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We study the existence and growth rates of positive, monotonic,
bounded solutions of the equations

(1%) (r()x")" =f(t,x)x=0,  f(t,x)>0.

First we prove our results for the linear equation with f(z, x) = p(2),
then by a fixed point method we extend these to the nonlinear equation.
We also obtain some oscillation results for (1™ ).

1. Introduction. Fixed point theorems have proved very effective in
solving problems posed for nonlinear equations of the form

(1.1) x' = A(t, x)x.

The reason is that if one considers the mapping ¢ — Tp, where ¢ lies in a
suitable set in a function space and T¢ is the solution of the linear
equation

(1.2) x' = A(t, p(t))x

satisfying a suitable property P, then a fixed point of 7 will be a solution
of (1.1) satisfying P. Thus results for linear equations may be extended to
nonlinear equations.

For A(t, x) a matrix-valued function, this method was used by Conti
[4] and Opial [14] to solve boundary value problems associated with (1.1).
Corduneanu [5] used it to describe the growth behavior of solutions for
large ¢. Kartsatos [10] also studied the growth of solutions and he used
fixed point theorems from set-valued mappings — thus eliminating the
need that property P describe unique solutions to (1.2). In some recent
papers, [2] and [15], the method has been applied to the growth of
solutions of nth order nonlinear equations of the type

(1.3) x"+a, (1, x)x"D + - +ay(r, x)x = 0.

These results become especially interesting when one realizes: (i) any
equation x’ = f(t, x) with f(¢,0) =0 and f continuously differentiable
with respect to x can be put into the form (1.1) (cf. [2], [15]); and (ii) the
theorems apply to families of nonlinear equations, not just single equa-
tions.
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In this paper we apply the fixed point method to oscillation-nonoscil-
lation theory. In §2 we consider the equations

(1.4) (r(t)x("’)(")if(t,x)x =0; flt,x),r(t) >0

and we obtain necessary conditions and sufficient conditions for the
existence of certain monotonic, nonoscillatory solutions (the so-called
minimal solutions).

The theorem on minimal solutions relates to work of Hartman and
Wintner [8]; in §3 we extend their main theorem to nonlinear vector
equations.

In §4 we obtain several results about oscillatory solutions. In particu-
lar, we derive sufficient conditions for the existence of an oscillatory
solution of

(1.5) x® = f(t, x)x

and we show that if

(1.6) x@®m = f(t, x)x

has a bounded oscillatory solution x(¢), with 0 <lim, _  x?"~"(¢) < oo,
then every eventually positive solution of (1.4) is either strongly increasing
or strongly decreasing. Finally we generalize theorems of Hille and
Leighton-Nehari to (1.6).

2. We begin by studying the differential equations

(2.1) (r()x) " + p(1)x =0
and
(2.2) (r(6)x™)"™ + f(1, x)x = 0

where p and r are positive and continuous on [ 7, %), [P dt/r(t) = oo,
and fis positive and continuous on [ 1, 00) X (-00, 00).

For now we are interested in nonoscillatory solutions. In (2.2), with
r(t) = 1, one sees, by means of Rolle’s theorem, that if x(z) is a solution
satisfying x(¢z) > 0 on [ p, o0), then there exists ¢ = p such that x*)(¢) # 0
on [o,00), 1 <k <2n. If, further, x(¢) is bounded on [p, ), then we
may choose 6 so that x*(#)x**D(¢) <0 on [06,0), ] <=k <2n— 1.
(This statement requires the integral condition on r.)

Kusano and Naito [12] studied (2.2) with » = 2 and Kreith [11]
studied (2.2) with r(¢t) = 1. Among their results were necessary and
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sufficient conditions for (2.2) to have a solution satisfying
x(1)>0, (=D)""'x®()>0 (1<sk=n-1),
23) (=) (Oxm() P >0 O=k=n-—1)
allon [g, o) (for some 6 =17) and tlirg x(t) =c¢>0.

We consider this problem and we begin with a similar result for the
linear equation:

THEOREM 2.1. Let ¢ > 0 be given. Then (2.1) has a solution x . satisfying
(2.3) if and only if
(2.4) / R(7,s)p(s)ds > -0

where

IO S Ut
(2.5) R(1,5)= _f, ((n = 1D)1)’r(u)

du, T<t=<s< 0.

