; [m_1, \ldots, m_r]; \left\{ (n_{i1}, \ldots, n_{it_i}) \}_{i=1, \ldots, k} \right\} \right);
\]
the numbers \(m_i \) are the periods and the brackets \((n_{i1}, \ldots, n_{is_i})\), the period cycles.

A group \(\Gamma \) with signature (*) has the presentation given by generators

\[
x_i, \quad i = 1, \ldots, \tau, \quad c_{ij}, \quad i = 1, \ldots, k, \quad j = 0, \ldots, s_i, \\
\quad e_i, \quad i = 1, \ldots, k, \quad a_j, b_j, j = 1, \ldots, g,
\]

and relations

\[
x_i^{m_i} = 1, \quad i = 1, \ldots, \tau, \quad c_{is_i} = e_i^{-1} c_{i0} e_i, \quad i = 1, \ldots, k, \\
c_{ij} = (c_{ij}^{-1} c_{ij})^{n_{ij}} = 1, \quad i = 1, \ldots, k, \quad j = 1, \ldots, s_i, \\
x_1 \cdots x_\tau e_1 \cdots e_k a_1 b_1^{-1} b_1^{-1} \cdots a_g b_g^{-1} b_g^{-1} = 1.
\]

A group \(\Gamma \) with signature (**) has the presentation given by generators

\[
x_i, \quad i = 1, \ldots, \tau, \quad c_{ij}, \quad i = 1, \ldots, k, \quad j = 0, \ldots, s_i, \\
\quad e_i, \quad i = 1, \ldots, k, \quad d_j, \quad j = 1, \ldots, g,
\]

and relations

\[
c_{is_i} = e_i^{-1} c_{i0} e_i, \quad i = 1, \ldots, k, \quad x_i^{m_i} = 1, \quad i = 1, \ldots, \tau, \\
c_{ij} = (c_{ij}^{-1} c_{ij})^{n_{ij}} = 1, \quad i = 1, \ldots, k, \quad j = 1, \ldots, s_i, \\
x_1 \cdots x_\tau e_1 \cdots e_k d_1^2 \cdots d_g^2 = 1.
\]

From now on, we will denote by \(x_i, e_i, c_{ij}, a_i, b_i, d_i \) the above generators associated to the NEC groups.

(2.1) Definition. We shall say that an NEC group \(\Gamma_g \) is the group of an orientable surface if \(\Gamma_g \) has the signature \((g; +; [-]; \{-}\)) where \([-]\) indicates that the signature has no periods and \(\{-\}\) indicates that the signature has no period cycles.

(2.2) Definition. An NEC group \(\Gamma_p \) is the group of a non-orientable surface if \(\Gamma_p \) has the following signature \((p; -; [-]; \{-}\)).

For a given \(\Gamma_p \) we have that the orbit space \(D/\Gamma_p \) (where \(D = \mathbb{C}^+ \)) is a non-orientable surface of genus \(p \). The canonical projection \(\pi: D \to D/\Gamma_p \) induces an analytic and anti-analytic structure on \(D/\Gamma_p \), which establishes a structure of compact non-orientable Klein surface without boundary of genus \(p \) in \(D/\Gamma_p \).
From now on, Klein surfaces appearing in this paper are supposed to be compact without boundary.

Singerman has shown in [8] the following

(2.3) **Proposition.** If G is a group of automorphisms of a non-orientable Klein surface of genus $p \geq 3$, then G is finite.

(2.4) **Theorem.** A necessary and sufficient condition for a finite group G to be a group of automorphisms of a non-orientable Klein surface of genus $p \geq 3$ is that there exist a proper NEC group Γ and a homomorphism θ: $\Gamma \to G$ such that the kernel of θ is a surface group and $\theta(\Gamma^+) = G$.

