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RoNALD FINTUSHEL AND PETER SIE PAO

In this paper we give a complete equivariant classification of smooth
S' actions on homotopy spheres with codimension 4 fixed point set and
point out a relationship with a natural generalization of the twist-spinning
process for knots.

Semifree S' actions on homotopy spheres with codimension 4 fixed
point set have been classified by J. Levine; so we concentrate on actions
with exceptional orbits. There are some obvious linear models for these
actions. Let £ be the standard generator of the complex representation
ring of S'. Then in some sense the actions with one exceptional orbit type
are modeled after £¥ © £ ® 0 and those with two exceptional orbit types
are modeled after £ @ £” @ 0. Let S denote the set of diffeomorphism
classes of pairs (277!, A) where 2" ' is a homotopy (n — 1)-sphere and
A, is a smooth Z,-acyclic orientable codimension 2 submanifold with
boundary an integral homology sphere. Similarly, for relatively prime
integers k and m, let §; ,, denote the set of triads (2"~ '; A,, A,) where
A, and A, are respectively Z, and Z, -acyclic orientable codimension 2
smooth submanifolds meeting tangentially such that dA, = 0A, = A, N
A, is an integral homology sphere. In these two cases the classification
theorem states that actions on homotopy n-spheres with one exceptional
orbit type Z,, or two exceptional orbit types Z, and Z, are in 1-1
correspondence with &, and 5, . These 1-1 correspondences are realized
by associating with an S' action on a homotopy n-sphere its structured
orbit space and viewing A, and A,, as the images in the orbit space of the
fixed point sets of Z, and Z,,,.

That these two types of actions do not comprise all S' actions on
(homotopy) spheres with codimension 4 fixed point set was shown by E.
V. Stein in answer to a question of Frank Raymond. It turns out that all
these other actions correspond in a 1-1 fashion via their structured orbit
spaces to the set @k'fm of diffeomorphism classes of triads (2", A, A,)
as in the definition of &7, except that the interiors of A, and A,
intersect transversely in a (perhaps disconnected) n—5 manifold without
boundary. This intersection manifold corresponds to the image in the
orbit space of the exceptional orbits of type Z, . The intersecting aspect
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of these examples is that they have more orbit types than their slice
representation at the fixed point set. Our description gives rise to an easy
construction of all these actions.

Our classification of S' actions is carried out in terms of weak
equivalence. (Recall that a weak equivalence of smooth S'-manifolds M,
and M, is a diffeomorphism f: M, — M, satisfying f(tx) = a(t)f(x) for
t € S'. x € M, where a is an automorphism of S'.) Since 1 — ¢ ' is the
only nontrivial automorphism of S', a weak equivalence of S'-manifolds
is just an equivariant diffeomorphism up to a change of direction of the
action in one of the manifolds. This can be avoided by carrying along a
specified orientation on the normal bundle in 2" ! of A, (the fixed point
set image), see [L]; however, we have opted for the simplicity that goes
along with classification up to weak equivalence.

In §4 we use S' actions on homotopy spheres to introduce a class of
knots which generalize the twist-spin knots of Zeeman [Z]. It is then a
corollary of the classification theorem for S' actions that the knot
complements of knots in this class fiber over the circle with fiber a
punctured cyclic branched cover of the original knot. A special case of
this is Zeeman’s main theorem [Z]. Furthermore, this class of knots gives
rise to infinitely many counterexamples to the n-dimensional Smith Con-
jecture.

The question of which homotopy spheres admit S' actions with
codimension 4 fixed point set has been answered separately by J. Levine
and R. Schultz in the semifree case. Recently Schultz has shown that any
homotopy sphere which admits an S' action with codimension 4 fixed
point set must also admit one which is semifree, and in fact he gives much
more precise information [S]. We wish to thank Reinhard Schultz for
explaining his results to us and for encouraging the publication of our
results. We also wish to thank Allan Edmonds for his excellent advice
which has led to the restructing of our original format.