Further, x_ satisfies
lim b*x*(b) =0 (1<sk=n-—1),

b— o0

(2.6) ‘ K)ok
lim (r(b)x"(b)) "R (1, b)) =0 (0<k=n-—1),
b— o0

([ ] denotes d/db). And, for a given c, x, is unique.

Proof. (1) A solution of (2.1) satisfies

(2.7) Aﬁ~xw%:§[ﬂﬂ)w;pxww)

1

S [0 ) o) R 4, )

+/tbR(t, u)p(u)x(u) du.

(If n = 1, the first term on the right-hand side is omitted.)
Formula (2.7) follows from Taylor’s theorem:
n—1 k k_(k
(=1)%(b—1)"x®(b)
@ xn=3 L

0

s— )" 'r(s)x™ (s
+(_1)"f,b( (tn)- 1)(!r)(s) as
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(b) r(s)x"(s) ::’Eé (=1)°(b “’S)Af((b)X‘“(b))

wr (2 s — )" p(u)x(u)
+ (=" du.
(=1) l (n~1)! !

If we substitute (b) into (a) and reverse the order of integration on the
double integral, the resuit is (2.7).

(i) Necessity. Suppose (2.1) has a solution satisfying (2.3). In (2.7)
hold ¢ fixed and let b — co. The limit of the left-hand side exists. On the
right-hand side each term is negative, the limit of the whole side exists,
and hence the limit of each term exists, i.e.

lim (b — 1) x®P(b) = ¢,(1),

h—x

iim (r(6)x (b)) R 1HR(1 b)Y = d, (1),

b--oc
and

fOOR(t,u)p(u)x(u)du> oo

1

(hence (2.4) holds). We shall show that the ¢,’s and d,’s are constant
functions. Then (2.7) can be changed to

x(1) — ¢, — /xR(t, u)p(u)x(u) du

7

n— 1(__1) ¢ ik
- ; k! ot 2 H\Ha’/\

and since the left-hand side goes to zero as ¢ — oo and each term on the
right-hand side has the same sign, each ¢, and each d, equals zero. Hence
(2.6) will hold.

(a) lim (b — N xM(b) = ¢, (1)

and
b—1)'x®(b) _ (b—1)'x"(b)
b—1t - b—r1 ’
r<t<b< oo,

(b 1) ") = L

implies lim, . (b — )" 'x‘*)(b) = 0, uniformly in ¢. Hence we may
differentiate within the limit and dc,(¢)/dt = 0.

() Jim (r(b)x(5)) VR e b) = d (1)
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and

—RUVR (g ) < —RUTR (7, b)), T=t<b< .

By the Second Mean Value Theorem of Integral Calculus,

b= =) b= w =)
I ) du= (&) () du

T<€h<bs

and §, » o« as b — o0. So

: g (b —w) (w—0)"
hlin;; (r(b)x"(b)) -/; k!'(n— 1)!r(u) du =0,
uniformly in 7. Hence dd,(t)/dt = 0.

(iii) Sufficiency. Assume that (2.4) holds and let ¢ = 7 be such that
[Z R(o,s)p(s)ds > —1. Let X be the space of functions which are
bounded and continuous on [0, c0) and for x € X let ||x|| = sup{|x(?)]:
0 =t<oo}.Define T: X - X by

(2.8) T[x](t) =c+ ftooR(t,s)p(s)x(s)ds.

Then T is a strict contraction and its unique fixed point is seen to satisfy
(2.1), (2.3).

(iv) Uniqueness. A solution of (2.1), (2.3) was shown, in (ii), to satisfy
(2.6). Combining (2.6) and (2.7) we see this solution must also be a fixed
point of (2.8) — and hence unique.

THEOREM 2.2. Let (2.2) be given and define f(t) = sup{ f(¢, x); 0 = x
<a). (i) If

(2.9) f R(7,s)f,(s)ds> —o0 for somea >0,

then (2.2), (2.3) (with ¢ = a), (2.6) has a solution. (ii) If (2.2), (2.3) has a
solution, this solution satisfies (2.6). (iii) If (2.2), (2.3) has a solution and if
x <y implies f(-, x) < f(-, ), then this solution is unique and (2.9) holds
with a = ¢ (¢ given in (2.3)). (iv) If (2.2), (2.3) has a solution and if x <y
implies f(-, x) > f(-, y), then this solution is unique and (2.9) holds for any
a € (0, c).