As a consequence of this theorem, we have that if G is a finite group of automorphisms of a non-orientable Klein surface of genus $p \geq 3$ then $G \cong \Gamma/\Gamma_p$, where Γ is a proper NEC group and Γ_p is the group of a non-orientable surface; thus

$$\text{order}(G) = |\Gamma_p|/|\Gamma| = 2\pi(p - 2)/|\Gamma|,$$

where $|\ |$ denotes the non-Euclidean area of a fundamental region of the group.

(2.5) **Theorem.** If G is a finite group, G is a group of automorphisms of a non-orientable Klein surface of genus $p \geq 3$.

Proof. Let us suppose that G has n generators g_1, g_2, \ldots, g_n. There exists a proper NEC group Γ_{2n+1} that is the group of a non-orientable surface, and therefore it has the following generators and relations:

$$\{a_1, a_2, \ldots, a_{2n+1} | a_1^2 \cdot a_2^2 \cdots a_{2n+1}^2 = 1\}.$$

We establish a homomorphism θ: $\Gamma_{2n+1} \to G$, by defining

$$\theta(a_1) = g_1, \quad \theta(a_3) = g_2 \cdots \theta(a_{2n-1}) = g_n, \quad \theta(a_{2n+1}) = 1,$$

$$\theta(a_2) = g_1^{-1}, \quad \theta(a_4) = g_2^{-1}, \quad \theta(a_{2n}) = g_n^{-1}.$$

θ is an epimorphism. $\ker \theta$ is a normal subgroup of Γ_{2n+1} with finite index, and therefore, $\ker \theta$ is an NEC group.

As Γ_{2n+1} has neither periods nor period-cycles, and $\ker \theta$ is a normal subgroup of Γ_{2n+1}, by [2] and [3], $\ker \theta$ has neither periods nor period-cycles, and thus it is a surface group.

Moreover, as $a_1 \cdot a_{2n+1}, a_3 \cdot a_{2n+1}, \ldots, a_{2n-1} \cdot a_{2n+1}$ belong to Γ_{2n+1}^+ and $\theta(a_1 \cdot a_{2n+1}) = g_1, \quad \theta(a_3 \cdot a_{2n+1}) = g_2, \ldots, \theta(a_{2n-1} \cdot a_{2n+1}) = g_n$, then $\theta(\Gamma_{2n+1}^+) = G.$
By (2.4) G is a group of automorphisms of a non-orientable Klein surface of genus $p \geq 3$.

(3.1) Definition. A homomorphism θ of a proper NEC group Γ into a finite group is a non-orientable surface-kernel homomorphism if $\ker \theta$ is the group of a surface and $\theta(\Gamma^+) = G$.

From [2], [3] and (2.4) we get

(3.2) Proposition. A homomorphism θ of a proper NEC group Γ of signature $(g; \pm; [m_1, \ldots, m_r]; \{(n_{i_1}, \ldots, n_{i_{s_1}}) \cdots (n_{k_1}, \ldots, n_{k_{s_k}})\})$ into a finite group G is a non-orientable surface-kernel homomorphism if and only if $\theta(c_{i_j})$ has order 2, $\theta(x_i)$ has order m_i, $\theta(c_{i_j-1} \cdot c_{i_j})$ has order n_{i_j} and $\theta(\Gamma^+) = G$.

(3.3) Corollary. Let G be a finite group with odd order. Then there is no proper NEC group Γ with period cycles for which there exists a non-orientable surface-kernel homomorphism $\theta: \Gamma \to G$.

(3.4) Corollary. There does not exist any proper NEC group Γ with period cycles having some non-empty period cycle for which there is a non-orientable surface-kernel homomorphism $\theta: \Gamma \to \mathbb{Z}_n$ with n even.