1. Orbit space and orbit structure. In this section we describe the
general features of the orbit structure of a smooth S'-action on a homo-
topy n-sphere M" whose fixed point set has codimension 4. We identify
the circle group S' with the group of complex numbers of unit modulus. If
S'acts on M and X is a subset of M then X* denotes its image in the orbit
space M* and p: M — M* denotes the orbit map. Given a subset Y* of
M* we let Y = p '(Y*) when this causes no confusion. Let F denote the
fixed point set of M and E the union of the exceptional orbits (those with
finite nontrivial isotropy group). The union of the exceptional orbits of
type Z, will be called E,, and F, will denote the fixed point set of Z, (so
E, CF).
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Let S' act smoothly on a homotopy n-sphere M" (n = 5), so F is an
integral homology sphere [B]. If F is codimension 4 then the S'-action on
a slice D" at a point of F must be equivalent to

S'X D2X D*X D" %> D*X D*X D" 4,

t X (z,, 25, w) = (2,25, 22", w),

where k& and m are relatively prime positive integers. Since F is connected
this slice representation is the same at each point of F.

PROPOSITION 1.1. If k = 2 (resp. m = 2) then F, (resp. F,,) is a smooth
orientable Z, (resp. Z, )-homology n — 2 sphere.

Proof. Suppose k = 2. It is easily seen that F, is a smooth submani-
fold of M", and if k is not a 2-power F, is orientable since it is the fixed
point set of a Z,-action ([B, IV.2.1]). For any prime p dividing k we have
F, C F,;s0 F,is a Z,-homology n — 2 sphere. The connected component
of F, which contains F is a closed n — 2 submanifold of F,; hence
F, = F,. It now follows from the universal coefficient theorem that F, is a
Z,-homology sphere. If k is a 2-power it follows that F, is a Z,-homology
sphere and so is orientable. O

PROPOSITION 1.2. There are the following possibilities for the ap-
pearance of exceptional orbit types:
(1) no exceptional orbit types (semifree action),
(ii) one exceptional orbit type,
(i) Z, and Z,,-orbits,
(iv) Z,, Z,,, and Z, ,-orbits,
where in (iil) and (iv) k and m = 2 and are relatively prime.

Proof. Let t X (z,, z,, w) = (z,t*, z,t™, w) be the slice representation
at a point of F. If p is any prime then F, is a Z,-homology sphere
containing F. Thus if k = m = 1 then (i) holds. If k> 1, m = 1 and Z, is
an isotropy type, r > 1, then each prime p dividing r also divides k. Let p*
be the highest power of p dividing r, then F, is a Z, homology n — 2
sphere; so F, = F, = F,. Suppose r = py ---p;~. Then F = F,
N---NF,. = F,.Sor = ksince Z, and Z, are isotropy types.

If kx> 1and m > 1 and if Z, is an isotropy type with r = pj' - - - pi« >
1, the above argument shows that each F,,, = F or F,. Thus F. = F,, F,

orF,NF,=F,,. Sor=k,m,or km. O
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Note that the submanifolds F, and F,, meet transversely.

That M* is a topological manifold follows from slice considerations.
We now describe how it can be smoothed. For details see the forthcoming
paper of R. Schultz [S]. Consider first the semifree case which is presented
in a paper of J. Levine [L]. Let N(F) be an equivariant tubular neighbor-
hood of F and note that N*( F*) is the total space of a D*-bundle over F*.
Since p | F is a homeomorphism F* has an induced smooth structure and
N*( F*) thus inherits a smooth structure. Since the S'-action on M" — Fis
free, M* — F* also inherits a smooth structure. These structures agree on
the overlap and so make M* a smooth manifold.

Consider next the case where the action has one exceptional orbit
type Z,. Then as above there is a smooth structure induced on M/Z,
by the semifree Z,-action and it can be seen that the induced semi-
free S'/Z, =S' action on M/Z, is smooth [S]. Hence M* =
(M/Z,)/(S'/Z,) is a smooth manifold.

In case there are two or three exceptional orbit types we use the
diagram:

M - Mz
\ \J
M/Zm - M/ka

N
M*

where each map is the orbit map of a semifree action. The diagram can be
used in two different ways to make M* a smooth manifold; but it can be
seen that the two smooth structures agree.

The existence of these smooth structures has been known for some
time, and the following summary of their properties appears in [S].