Proof. (i) Let X be the Fréchet space of continuous functions on
[T, 00) with the compact-open topology (i.e. |x, — x|| - 0 means
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sup |x,(t) — x(¢)|— 0 uniformly on each compact I C [1, )). Let S =
{(x€X:0=x(t)<con|[7,00)}; S is closed, convex, and bounded. De-
fine T: S — S by Tu is the solution of the linear equation

(2.10) (r(t)x‘"))(") + f(z, u(t))x = 0, u€es,

which satisfies (2.3), (2.6).
By Theorem 2.1, T is well-defined and, if x = Tu,

x(t)=c+ _/;OOR(I, s)f(s, u(s))x(s)ds.

Now u € S and (2.9) holds so from the line above we have |x(7)],
[x'(t)|=M (M = M(c, I)) on each compact I C [, 00) and hence, by
Ascoli’s theorem, 7'S is relatively compact.

Now T is continuous: Let {u,} be a sequence in S converging to u,
and let {x,} be the corresponding solutions of (2.10); let I C[r, o) be
compact. By compactness, some subsequence of {x,} converges to x,. On
I, a solution of (2.10) is a continuous function of u. Hence the full
sequence {x,} converges to x,.

By Schauder’s theorem 7 has a fixed point which satisfies (2.2), (2.3).

(i1) If u is a solution of (2.2), (2.3), then u is a solution to the linear
equation (2.10) and (2.3) and hence, by Theorem 2.1, satisfies (2.6).

(iii) Suppose that x, and x, are two solutions of (2.2), (2.3) (with the
same c¢) and suppose that x, > x, on [ ¢, c0). Using (2.7) and (2.6)

0 =c+ [ R(t)f(s. x,(9)x,(s) d.
Also f(-, x,)x, > f(-, x;)x, and R(¢,s) <0ont <s < 0. Then
0 <x,(1) — x)(1)
= TR A xa(5))xals) = fls. x(5)x(5)] ds <.
Likewise x,(a) = x,(a), x,(b) = x,(b), x, > x, on (a, b) is impossible:
0 :[xz(b) - Xl(b)] —[xz(a) - Xl(a)]
= / ’ (same integrand) < 0.

So x, = x,. That (2.9) holds follows from the monotonicity on f.
(iv) The proof is similar to that of (iii).

REMARKS. (1) In (i) we cannot apply the Contraction Mapping
Theorem directly to (2.2) without further assumptions on f. In (iii) (and
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iv) we are very close to a Lipschitz condition (x >y = f(-, x)x — f(-, y)y
= f(¢, y)(x — y)) and this suggests that with monotonicity a contraction-
type proof could be constructed.

(2) Theorem 2.2 includes the corresponding results of Kusano and
Naito and Kreith and adds the growth condition contained in (2.6) and
the uniqueness.

We next consider

(2.1) (r(6)x)" = p(t)x = 0
and
(2.2) (r(t)x(”’)(") —flt,x)x=0

where 7, p and f are as in (2.1), (2.2).
A bounded, positive solution for either of these equations must satisfy

x(1)>0, (=1D)'x®()>0 (1<k=n-—1),
2.11) (=DM (r()x) >0 (0<k=n—1), allon[r,o0),

lim x(z) = ¢=0.

I— o0

For (2.1) ", that such a solution exists is a special case of a theorem of

Hartman and Wintner [8], its uniqueness was shown by Etgen and Taylor
[7]. For (2.2)" with n = 2 and monotonicity conditions on f, necessary
and sufficient conditions for the existence of a solution satisfying (2.11)
with ¢ > 0 were given by Wong [16] and existence for arbitrary n, with
r(t) = 1, follows from a theorem of Chow, Dunninger and Schuur [3]. We
now add the following two theorems:

THEOREM 2.3. (1) Let x, be a solution of (2.1)” satisfying (2.11) (and x.
is known to exist). Then x . satisfies (2.6). (i) For a given ¢ > 0, x will exist
if and only if (2.4) holds. This x, is unique. (iii) For ¢ = 0, x_ will exist if
and only if [ R(t, s)p(s)ds = —oo. In this case [*° R(t, s)p(s)x(s)ds>
—o0. (iv) If (2.1)~ has no oscillatory solutions, then the x . of (iil) is unique up
to scalar multiplication.