Proof. If there were a non-orientable surface-kernel homomorphism $\theta: \Gamma \to \mathbb{Z}_n$, we would have that for every $c_{i_j} \in \Gamma$, $\theta(c_{i_j})$ would have order 2 in \mathbb{Z}_n; if Γ has some non-empty period cycle, there would be two reflections c_{i_j}, $c_{i_j+1} \in \Gamma$ such that $(c_{i_j} \cdot c_{i_j+1})^{n_{c_{i_j}} = 1}$ and, by (3.2), the order of $\theta(c_{i_j} \cdot c_{i_j+1})$ would be n_{i_j}, but this is impossible because

$$\theta(c_{i_j} \cdot c_{i_j+1}) = \theta(c_{i_j}) + \theta(c_{i_j+1}) = \bar{n}/2 + \bar{n}/2 = \bar{n},$$

where \bar{p} denotes the equivalence class of the element p of \mathbb{Z}_n.

(3.5) Theorem. Let Γ be a proper NEC group with signature

$$\left(g; \pm; [m_1, \ldots, m_r]; \left\{ (-)(-), \ldots, (-) \right\}^k \right)$$

and let n be even. Then there exists a non-orientable surface-kernel homomorphism $\theta: \Gamma \to \mathbb{Z}_n$ if and only if:

(i) $m_i \neq n \forall i \in I, I = \{1, \ldots, \tau\}$;

(ii) if $g = 0$, $k = 1$, then $\text{l.c.m.}(m_1 \cdot \ldots \cdot m_\tau) = n$.

Proof. If there is a non-orientable surface-kernel homomorphism \(\theta : \Gamma \to Z_n \), then, by (3.2), \(\theta(\Gamma^+) = Z_n \).

By Theorem 2 of [9] and Theorem 4 of [5], (i) and (ii) hold.

If we suppose that the elements of the signature \(\Gamma \) fulfill (i) and (ii), we define the homomorphism \(\theta : \Gamma \to Z_n \) in the following way:

if \(g \neq 0 \):

\[
\theta(a_i) = \bar{1}, \quad \theta(a_i) = \bar{n}, \quad i = 2, \ldots, g, \quad \theta(x_i) = \frac{\bar{n}}{m_i},
\]

\[
\theta(b_i) = \bar{1}, \quad \theta(b_i) = \bar{n}, \quad \theta(c_i) = \frac{\bar{n}}{2},
\]

\[
\theta(e_i) = -\sum_{i=1}^{\tau} \frac{n}{m_i}, \quad \theta(e_i) = \bar{n}, \quad i = 2, \ldots, k;
\]

if \(g = 0 \), \(k = 1 \):

\[
\theta(x_i) = \frac{\bar{n}}{m_i}, \quad \theta(c_i) = \frac{\bar{n}}{2}, \quad \theta(e_1) = -\sum_{i=1}^{\tau} \frac{n}{m_i};
\]

if \(g = 0 \), \(k > 1 \):

\[
\theta(x_i) = \frac{\bar{n}}{m_i}, \quad \theta(c_i) = \frac{\bar{n}}{2}, \quad \theta(e_1) = \bar{1},
\]

\[
\theta(c_2) = -1 - \sum_{i=1}^{\tau} \frac{n}{m_i}, \quad \theta(e_i) = \bar{n}, \quad i = 3, \ldots, k;
\]

in every case there is a \(\gamma \in \Gamma^+ \) such that \(\theta(\gamma) = \bar{1} \):

- if \(g \neq 0 \), \(\gamma = a_i \);
- if \(g = 0 \), \(k = 1 \), by (ii) \(\operatorname{lcm}(m_1, \ldots, m_\tau) = n \), for there exist integers \(\alpha_1, \ldots, \alpha_\tau \) such that \(\alpha_i n/m_1 + \cdots + \alpha_\tau n/m_\tau = 1 \), therefore \(\gamma = x_1^{\alpha_1} \cdots x_\tau^{\alpha_\tau} \);
 - if \(g = 0 \), \(k > 1 \), \(\gamma = e_1 \).

Therefore \(\theta(\Gamma^+) = Z_n \) and \(\theta \) is a non-orientable surface-kernel homomorphism.