PROPOSITION 1.3. Let M* have the smooth manifold structure described
above. Then:

(a) p: M - M* is a smooth map.

(b) p| F is a diffeomorphism and F — M* is a smooth embedding.

() If k>1 (m>1) then F¥ (E}) is smoothly embedded in M*
extending the embedding of F*.

(d) If the slice representation at F is equivalent to

S'XCXCXR"™5CXCXR"4,

t X (z,, 2., w) = (2,25, 231", w)
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then:
(1) at F, p is smoothly equivalent to

CXCXR"™* S5 CXRXR"™4,
(210 22w) = (b2 " |2y P = 2P ow).
(ii) at E,, p is smoothly equivalent to
CXR"™3XR-CXR"3,
(z,w,s) = (zF,w),

and a similar statement holds for E,,.
(i) at E,,, (k, m > 1), p is smoothly equivalent to

CXCXR'"™7@PXR->CXCXR"3,

k m
(z), 2y, w, s) = (25, 27, w).

Furthermore, any two smooth manifold structures @ and % on M* which
satisfy (a)—(d) are equivalent in the sense that there is a diffeomorphism
(M*, Q) —» (M*, B) which is topologically isotopic to the identity. O

PROPOSITION 1.4. (a) M* is a homotopy n — 1 sphere.

(b) Ff, F, Ff ., F* (and F} U F} in case (i) of Prop. 1.2) are
orientable smooth submanifolds of M*, and 3F} = 0F* = F*.

(c) F* is an integral homology S"~*; F¥ (resp. F¥) is Z,-acyclic (resp.
Z -acyclic). (So in case (iii) of Prop. 1.2, F}¥ U F* is a rational homology
S§773)

(d) In case (iv) of Prop. 1.2 E}¥ is an orientable closed n — 5 submani-
fold of M* which is the transverse intersection of E¥ and E.

Proof. Part (a) follows from [CF]. Except for the orientability (b)
follows from slice considerations and Prop. 1.3, and (c) follows from
Smith theory and Prop. 1.1. To see that F}! is orientable, let y* be any
loop in Int Fi¥ = F* — F*. Since E}, is codimension 2 in F}* an isotopy
moves y* into EF. For a tubular neighborhood N* of y* we have
p~ '(N*) = N = N* X S'. But N is orientable since F, is orientable, thus
N* is orientable and F} is also. To prove (d) note that the Z, , -action on a
slice D? X D? X D" at a point of E,,, must be

e2mi/km (Zx’ ZZ,W) __)(Zle21n/m, Zze2w1/k’w)-
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All of (d) follows from this except for the statement about orientability.
Since k and m are relatively prime, we may suppose that m is odd. Now
E,,, is a component of the fixed point set of the induced Z,, action on the
orientable manifold F,. Thus E,,, is orientable ([B, IV.2.1]), and the
argument given above to show Fj* is orientable also shows tht EX is
orientable. O

2. Actions with one exceptional orbit type. Consider a smooth S'
action on a homotopy n-sphere M" (n = 5) with codimension 4 fixed
point set and one exceptional orbit type Z,. Then Fj* is a smooth
codimension 2 submanifold of M* with boundary F*, where M* is a
homotopy n — 1 sphere, F}* is an orientable Z,-homology n — 3 disk and
F* is an integral homology n — 4 sphere. Call the pair (M}, I'*) the
structured orbit space of the action. In view of the above facts we define
the set of potential structured orbit spaces &, to be the set of diffeomor-
phism classes of pairs (2"~ !, A ), where A, is a smooth orientable n — 3
dimensional Z,-acyclic submanifold of the homotopy n — 1 sphere ="'
and 0A, is an integral homology n — 4 sphere.

For a smooth S' action on a homotopy n-sphere M" (n = 5) with
codimension 4 fixed point set and one exceptional orbit type Z,, the
structured orbit space (M*, Ff¥) € §;. We shall show in this section that
for each 0 € &) there is up to weak equivalence a unique action M(o) of
S' on a homotopy n-sphere with structured orbit space o.