Proof. The proof of (i) and (ii) uses (2.7) and is similar to the proof of
Theorem 2.1.
To prove (iii) we note that x_ exists, satisfies (2.6) and (2.7), and hence
satisfies
x (1) = c—f R(t,s)p(s)x(s)ds.

t



320 ALAN L. EDELSON AND JERRY D. SCHUUR

Now x, is decreasing. If ¢ = 0 and if (2.4) holds, then
x,(1) < xc(t)[—f R(t,s)p(s)ds| <x,t) forlarget
t

and this is impossible.

To prove (iv) assume that x(z) and y(z) are two solutions of (2.1)~
satisfying (2.11) with ¢ = 0. Let k = —[x(7)/y(7)] and z(¢) = x(¢t) — ky(t)
(so z(7) = 0). Now z(t) = —[>® R(¢, s)p(s)z(s) ds, so z(a) = 0 for some
o=, z(t) # 0 on (o, o0) is impossible. (Part (iv) was proved by Etgen
and Taylor [7].)

3. Matrix equations. The Hartman-Wintner result, mentioned at
the end of §2, is a special case of a theorem for matrix equations:

THEOREM 3.1 (cf. [8]). Let A(t) be an n by n matrix of continuous
functions satisfying A(t) =0, 1 < t < co. Then the equation

(3.1) x' = -A(t)x (x € R")
has a nontrivial solution x (t) satisfying
(3.2) xo(t) =0, —xy(2) =0,

for 1=t <<oo. (For a vector or matrix, = means the inequality holds
componentwise.)

This suggests two possibilities: applying the fixed point method to the
nonlinear matrix equation

(3.3) x' = -F(t, x)x (x € R"),
or extending Theorems 2.2 and 2.3 to the equations
(3.4) x"—A(t)x =0, A(t)=0.
(3.5) x" — F(t, x)x = 0.

Here F: [71,00) X R" —» L" (the linear functions from R” into R") is
continuous and satisfies

(3.6) x=0=F(t,x)=0 foreach: €[r, ).

THEOREM 3.2. Equation (3.3) has a nontrivial solution x(t) satisfying
(3.2).
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Proof. Let X denote the Fréchet space of continuous functions | 7, o0)
— R”, topologized by the compact open topology, and let

S = {x € X:x(t)=0fort =, é |x,(0)|= 1}.
1

For u € S we have the linear equation
(3.6) x'=-F(t,u(t))x,  F(t,u(t))=0fort=0.
Define
Tu = {x € S: x is a solution of (3.6) and x(z) < x(s) for t = s}.

We do not, in this case, know that the monotonically decreasing
solutions of (3.6) are unique and hence Tu is not necessarily single-valued.
In place of the Schauder theorem we must use the corresponding result for
set-valued mappings: if S is a closed, convex, nonempty subset of a
Fréchet space X and if 7T satisfies: (i) for each u € S, Tu is a nonempty,
compact, convex subset of S; (ii) 7 is a closed mapping; and (iii) 7S is
contained in a compact subset of S; then there is a u € S such that
ue Tu.

To verify (i) we note that Tu is convex because (3.6) is a linear
equation. For the compactness we let {x,} be a sequence in Tu. The
conditions

1= 31012 3 1x0)1= 1,
and
sup /(1) = (sup | (4, () )1x(0)]

for each compact interval J C [, 00), imply that {x } contains a subse-
quence {x,} converging to x, in C°(J). Putting x, into (3.6) we see that
x, — z and that x is a solution of (3.6) with z = xj. It follows that Tu is
compact. That Tu is nonempty follows from Theorem 3.1.

To show (i1) we consider a sequence {u,} C S such that u;, — u, in
C%J), and assume that x, € Tu,, x, — x,. An argument similar to the
preceding shows that x, € Tu,, and so T is closed. The proof of (iii) is
similar.