(3.6) Theorem. Let \(\Gamma \) be a proper NEC group of signature

\[
\left\{ \begin{array}{c} g; -; [m_1, \ldots, m_\tau]; \\ \left((-)^k, \ldots, (-) \right) \end{array} \right\}
\]

and let \(\theta \) be a non-orientable surface-kernel homomorphism \(\theta : \Gamma \to Z_n \) with \(n \) even. Then

(i) \(m_i \nmid n \forall i \in I, I = \{1, 2, \ldots, \tau\} \);

(ii) if \(g = 1, k = 0 \), then \(\operatorname{lcm}(m_1 \cdots m_\tau) = n \).
Proof. The Conditions (i) and (ii) hold by Theorem 2 of [9] and Theorem 4 of [5].

(3.7) Theorem. Let \(\Gamma \) be a proper NEC group of signature \((g; \tau; [m_1 \cdots m_r])\) and let \(n \) be odd. Then there exists a non-orientable surface-kernel homomorphism \(\theta: \Gamma \to \mathbb{Z}_n \) if and only if

(i) \(m_i \nmid n \ \forall \ i \in I, \ I = \{1, \ldots, \tau\}; \)
(ii) if \(g = 1 \), then \(\text{l.c.m.}(m_1 \cdots m_r) = n. \)

Proof. The necessity is similar to (3.6). Let us see the sufficiency. If we suppose that the elements of \(\Gamma \) fulfill (i) and (ii) we define the homomorphism \(\theta: \Gamma \to \mathbb{Z}_n \) in the following way: assume \(\Sigma_{i \in I} n/m_i = \bar{p}. \)

If \(g = 1 \) and \(p \) odd:

\[
\theta(x_i) = \frac{n}{m_i}, \quad \theta(a_1) = \frac{1}{2}(n - p).
\]

If \(g = 1 \) and \(p \) even:

\[
\theta(x_i) = \frac{n}{m_i}, \quad \theta(a_1) = -\frac{1}{2}p.
\]

If \(g > 1 \) and \(p \) odd:

\[
\theta(x_i) = \frac{n}{m_i}, \quad \theta(a_1) = \frac{n - 2p - 1}{2}, \quad \theta(a_i) = \bar{n}, \quad i > 2.
\]

If \(g > 1 \) and \(p \) even:

\[
\theta(x_i) = \frac{n}{m_i}, \quad \theta(a_1) = \frac{n + 1}{2}, \quad \theta(a_i) = \bar{n}, \quad i > 3.
\]

In every case there is \(\gamma \in \Gamma^+ \) such that \(\theta(\gamma) = 1 \): if \(g = 1 \), by (ii) \(\text{l.c.m.}(m_1 \cdots m_r) = n \), for there exist integers \(\alpha_1, \ldots, \alpha_r \) such that \(\alpha_1 n/m_1 + \cdots + \alpha_r n/m_r = 1 \), therefore \(\gamma = x_1^{\alpha_1} \cdots x_r^{\alpha_r}; \)

if \(g > 1 \) and \(p \) odd, \(\gamma = a_1^4 \cdot a_2^2; \)

if \(g > 1 \) and \(p \) even, \(\gamma = a_2^2. \)

Therefore \(\theta(\Gamma^+) = \mathbb{Z}_n \) and \(\theta \) is a non-orientable surface-kernel homomorphism.
4. Minimum genus. In this section we shall compute the minimum genus of a non-orientable Klein surface which has a cyclic group of automorphisms. We know by (2.4) that if G is a group of automorphisms of a non-orientable Klein surface of genus $p \geq 3$, then $G \cong \Gamma / \Gamma_p$, where Γ is a proper NEC group, and Γ_p is a group of a non-orientable surface. Thus if $\text{order}(G) = n$, we have

$$n = 2\pi(p - 2)/|\Gamma|$$

and $p = 2 + (n/2\pi)|\Gamma|$, so we can reduce the problem to the search of a proper NEC group for which there exists a non-orientable surface-kernel homomorphism $\theta: \Gamma \to Z_n$ which minimizes p.