Giveno = (2" ', A,) € ] we now proceed with the construction of
M( o). According to [L] if we fix an orientation of the normal bundle of
0A, in 2"~ we determine up to equivariant diffeomorphism a semifree S'
action on a homotopy n-sphere N’ with fixed point set F =0A, and
smooth orbit map p: N" — ="~ ! with w(F) = 0A,. Let F, =~ '(4,); so
F, is a smooth codimension 2 submanifold of N".

Claim. E is an orientable Z,-homology sphere.

Proof. p|F, — A, is the orbit map of a semifree S' action with
codimension 2 fixed point set. It follows from [B, V.10.1] that 1?,\ is
homeomorphic to A X S' /(x, t) ~ (x, ") for t, ¢’ € §'. Le. F, is homeo-
morphic to A, X §' U 8A, X D?> =9(A, X D?); so F, is orientable since
A, is orientable, and duality implies that F, is a Z,-homology sphere. [

Since H(N" — F; Z,) ~ H" " *(F; Z,) ~ Z, there is a k-fold cyclic
branched cover M" of N" branched over F,. According to [DK] M" has a
unique smooth manifold structure such that »: M" — N” is the smooth
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orbit map of a smooth semifree Z, action, and such that the smooth
structure on N” which is imposed via the semifree action (as in §1) is just
the original smooth structure on N".

Claim. The S' action on N" lifts to a smooth S' action on M"
containing the Z, action.

Proof. By [B, 1.9] there is a unique S' action on M — »~ '( F,) covering
the S' actionon N — F,; ie. »(1 - x) = t* - y(x) forallx € M — v '(F),)
and ¢ € S'. This action is smooth because the smooth structure of
M — »~'(F,) is lifted from N — F, via the cover. The normal bundle of F,
in N” is trivial [MS, §11]; thus it follows from [B, VI.11.1] that the S’
action on an equivariant normal bundle of E in N is equivalent to

S'X F, X D* > F, X D?,
t X (x,z) > (t-x,zt")

for some integer u, where ¢ - x denotes the action of S' on FA Now M is
diffeomorphic to the union of M — »~'(F,) with the tubular neighbor-
hood T of » '(F,) in M, and T can be identified with F, X D? (see [DK;
p. 160]). Under this identification »| F, X D?is »(x, z) = (x, z*). Define
the S' action on 7= F, X D? by t X (x, z) > (t* - x, zt*). This covers
the S' action on F, X D? C N; so by uniqueness of covering action on
T — v~ '(F,) the actions on T and M — »~'(F,) patch together to give a
smooth S' action on M containing the given Z, action. O

Claim. =, (M) = 0.

Proof. By Van Kampen’s theorem (M) is the free product of
(M — v '(F)) and 7(T) amalgamated over =(T — » '(F,)). Now
M—v '(F)=(w) (2" =A,). But A, is codimension 2 in ="'
and 9A, # 0; so the usual piping argument shows that 7,(2" "' — A, ) = 0.
Hence the exact sequence

WI(Sl) - 771((#”)71(2"4 - AA)) - Wl(z”—l - AA) =0

shows that 7(M — v~ !(F,)) is generated by a circle orbit. Since the S'
action on M has a nontrivial fixed point set m( M — V_I(E\)) - (M) is
the 0-map. Also, since o7 — v_‘(F;‘.) is an S' bundle projection, the
homomorphism # (T — »~'(F,)) = m(3T) = m(v" '(F,)) = =(T) is onto.
It follows that 7, (M) = 0. O
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Now for R = Q or Z,, p prime not dividing k, we have
H,(M; R) ~ H,(M; R)* ~ H,(N; R) ~ H,(S"; R)

where the first isomorphism is due to the fact that Z, action is contained
in the S' action and the second isomorphism follows from [B, 111.2.4]

since p is prime to k.
Claim. H(M"; Z,) =~ H (S"; Z,).

Proof. Since A, is Z, acyclic, Alexander duality implies that =" 7! — A,
is Z, acyclic. But M — »"(F,) = (p») (="' — A,) is a circle bundle
over ="' — A,; hence M — »!(F,) has the Z,-homology of a circle. We
have seen above that the tubular neighborhood T of v~ !(F,) = F, is
T =F, X D? and F, = F, is a Z, homology n — 2 sphere. The claim now
follows from a simple Mayer-Vietoris argument. O

It now follows from the universal coefficient theorem that H, (M, Z)
~ H,(S"; Z); so M is a homotopy n sphere. Letting M(o) = M we have
proved the realization theorem:

THEOREM 2.1. Given o € 5] there is a smooth S' action on a homotopy
n-sphere M( ) with structured orbit space o. 0

In order to prove that this action is unique we need the next lemma.

