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If the character table of a group G has a row (corresponding to an
irreducible character) with precisely two nonzero entries, then G has a
unique minimal normal subgroup N which is necessarily an elementary
abelian p-group for some prime p. The group G/0,(G) is completely
determined here. In general, there is no bound on the derived length or
nilpotence class of O,(G).

1. Introduction. An old theorem of Burnside asserts that, for any
group G, any irreducible character of degree greater than 1 vanishes at
some element of G (for a proof of this fact, see p. 40 of [7]). The extreme
case will be considered here, namely, groups G for which a character exists
which vanishes on all but two conjugacy classes. Clearly no irreducible
character can vanish on all but one conjugacy class (unless |G| = 1).

The remaining sections of this paper are devoted to determining the
structure of such groups G. Specifically, §2 is devoted to some preliminary
lemmas about the action of G on its unique minimal normal subgroup M.
The kernel of G on N is C;(N) = O,(G) for some prime p and G/0,(G)
is determined by Theorems 4.2 and 5.6. The subgroup O,(G) can be quite
complicated and this, together with some examples, are discussed in §6.

2. Some preliminary results. As already mentioned in the previous
section, if a group G'has an irreducible character which does not vanish on
only two conjugacy classes, then G has a unique minimal normal subgroup
N. The first lemma of this section establishes this, in addition to some
properties of the action of G on N.

LemMA 2.1. Let G be a group which has an irreducible character x such
that x does not vanish on exactly two conjugacy classes of G. If |G| > 2 then
X Is unique and is, moreover, the unique faithful irreducible character of G.
In all cases, G contains a unique minimal normal subgroup N which is
necessarily an elementary abelian p-group for some prime p. The character x
vanishes on G — N and is nonzero on N. Finally, the action of G by
conjugation on N is transitive on N¥.

Proof. The conclusion of the theorem is trivial if |G| = 2, so assume
|G| > 2. Clearly x does not vanish at 1 € G. Let x € G be chosen so that
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x 7 1 and x(x) # 0. Now x # 1 since |G| > 2 and so (x, 1;) = 0. Hence
x(x) <0. If h is the size of the conjugacy class containing x and
x(x) = —sthen (x, 1;) = 0 implies x(1) — sh = 0. Let ¢ be any irreduci-
ble character of G different from x. Then (x, ¢) = 0 and so x(1)y(1) —
hsy(x) = 0 and hence Y(x) = ¢(1). Thus x is in the kernel of every
irreducible character of G different from x. Since x is faithful, it is the
unique faithful character of G, and no other character of G can vanish on
all but two classes.

Let N be the (normal) subgroup of G generated by the conjugacy class
of x. The argument in the preceding paragraph showed that N < ker ¢ for
every irreducible character ¢ different from x. If there exists a nonidentity
element, say y, of N that is not conjugate to x, then the second ortho-
gonality relation applied to the classes containing x and y yields a
contradiction.

Thus G is transitive on N¥, x(y) = —s for all y € N* and x vanishes
on G — N. Since all nonidentity elements of N are conjugate in G, N must
be an elementary abelian p-group for some prime p. It remains only to
prove that N is the unique minimal normal subgroup of G.

Let M be any normal subgroup of G different from 1, and let X be the
set of irreducible characters ¢ of G with kernel containing M. Since x is
faithful, we know x & X. Hence, by the second paragraph of the proof,
N = ker ¢ for every ¢ € X and so

M= () kery =N,
VEX

proving that N is the unique minimal normal subgroup of G. O

LEMMA 2.2. Let x be an irreducible character of G and N a normal
subgroup of G. Assume x vanishes on G — N and let N be an irreducible
constituent of x . Define m = (x y, A) and T = 9.(N) (the inertia group of
A in G). Then N has a unique irreducible constituent, say 0. Moreover,

Y=y, 0|y =m\and|T: N| = m? so0 0 is fully ramified over N.