The fixed point of T is the solution x,,.
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THEOREM 3.3. Let ¢ € R", ¢ > 0, be given. Then (3.4) has a solution x,
satisfying

(3.7) x(t)>0, x'(t)<0, tlirgx(t) =¢>0
if and only if

(3.8) foosA(s) ds < oo.

Further x . satisfies

(3.9) ,11‘?0 tx'(t) =0

and x . is unique.

Proof. We observe that a solution x(¢) of (3.4) can be written as
x(1) = x(b) — x'(b)(b— 1)

b
+/(s—t)A(s)x(s)ds, T<t<b< .
14
The rest of the proof follows the lines of the proof of Theorem 2.1.

THEOREM 3 4. Let (3.5.a) denote (3.5) with the additional condition that
x=y=Ft x)=F(t, y) forall t € [1,0) (or < for all t). Then (3.5.a),
(3.7) has a solution if and only if

(3.10) /sF(s,a)ds<oo for some a > 0.

T

Further, this solution is unique and satisfies (3.9).

Proof. Similar to the proof of Theorem 2.2.

4. Oscillation theorems. A proof of the existence of oscillatory
solutions is complicated by the absence of a suitable topological structure
in the set of oscillatory solutions. We shall first study the disconnection
between oscillatory solutions and a certain type of monotonic solution.

Consider the equations

(4.1) xCY —p(t)x=0
and
(4.2) xC®M — f(t,x)x =0

where p(t) and f(¢, x) are as in (2.1), (2.2).
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We note that every eventuallly positive solution of (4.1) or (4.2) is of
one of the following types:
(i) x'(r) > 0 for 0 < i < 2n (strongly increasing)
(i) (—1)'x(¢) > 0 for 0 < i < 2n (strongly decreasing); or
(i) x(z1) >0 for 0<i<2k, k>0, and (—1)x“(z) >0 for
2k <i<2n.
Our first theorem collects some known results for these equations.

THEOREM 4.1. (a) For n = 2 or 3: Equation (4.1) has an oscillatory
solution if and only if every eventually positive solution is either of type (1) or
of type (ii). (b) Equation (4.2) has an oscillatory solution if every eventually
positive solution is either of type (i) or of type (ii).

Proof. For n = 2, (a) was proved by Ahmad [1]. For n = 3, (a) follows
from results of Edelson and Kreith [6] and Jones [9]. Part (b) was proved
by Edelson and Kreith.

Equations (4.1) and (4.2) always have solutions of types (i) and (ii);
Jones [9] has shown that for » > 3, equation (4.1) may have both oscilla-
tory solutions and solutions of type (iii). We have the following result on
oscillatory solutions and solutions of type (iii):

THEOREM 4.1. If (4.1) has a solution of type (iii), then no oscillatory
solution can satisfy

(4.3) Ix())|=M, 0< limx?®"(¢) < 0.

t— 00

Proof. Let x,(t) be an oscillatory solution, and x,(¢) a solution of
type (iii). If | x,(z)]=< M, then the solution x(z) = x,(¢) + x,(¢) is either
strongly increasing or of type (iii). The conditions lim, x$*"~V(¢) = 0
and 0 < lim, _ x(*"~D(¢) < oo imply that x(¢) is a solution of type (iii)
which satisfies 0 < lim,_  x?"~"(¢) < o0, and this is impossible.

Now we are able to give quantitative criteria for oscillation of (4.2), in
the case n = 2.

THEOREM 4.2. If f(t, x) is non-decreasing in x, and if
[ee}
(4.4) f tif(t, x) dt =

for every ¢ > 0, and for some q < 3, then (4.2), with n = 2 is oscillatory and
every nonoscillatory solution is either strongly increasing or strongly decreas-

ing.
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Proof. We will show that if (4.4) holds, then (4.2) has no solutions of
type (iii). If, on the contrary, x,(¢) is a solution of type (iii), then the
corresponding linear equation

(4.5) x@ = flt, xo(1))x

has a solution of type (iii) and is therefore nonoscillatory. By Theorem
4.59 of [13], we must have [ t9f(¢, x,(?)) dt < oo for any g < 3, but since
x,(t) is positive and increasing, and f(¢, x) is nondecreasing in x, this
contradicts (4.4).

We note that the equation x¥ = &% *x is nonoscillatory, and there-
fore the conclusion of Theorem 4.2 fails when g = 3.
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