(4.1) Theorem. If $n = 1$, q prime, then the minimum genus p of a non-orientable Klein surface with a group of automorphisms isomorphic to Z_n is:

- if $q = 2$, $p = 3$,
- if $q \neq 2$, $p = q$.

Proof. If $q = 2$, we consider an NEC group of signature

$$(0; +; [2, 2, 2]; \{(-)\}).$$

This group fulfills the conditions of Theorem (3.5), so

$$p - 2)/2 = 1/2, \quad \text{i.e.} \quad p = 3.$$

If $q \neq 2$, we have that an NEC group of signature $(1; -; [q, q])$ fulfills the conditions of Theorem (3.7), therefore it is the group of a surface and

$$p - 2)/q = 1 - 2/q, \quad \text{i.e.} \quad p = q.$$

Now let us see that q is the minimum genus.

If we take any other NEC group Γ with the conditions of Theorem (3.7), Γ would have the signature $(g; -; [q, \ldots, q])$ and

$$p - 2)/q = g - 2 + \tau(1 - 1/q) = (\tau + g - 2) - \tau/q,$$

$$p = 2 + (\tau + g - 2)q - \tau,$$

since $\tau > 1$ if $g = 1$, and $g \geq 1$, then the following expression is always $\geq q$.

(4.2) **Theorem.** If \(n = 2^\beta q_1^{\alpha_1} \cdots q_a^{\alpha_a} \), where \(2 < q_1 < \cdots < q_a \) and \(q_1 \cdots q_a \) are prime, then the minimum genus \(p \) of a non-orientable Klein surface with group of automorphisms isomorphic to \(\mathbb{Z}_n \) is

\[
p = \begin{cases}
 n/2 & \text{if } \beta = 1, \\
 n/2 + 1 & \text{if } \beta > 1.
\end{cases}
\]

Proof. If \(\beta = 1 \), we consider an NEC group \(\Gamma \) of signature

\[
(0; +; [2, n/2]; \{-\}).
\]

This group fulfills the conditions of Theorem (3.5), so

\[
\frac{p - 2}{n} = \frac{1}{2} - \frac{2}{n}, \quad \text{i.e.} \quad p = \frac{n}{2}.
\]

Now let us see that \(n/2 \) is the minimum genus. If we take any other group \(\Gamma \) in the conditions of (3.5), \(\Gamma \) would have the signature \((g; +; [m_1 \cdots m_k]; \{(-), \ldots, (-)})\), where \(m_i \nmid n \), so

\[
p = 2 + n(2g - 2 + k) + n \sum_{i=1}^{k} \left(1 - \frac{1}{m_i} \right).
\]

If \(2g - 2 + k > 0 \), then the genus would be greater than the one we had calculated before; if \(2g - 2 + k \leq 0 \) as \(g \geq 0 \) and \(k \geq 1 \), we have that only the following cases can hold: \(g = 0, k = 1; g = 0, k = 2 \). If \(g = 0, k = 2 \), as \(|\Gamma| > 0 \) then \(\tau \geq 1 \).

\[
p = 2 + n \sum_{i=1}^{\tau} \left(1 - \frac{1}{m_i} \right) > \frac{n}{2}.
\]

If \(g = 0, k = 1 \),

\[
p = 2 - n + n \sum_{i=1}^{\tau} \left(1 - \frac{1}{m_i} \right),
\]

as \(p \geq 3, \tau \geq 2 \) necessarily. But \(\sum_{i=1}^{\tau} (1 - 1/m_i) < 2 \), since if it is greater or equal, the genus would be greater than the one calculated before. Thus \(\tau \) can only be 2 or 3. In both cases, keeping in mind that l.c.m. \((m_1 \cdots m_k) = n \), one can check easily that the minimum genus one gets is \(\geq n/2 \).