Proof. If X =X, A,,...,A, are the distinct G-conjugates of A then
t=|G:T| and xy = m(A, + A, + --- +A,) by Clifford’s Theorem. By
that same theorem, there exists a one-to-one correspondence between the
irreducible constituents of A” and those of A%, the correspondence being
the induction map. Thus, there exists a unique constituent of \’, say 8,
which satisfies 8¢ = x, and 8|, = mA. Now 6 will be the unique irreduci-
ble constituent of A if x is the unique constituent of A°.
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Suppose x’ is an irreducible constituent of A°. Then xj =
k(A, + --- +A,) for some positive integer k. As x vanishes on G — N we
have

(x.x) = l—éjgng(g)m
= G (MO B K ) =

Thus (x, x") # 0 so x’ = x and hence x is the unique irreducible con-
stituent of A\°. As remarked earlier, this means 6 is the unique constituent
of A”. The calculation above also proves |G: N| = m?*t so |T: N| = m?.
Hence 6 is fully ramified over N. O

COROLLARY 2.3. Let x be an irreducible character of G which vanishes
on all but two conjugacy classes of G. If |G| = 2 assume x is the faithful
character of G. Then N = {x € G|x(x) 7 0} is the unique minimal normal
subgroup of G, and N is an elementary abelian p-group for some prime p. If
x € N* and \ is any nonprincipal irreducible character of N, then both
Cs(x) and T = §,(\) are Sylow p-subgroups of G. Moreover, T has a
unique irreducible character 6 which is a constituent of N, and 0 is fully
ramified over N. Finally, x = 6°.

Proof. That N is the unique minimal normal subgroup of G follows
from Lemma 2.1. Suppose A is a nonprincipal irreducible character of N.
Lemma 2.1 implies G is transitive on N¥ and hence is transitive on the
nonprincipal characters of N. As x is faithful, this implies A is a con-
stituent of x 5. Lemma 3.2 now implies 7 = 9,(A) has a unique irreduci-
ble character 6, such that 4 is a constituent of A”, and @ is fully ramified
over N. That same lemma also implies ¢ = .

Since A is invariant in 7, kerA < T and N/ker A is central in
T /ker A. Choose any prime g 7 p and let Q /ker A be a Sylow g-subgroup
of T/ker A\. By Lemma 2.2 of [3], 6y, is a multiple of some unique
irreducible character of NQ, say {, and of course, ker { contains ker A.
Since N/ker A is central in 7/ker A, that same lemma implies {, is fully
ramified over N N Q = ker A. Thus Q/ker A has an irreducible character
which is fully ramified over the identity subgroup. This can only happen if
Q/ker A is itself the trivial group. Hence, ¢ does not divide |T| for any
prime g different from p, implying that G is a p-group.

Since G is transitive on the nonprincipal irreducible characters of N,
|G:T|=|N|— 1is prime to p and hence T is a Sylow p-subgroup of G.
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If x € N% then |G: C,(x)|=|N|— 1 as G is transitive on N¥, and
this proves C;(x) is also a Sylow p-subgroup of G. O

LEMMA 2.4. Let G be a group which acts on an elementary abelian
p-group N. Assume G is transitive on N* and the centralizer of any element
of N* in G is a Sylow p-subgroup of G. Let S be any normal subgroup of G
and P a Sylow p-subgrokup of S. Define W = C,(P) and U =[N, P].
Then:

(a) {W¥|g € G} is a partition of N. In particular, |N| is a power of |W|.

(b) No(P) = Ng(W) = Ng(U), and this subgroup is transitive on the
nonidentity elements of both W and N/U. In particular, the order of this
subgroup is ((W| — 1) - |G|, where |G|, is the p-part of the order of G.

(c) IW|=|N/U| and W and U are the unique minimal and maximal
subgroups, respectively, of N that are normalized by N;(P).