LEMMA 2. Let X and Y be S' spaces and consider the actions of Z,
embedded in the S' actions. Suppose we have the commutative diagram

x

Y
m L,
x/z, 5 vz,
where f is Z,-equivariant and g is S'-equivariant with respect to the induced
actions. Then f is S'-equivariant.

Proof. Lett € S' and x € X. Then

my (f(2- x)) = g(my(t- x)) = gt - my(x)) = 1 - g(my(x))
=1-my(f(x)) = my (1 - f(x)).
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Thus there is an s € Z, such that 7 - f(x) = s f(¢ - x). But s = 1 when
t = 1, so a continuity-connectedness argument implies that s is always 1;
so fis S'-equivariant. O

THEOREM 2.3. Let M| be a smooth S'-manifold with codimension 4
fixed point set and one exceptional orbit type Z,. Suppose that M{ has
structured orbit space o € S;. Then M| is weakly equivalent to M(o); in
particular M' is a homotopy sphere.

Proof. Let f* be a diffeomorphism of pairs (Mf, F¥(M,)) —
(2", A,) = 0. As in §1, M,/Z, has an inherited smooth structure such
that M, is the smooth k-fold cyclic branched cover of M,/Z, branched
over F,(M,). The induced S'/Z, action on M,/Z, is semifree and (after if
necessary a change in the orientation of the S' action on M,) Levine’s
theorem [L] yields an S'-equivariant diffeomorphism f

Mz, L N
#y \: \LIL
Ml* - En~]

Note that
F(E(M) = p~ ' (F(M) = p7'f*(Fr (M) = p7'(4,) = F,.

By the uniqueness of smooth cyclic branched covers [DK] there is a
Z,-equivariant diffeomorphism f:

M, A M(o)
\ i
7
Mz, 5 N
and fis S'-equivariant by Lemma 2.2, O

3. Actions with 2 or 3 exceptional orbit types. The classification
theorem of the previous section is the main tool used in studying smooth
S! actions on homotopy n-spheres with codimension 4 fixed point set and
two or three exceptional orbit types. For n =5 and k, m relatively prime
positive integers define 5/ ,, to be the set of diffeomorphism classes of
triads (7' A,, A,) where ="' is a homotopy sphere, A, is a smooth
orientable Z -acyclic n — 3 submanifold, A,, is a smooth orientable Z
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acyclic n — 3 submanifold, A, N A, = 9A, = dA,, is an integral homol-
ogy n — 4 sphere, and A, U A is a smooth submanifold of =" .

Define 7", to be the set of diffeomorphism classes of triads
("' A, A,) as above except that Int A, and Int A meet transversely
in Q a (perhaps disconnected) n — 5 dimensional smooth submanifold,
and A, U A, — Q is a smooth submanifold of ="~ .

If S' acts smoothly on a homotopy n-sphere M" with codimension 4
fixed point set and two or three exceptional orbit types we call (M
F¥, F¥) the structured orbit space of the action. If n = 5 it follows from §1

m

that (M*s F/:kﬁ F*) S q,’,\’ m "/\”m

m

THEOREM 3.1. Suppose that the S'-manifolds M, and M, have the same
’ n

structured orbit space ¢ €, or I, . Then M, and M, are weakly
equivalent.