If we take an NEC group \(\Gamma \) with signature

\[
\left\{ g; -; [m_1, \ldots, m_k]; \{(-), \ldots, (-) \} \right\}
\]
then

\[p = 2 + n(g - 2 + k) + n \sum_{i \in I} \left(1 - \frac{1}{m_i}\right). \]

If \(g - 2 + k > 0 \), then the genus would be greater than the one we had calculated before. If \(g - 2 + k \leq 0 \), then, necessarily:

\[
\begin{align*}
g &= 1, \quad k = 1, \\
g &= 1, \quad k = 0, \\
g &= 2, \quad k = 0.
\end{align*}
\]

In the three cases, using Theorem (3.6), we have \(p \geq n/2 \).

If \(\beta \neq 1 \), we consider an NEC group \(\Gamma \) of signature

\[(0; +; [n, 2]; \{(-)\}). \]

This group fulfills the conditions of Theorem (3.5), so

\[
\frac{p - 2}{n} = \frac{1}{2} - \frac{1}{n}, \quad \text{i.e.} \quad p = \frac{n}{2} + 1.
\]

If we take any other group \(\Gamma \), by (3.5) and (3.6) and operating in the same way as before, we get that \(n/2 + 1 \) is the minimum genus.

(4.3) \textbf{Theorem.} Let \(n = q_1^{r_1} \cdots q_a^{r_a} \), with \(q_1 < q_2 < \cdots < q_a \) being prime numbers and \(q_1 \neq 2 \). Then the minimum genus \(p \) of a non-orientable Klein surface with group of automorphisms isomorphic to \(Z_n \) is

\[
\begin{align*}
p &= 2 - q_1 + n - n/q_1 \quad \text{if } r_1 = 1, \\
p &= 1 + n - n/q_1 \quad \text{if } r_1 > 1.
\end{align*}
\]

\textit{Proof.} Similar to the proof of the above theorem, bearing in mind (3.7).

The following corollary has also been obtained by W. Hall in [4]. The corresponding result for orientable Klein surfaces without boundary is due to A. Wiman [10].
(4.4) Corollary. The maximum order for an automorphism of a non-orientable Klein surface of genus $p \geq 3$ is

$$
2p \quad \text{if } p \text{ is odd},
$$

$$
2(p - 1) \quad \text{if } p \text{ is even},
$$

and it is always reached.

Proof. Given a non-orientable Klein surface of genus $p \geq 3$, we have by Theorems (4.1), (4.2) and (4.3) that the genus p satisfies $p \geq n/2$, i.e. $2p \geq n$. If $p = n/2$, then $n = 2$ and $n \neq 4$, so that bound is only reached when p is odd: in fact, given an NEC group Γ of signature $(0; +; [2, p]; \{(\cdot)\})$, by (3.5) there is a non-orientable Klein surface of genus p, with a group of automorphisms isomorphic to Z_{2p}.

If p is even, the maximum order for an automorphism is $2(p - 1)$, since given an NEC group Γ of signature $(0; +; [2(p - 1), 2]; \{(\cdot)\})$, by (3.5) there is a non-orientable Klein surface of genus p, with a group of automorphisms isomorphic to $Z_{2(p-1)}$.

If p is the topological genus of a compact non-orientable Klein surface without boundary, the algebraic genus is $g = p - 1$.

If we express the above corollary in terms of algebraic genus, these bounds are the same as the ones obtained by C. L. May in [6] for the order of an automorphism of an orientable bordered Klein surface.

The author wishes to thank the referee for several helpful comments and suggestions.

References

Received October 20, 1981 and in revised form June 26, 1982.