Proof. Suppose W N W is nontrivial for some g € G. Then wf = w
€ W* for some w, € W¥ Now C(w,) NS and C(w) N S are both
p-subgroups of S which contain the Sylow p-subgroup P of S. Therefore,
P =C(w,) NS =C(w) N Sand hence g € N(P). Clearly, N(P) = N(W)
and so W& = W, proving that the distinct conjugates of W intersect
trivially. Since G is transitive on N¥, the conjugates of W cover N and,
hence, partition N. The above argument also shows N(W) < N(P) and,
hence, equality holds.

If w, and w, belong to W#* then transitivity of G implies w§ = w, for
some g € G. By the preceding paragraph, g € N(P) = N(W) and hence
N(W) is transitive on W* As C,(w) <N(W) and C.(w) is a Sylow
p-subgroup of G for w € W#, the group order formula of part (b) follows.
Clearly, W is an irreducible N( P)-submodule of N.

The hypotheses of Lemma 2.4 are satisfied if N is replaced by the
dual group N (which is the set of irreducible characters of N). Hence
N(P) acts transitively on the nonprincipal characters in Cy(P) which is
naturally isomorphic to the dual group of N/U. Therefore, N(P) acts
transitively on the nonidentity elements of N/U. Clearly, N(P) = N(U)
and a comparison of their orders shows that equality holds. Clearly
W|=I|N/U|

Finally, as any maximal N( P)-submodule of N contains [N, P] = U
and any minimal submodule of N is contained in C,(P) = W, part (c)
follows. O

If G is a group which contains an irreducible character which vanishes
on all but 2 conjugacy classes, then Lemma 2.4 applies, where N is the
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unique minimal normal subgroup of G. The special case S = G is worth
pointing out. Here, P is a Sylow p-subgroup of G, and N;(P)/[N, P]is a
group satisfying the same hypothesis that G does.

THEOREM 2.5. Let G be a group which has an irreducible character x
which vanishes on all but two conjugacy classes of G. Let N be the unique
minimal normal subgroup of G guaranteed by Corollary 3.3 so that N C
O,(G) for some prime p. Finally, let P be a Sylow p-subgroup of G. Then:

(a) For every x € G — N, the order of C;(x) is the same as the order of
Cs /n(xN).

(b)Z(P) C Nand Z(P) = Nifandonly if P < G.

(c) N is a term of the upper central series of P. In particular, N is a.
characteristic subgroup of P.

Proof. (a) is immediate from the second orthogonality relations in G
and G/N, as x(x) = 0.

Suppose Z( P) £ N and choose y € Z(P) — N. Then the p-part of the
order of C;(y) is divisible by | P| and the same must be true of C; ,y(yN)
by (a). But |P| does not divide the order of G/N, and this contradiction
proves Z(P) = N.

If y € Z( P)*, then Corollary 3.3 implies C;(y) = P so P = C,(Z(P)).
Thus, if Z(P) = N, then P = C;(N) < G. Conversely, if P <i G, then
N < Z(P) as N is the unique minimal normal subgroup of G, and hence
N =Z(P).

It now remains to prove that N is a term of the upper central series of
P. Let Z,(P) denote the ith term of the upper central series for P, and
choose i so that Z (P) < N and Z,, (P) £ N. From the earlier part of this
proof we have i = 1. Let y € Z,, (P) — N. Now the conjugacy class of y
in P is entirely contained in yZ,(P) so |P: Cp(y) =|Z,(P)|. Hence,
ICp(»)l is divisible by |P/Z,(P)|, so |P/Z,(P)| divides the p-part of the
order of C5(y). Now |Cs(y)| = |Cs, n(¥N)), and a Sylow p-subgroup of
G/N has order |P/N|. Hence, |P/Z,( P)| divides | P/N|, proving |Z,(P)| =
|N|. This proves Z,(P) = N, and the proof of Theorem 2.5 is complete. [J