Proof. Let f* be a diffeomorphism (M{; FX(M,), FX(M,)) - (M
F¥(M,), F*(M,)). The induced S' action on M,/Z, has one exceptlonal
orbit type Z, and structured orbit space ( M*, F;*( M,)), so by Theorem 2.3
there is a weak equivalence f: M,/Z — M,/Z  covering f*. Hence
f(E(M)/Z,)=F/(M,)/Z,. Now M, is the smooth m-fold cyclic
branched cover of M,/Z, branched over F,(M,)/Z,; so we may apply
the uniqueness of branched covers and Lemma 2.2 to finish the argument
as in the proof of Theorem 2.3. U

The rest of this section is devoted to showing that for each 0 € &)
or 9" there is a smooth S'-action M(o) on a homotopy n-sphere with
structured orbit space o. So let o = (2" 'y AL A )ES],, or T/ .
Proceeding as in §2 we may orient the normal bundle of 0A, =04, in
=" ! and obtain a smooth semifree S' action on a homotopy sphere N”
with orbit map 5 N — =" ! and fixed point set p '(84,). Let F, =
p '(A,) and F,, “'(A,). As in §2 the respective k and m-fold cyclic
branched covers M and M, are homotopy n-spheres with smooth S’
actions and structured orbit spaces (2" ', A, ) and (2" ', A,,). Now form

the pullback diagram:

m

K

M2 oM
vid Ly,
M SN

Zn'l
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The pullback M is a topological manifold because F, and F, meet
transversely in N. Also »; and »,, are branched k& and m-fold covering
projections. So M inherits a smooth structure as in §2 in two different
ways and the S'-actions lift to S' actions on M, smooth in their respective
structures. However since both actions have the same structured orbit
space o, by Theorem 3.1 they are weakly equivalent. In particular the

above two smooth manifold structures on M are diffeomorphic.

THEOREM 3.2. For each o € 5}, or " there is a homotopy n-sphere
M(o) with a smooth S" action with ¢ as structured orbit space.

Proof. Let M(o) = M above. As in §2 for R = Q or Z, for p any
prime not dividing both & and m (hence for any prime p) H,(M; R)
~ H,(S"; R); thus H (M, Z)= HS"; Z). So to show that M = M(o)
is a homotopy sphere we must show that M is simply connected.

To this end consider a loop A in M" (n = 5) based at a point in a
principal orbit, and by general position suppose A misses £ U F. Let p:
M — X be the orbit map. The based loop pA can be homotoped in
2 — E* U F* to an embedding, and this homotopy can be lifted to M.
Hence we may suppose that A and pA are embedded loops. Since 7,2 = 0,
pA bounds a transversely immersed 2-disk D which meets E* U F*
transversely in a finite number of points and which misses £, . By sliding
intersections of D with E* U F* to F* we may arrange that D N (E* U
F*y =D N F* If DN F* = @ introduce an intersection point of D and
F* by pushing D until it meets F* tangentially at a regular point of D.
Now p (D) =D X S'/~ where ~ identifies {x} X S' to (x, 1) for each
x € DN F*; so the map p,: m(p (D)) — m(D) is an isomorphism, and
A is nullhomotopic. O

COROLLARY 3.3. Let M" be a smooth S'-manifold with structured orbit
space o € &) or 0" Then M is a homotopy sphere. O

In the introduction we mentioned a question posed by Frank Raymond
[M; p. 353]. In our context it is equivalent to asking whether each F, is
connected when S' acts on S". Our theory provides infinitely many
counterexamples in each dimension =5 for a given slice representation
(1.3(d)) at the fixed point set determined by the integers k and m. In fact
we have described how all such examples with codimension 4 fixed point
set can occur. As we have noted the first such example was constructed by
Elliott Stein [St]. In his example the structured orbit space is (S*
D?, D}) € I, where D} U D} is the standard immersed S* in S* with

one double point.
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Finally, we should mention that in the case n = 4 analogous results
hold. Essentially 7 is the set of homotopy 3-spheres and S , is the set of
diffeomorphism classes of knots in homotopy 3-spheres; GJ',fm = &. See
[F] and [P].

4. Twist-spinning knots. By a “knot” we shall mean a smooth pair
N7"73 C M" ! of homotopy spheres. The k twist-spin (k > 1) of the knot
N"73 C M" ! may be obtained as follows. Let (D"™!, D"%) C (M, N)
be a standard disk pair and consider ¢ = (M"~', D"73) € §;. We shall
find it more convenient to use the notation o = (M" ! D" 3 N"73 —
Int D"?) €§;,. Write F;, =p~'(N""* — Int D"?*). By Theorem 2.3,
M(o) is a homotopy sphere, and following the proof of the first claim of
§2 we see that F| is also a homotopy sphere. The homotopy sphere pair
(M"(0), F'""?) is called the k twist-spin of (M"~ !, N"73). Since F/'"?
carries a semifree S' action with codimension 2 fixed point set, F{'"? is
diffeomorphic to §” 2 [H] provided n = 7. It is an easy exercise to see
that if M" "' is diffeomorphic to "' then M(¢) is diffeomorphic to S”.