DEPARTAMENTO DE TOPOLOGIA Y GEOMETRIA
FACULTAD DE MATEMATICAS
UNIVERSIDAD COMPLUTENSE
MADRID, SPAIN
Mathematical papers intended for publication in the Pacific Journal of Mathematics should be in typed form or offset-reproduced (not dittoed), double spaced with large margins. Please do not use built up fractions in the text of the manuscript. However, you may use them in the displayed equations. Underline Greek letters in red, German in green, and script in blue. The first paragraph must be capable of being used separately as a synopsis of the entire paper. In particular it should contain no bibliographic references. Please propose a heading for the odd numbered pages of less than 35 characters. Manuscripts, in triplicate, may be sent to any one of the editors. Please classify according to the scheme of Math. Reviews, Index to Vol. 39. Supply name and address of author to whom proofs should be sent. All other communications should be addressed to the managing editor, or Elaine Barth, University of California, Los Angeles, California 90024.

There are page-charges associated with articles appearing in the Pacific Journal of Mathematics. These charges are expected to be paid by the author's University, Government Agency or Company. If the author or authors do not have access to such Institutional support these charges are waived. Single authors will receive 50 free reprints; joint authors will receive a total of 100 free reprints. Additional copies may be obtained at cost in multiples of 50.

The Pacific Journal of Mathematics is issued monthly as of January 1966. Regular subscription rate: $132.00 a year (6 Vol., 12 issues). Special rate: $66.00 a year to individual members of supporting institutions.

Subscriptions, orders for numbers issued in the last three calendar years, and changes of address should be sent to Pacific Journal of Mathematics, P.O. Box 969, Carmel Valley, CA 93924, U.S.A. Old back numbers obtainable from Kraus Periodicals Co., Route 100, Millwood, NY 10546.

The Pacific Journal of Mathematics ISSN 0030-8730 is published monthly by the Pacific Journal of Mathematics at P.O. Box 969, Carmel Valley, CA 93924. Application to mail at Second-class postage rates is pending at Carmel Valley, California, and additional mailing offices. Postmaster: Send address changes to Pacific Journal of Mathematics, P.O. Box 969, Carmel Valley, CA 93924.

PUBLISHED BY PACIFIC JOURNAL OF MATHEMATICS, A NON-PROFIT CORPORATION
Copyright © 1983 by Pacific Journal of Mathematics
Tibor Bisztriczky, On the singularities of almost-simple plane curves 257
Peter B. Borwein, On Sylvester’s problem and Haar spaces275
Emilio Bujalance, Cyclic groups of automorphisms of compact nonorientable Klein surfaces without boundary 279
Robert Jay Daverman and John J. Walsh, Acyclic decompositions of manifolds ... 291
Lester Eli Dubins, Bernstein-like polynomial approximation in higher dimensions ... 305
Allan L. Edelson and Jerry Dee Schuur, Nonoscillatory solutions of $(r x^n)^n + f(t, x)x = 0$.. 313
Akira Endô, On units of pure quartic number fields 327
Hector O. Fattorini, A note on fractional derivatives of semigroups and cosine functions .. 335
Ronald Fintushel and Peter Sie Pao, Circle actions on homotopy spheres with codimension 4 fixed point set 349
Stephen Michael Gagola, Jr., Characters vanishing on all but two conjugacy classes .. 363
Saverio Giulini, Singular characters and their L^p norms on classical Lie groups ... 387
Willy Govaerts, Locally convex spaces of non-Archimedean valued continuous functions ... 399
Wu-Chung Hsiang and Bjørn Jahren, A remark on the isotopy classes of diffeomorphisms of lens spaces 411
Hae Soo Oh, Compact connected Lie groups acting on simply connected 4-manifolds .. 425
Frank Okoh and Frank A. Zorzitto, Subsystems of the polynomial system .. 437
Knut Øyma, An interpolation theorem for H_∞ 457
Nikolaos S. Papageorgiou, Nonsmooth analysis on partially ordered vector spaces. II. Nonconvex case, Clarke’s theory 463