3. A digression on doubly-transitive Frobenius groups. The simplest
example of a group which possesses an irreducible character vanishing on
all but two conjugacy classes is a doubly-transitive Frobenius group. In
this case the minimal normal subgroup N is the Frobenius kernel. Using
the notation of the introduction, N = O,(G) = C;(N), and of course,
G/0,(G) is isomorphic to the Frobenius complement. It is clear that the
determination of G/O0,(G) in the general case will have to involve
Frobenius complements of doubly-transitive Frobenius groups.
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Although not essential for this paper, the class of doubly-transitive
Frobenius groups is in one-to-one correspondence with the finite near-
fields. Indeed, if (K, +, ) is a near-field, then the multiplicative group
of nonzero elements acts by right multiplication as a group of automor-
phisms of the additive group K, and the resulting semidirect product is a
doubly-transitive Frobenius group. Conversely, suppose HK is a doubly-
transitive Frobenius group with kernel K and complement H. If e € K is
any nonidentity element of K then {e* = x 'ex|x € H} is the set of all
nonidentity elements of K. Let + denote the group operation within K
and O the identity element of K. If o is defined on K by setting
e“oer=¢" as well as 000 =0ce*=¢*o0 =0 for all x, y € H,
then (K, +, o) is a near-field. (The conjugation action of H on K implies
the right distributive law, and the other axioms of a near-field are easy to
check.) The correspondence given above allows for the degenerate
Frobenius group (|H| = 1, | K| = 2) which corresponds to the field GF(2).

The finite near-fields have all been classified by Zassenhaus [8], and
one possible source for this is [5, see especially pp. 182-183].

For convenience we state below the main result on doubly-transitive
Frobenius groups (or near-fields) that is needed in this paper. Recall that
a group H is metacyclic if there exists a normal subgroup L such that both
H/L and L are cyclic.

THEOREM 3.1. Let HK be a doubly-transitive Frobenius group with
kernel K and complement H. Then either H is metacyclic, or else |K| = p*
for some prime p and one of the following cases occurs:

p=5 H=SL(2,3),
p=7, H=~GL(2,3),
p=11, H=SL(2,5),
p=23, H=GL(2,3) X C,,
p=29, H=SL(2,5) %X C,,
p=59, H=SL(2,5) X Cy.

We have used the notation GL(2,3) to denote a nonsplit cyclic
extension of SL(2,3) by an element of order 4 which acts as an outer
automorphism of order 2 on SL(2, 3) and which squares to —I € SL(2, 3).
In the case of p = 11 there are actually two inequivalent nontrivial actions
of SL(2,5) on an elementary abelian group of order 121, and this gives
rise to two nonisomorphic near-fields of this order.

It is useful to record some information in the metacyclic case which
will be used in the next section.
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THEOREM 3.2. Let HK be a doubly-transitive Frobenius group with
kernel K and complement H, and let |\K | be a power of the prime p. Assume
H is metacyclic. Then |Z(H)| = q — 1 where q is a power of p and |H| = q°
where v is an integer such that every prime divisor of v divides q — 1.
Moreover, if ¢g =3mod4 then 4 does not divide v. If ¢ Z3mod4 or
g =3mod4 and v is odd, then a Sylow 2-subgroup of H is cyclic. If
q = 3mod 4 and v is even, then a Sylow 2-subgroup is generalized quatern-
ion.

The proof of this result is easily verified following the near-field
construction given beginning on p. 182 of [5].

4. The solvable case. We saw in §2 that if a group G has an
irreducible character that vanishes on all but 2 conjugacy classes, then G
contains a unique minimal normal subgroup N which is contained in
0,(G) for some prime p. Clearly, O,(G) must centralize N as N is minimal
normal in G. Moreover, the results of §2 show C;(x) is a p-group for
x € N¥, and hence C,(N) is a normal p-subgroup of G. Therefore,
0,(G) = C5(N). In this section, the structure of G/0,(G) is determined
when G is solvable.