The classification theorems of §3 point to an obvious generalization
of this procedure. Given the knot N" 3 C M"~' (n=4) let k =2 and
m = 1 be relatively prime integers. We have (using the same notation as in
the last paragraph) r=(M""'; D", N"> —IntD"3) €5, . The
(k, m) twist-spin of (M, N) is the knot £ 2 in the homotopy sphere
M(7). The (k, m) and (m, k) twist-spins of (M, N) form a pair of
knotted n — 2 spheres in M(7) which meet transversely in the n — 4
sphere F. Of course (k, 1) twist-spinning is just k twist-spinning and in
fact we have seen in §3 that the result of (k, m) twist-spinning may be
obtained by constructing an m-fold branched cover over a k twist-spun
knot.

For a closed manifold X, let X, be the manifold obtained by removing
a point from X. Zeeman’s main theorem on twist-spun knots [Z] states
that the complement of the k twist-spin of (M"~!, N"~3) fibers over the
circle with fiber ¥, where V" is the k-fold cyclic branched cover of M
branched over N. More specifically, it says that the complement of the
twist-spun knot is ¥} X, S', the mapping torus of the canonical deck
transformation of ¥ which rotates the normal disk of N"~3 through the
angle 27 /k.

Our generalization to (k, m) twist-spinning was motivated by a
question of Zeeman [Z, p. 493] as to whether it is possible to introduce a
new factor into the twist-spinning process so that the complement of the
knot thus obtained is ¥, X . S' for 1 <m < k. The next theorem shows
that this is exactly what we have done and also gives a streamlined proof
of Zeeman’s main theorem.
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THEOREM 4.1. Let (M(o), F,) be the (k, m) twist-spin of the knot
(M"" ', N""3) (n=4), and let Y be the k-fold cyclic branched cover of
(M"Y, N"=3Y) with canonical deck transformation ¢. Then M(o) — F, is
diffeomorphic to Vy X, S'.

Proof. S' viewed as R/kZ actson V X . S' by s - (y, )= (y, t + s).
If we view the homotopy sphere N"~* as the branch set of V"' — M"~!
then for this action E, = N"7* X, S' and all the other orbits are
principal. The orbit spaceis V/¢" = V/¢ = M" "', and E} = N"°.

Let x € E,. We may identify a tube about the orbit of x with
D" 3 X D*X S'C S"=09(D" 3 X D? X D?) with the standard linear
S' action ¢ - (y, z, w) = (y, zt™, st*). Perform equivariant surgery on the
orbit of x by replacing this tube with its complementary o( D" 3 X D?) X
D? in S”, and let W" be the resulting S'-manifold. The result of this
surgery on the orbit space M" ' is to remove a D" * X D? whose
intersection with £ is D"? X 0 and replace it with its complementary
0D" *X D> C 8" ' =58"/S'. Since the gluing map extends over an
n — 1 disk, the orbit space of W" is still M"~'; and it is easily seen that
E* U F* = N" 3 where F* is an n — 3 disk contained in D" 3 X 0 C
N"73. Thus the structured orbit space of Wisin S} , and (W*, E* U F*)
= (M, N). So it follows from Corollary 3.3 that W” is a homotopy
sphere, and the knot (W", F,) is the (k, m) twist spin of (M, N).
Furthermore, F,, is the cocore of the surgery on ¥ X . S' by which W was
constructed. Thus W — F, = ¥V, X . S'. O

Restricting the S' action to Z, or Z, actions we obtain counterexam-
ples to the n-dimensional Smith conjecture whenever F, or F,, is actually
knotted. For m = =1 (mod k) the examples of Giffen [Gi] and Gordon
[Go] are obtained.
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