LeMMA 4.1. Let H be a solvable group acting on a vector space V over a
field of characteristic p such that H is transitive and faithful on V* and
C,,(v) is a p-group for every v € V¥ Then H has a normal p-complement
which is isomorphic to a Frobenius complement of a doubly-transitive
Frobenius group, and a Sylow p-subgroup of H is abelian.

Proof. Since H is solvable, it contains a p-complement, say H,. The
semidirect product H V' is a doubly-transitive Frobenius group and it
remains to prove H, << H and H/H, is abelian.

Let F = F(H), the Fitting subgroup of H. Since H is faithful and
irreducible on V, O,(H) = 1 and hence F has order relatively prime to p.
The hypotheses imply that F acts Frobeniusly on V, and hence F is cyclic,
or a direct product of a characteristic generalized quaternion group Q of
order = 8 and a characteristic cyclic subgroup C. If F is cyclic, then H/F
is abelian, and the result follows. Otherwise, F = Q X C and H/Z(F) is
isomorphic to a subgroup of Aut(Q) X Aut(C). Notice that p #* 2 in this
case. If p > 3 or if |Q]| > 8 then both Aut(Q) and Aut(C) have normal
p-complements and abelian Sylow p-subgroups, and the result follows.

Suppose then p =3 and |Q] = 8. Then Aut(Q) X Aut(C) has a
subgroup of index 2 which has a normal 3-complement and abelian Sylow
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3-subgroups. Let L = O, (H). Clearly, L < H, and |H,: L| < 2. It re-
mains only to prove L = H,.

Since p = 3, the Frobenius complement H, is not one of the excep-
tional possibilities listed in Theorem 3.1. Hence H, is metacyclic. Let ¢
and v be the parameters given by Theorem 3.2 for H,. As the Sylow
2-subgroups of H, are not cyclic, we necessarily have ¢ = 3 mod 4 and v is
twice an odd number. But ¢ is a power of p = 3, so ¢ must be an odd
power of 3 and ¢ = 3mod 8. Thus ¢°/? = 3mod 8, and hence |H,| = ¢° —
1 =(¢"?— 1)(q"/* — 1) = 8mod 16. Therefore, the 2-part of the order
of H,is 8, and as Q =< L < H,, Q must be a Sylow 2-subgroup of H,. Thus
|H,: L|is odd, and since |H, : L| = 2 we have L = H,, as desired. O

THEOREM 4.2. Assume G is a solvable group which has an irreducible
character that vanishes on all but 2 conjugacy classes of G. Then there exists
a unique prime p for which O,(G) # 1. Moreover, G/ 0,(G) has a normal
p-complement which is isomorphic to the multiplicative group of a near-field,
and a Sylow p-subgroup of G/O,(G) is abelian.

Proof. By Lemma 2.1, G has a unique minimal normal subgroup N
which is an elementary abelian p-group for some prime p. Hence N C
0,(G) and the uniqueness of N implies p is unique. Moreover, G is
transitive on N¥ and by Corollary 2.3, C,(x) is a p-subgroup of G for
every x € N*¥,

As the kernel of the action of G on N is O,(G), the hypotheses of
Lemma 4.1 are satisfied with H = G/0O,(G) and V= N, and we are
finished. O

Lemma 4.1 has another immediate application which is not related to
the theme of this paper, but which is interesting in its own right.

COROLLARY 4.3. Let (K, +, ©) be a finite near-field of characteristic p,
and let G = Gal(K, +, o) (the full group of automorphisms of (K, +, ©)).
Then a Sylow p-subgroup of G is abelian.

Proof. Let P € Syl (G) and let H be the multiplicative group of
nonzero elements of K. The natural semidirect product PH may be
formed and since P is faithful on H we have O,(PH) = 1. Moreover, P
and H separately act on the vector space V' = K, and these actions are
compatible with the action of P on H. Hence PH acts on V and if H is
solvable, Lemma 4.1 applies, and P is abelian. If H is not solvable, then K
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is an exceptional near-field and |K|= 11%, 292 or 592. In each case, H
does not have an automorphism of order p and so P = 1. o

Notice that even though Lemma 4.1 was used to prove Corollary 4.3,
the Galois group of a near-field of characteristic p need not have a normal
p-complement. For example, if (K, +, o) is the unique near-field of
order 9 which is not a field, then Gal(K, +, o) is S; and so does not have
a normal 3-complement.

5. The nonsolvable case. The goal for this section is to obtain the
analogue of Theorem 4.2 in the nonsolvable case. The result is Theorem
5.6 below.

It is convenient to begin with some representation theory in character-
istic p. If ¢ is a Brauer character of a group G corresponding to a
representation over a field of characteristic p, define ¢! to be the
function defined on the p-regular elements of G by setting ¢'/)(x) =
@(x”"). Thus ¢ = ¢, and for all j, ¢/’ is a Brauer character of G.
Moreover, if ¢ is irreducible, so is @) for every j.

THEOREM 5.1. Let G = SL(2, p“) where p is a prime and set F =
GF( p*). Then G acts naturally on the F-algebra of polynomials in 2
variables. Let V, be the submodule of homogeneous polynomials of degree i,
and @, the Brauer character afforded by V,. Then the p* Brauer characters
el -l for 0 <i, < p — 1 are all distinct, irreducible, and every

irreducible Brauer character of G has this form.
A proof of Theorem 5.1 may be found in {2, §30, pp. 588-589].

Let V' = ¥V, (the natural module of SL(2, p“)). The algebraic con-
jugates V), 0 <j < g — 1, are all isomorphic as GF( p)[SL(2, p“)]-mod-
ules, and any one of these will be referred to as the standard module for
SL(2, p¢). Clearly, the standard module has the property that every
element of order p in SL(2, p?) has a quadratic minimal polynomial. By
examining the complete list of absolutely irreducible modules of SL(2, p*)
(given by Theorem 5.1) the following converse is easy to check.

COROLLARY 5.2. Assume p is an odd prime. Let W be an irreducible
GF( p)[SL(2, p*)]-module in which every element of order p has a quadratic
minimal polynomial. Then W is the standard module for SL(2, p?).
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The analogue for p = 2 of the above corollary is

COROLLARY 5.3. Assume p = 2 and W is an irreducible
GF(2)[SL(2, 2%)]-module for which [W, P] % 0 and [W, P, P] = 0, where P
is a Sylow 2-subgroup of SL(2,2¢). Then W is the standard module for
SL(2,29).

THEOREM 5.4. Let p be an odd prime and assume H is a nonsolvable
group which acts faithfully on a vector space V over a field of characteristic
p. Assume H is transitive on V* and C,(v) is a p-group for all v € V*.
Then one of the following cases holds.

(i) There exists S <\ H with S ~ SL(2, q) where q is a power of p and
C,(S) = Z(S). Moreover, V is the standard module for S, and H/S is a
cyclic p-group.

(ii) p = 3, |V| = 3* and H contains a normal subgroup S of index 2
with S =~ SL(2,5) and C,,(S) = Z(S). S is not split in H.

(iii) p = 3, |V| = 3°and H = SL(2, 13).

(iv)p = 11,|V| = 11* and H = SL(2, 5).

(V) p =29, V| =29%and H = SL(2,5) X C,.

(vi) p = 59, [V| = 592 and H ~ SL(2,5) X Cj,.

Proof. Let S = H™ be the last term of the derived series of H. By
hypothesis, S > 1. Define L = O,.(S). By hypothesis, any involution of H
must invert V, and hence H has a unique involution, say z. The Sylow
2-subgroups of H and S are necessarily generalized quaternion and so
S/{z) L has dihedral Sylow 2-subgroups (allowing C, X C, as a dihedral
group). From the classification of groups with dihedral Sylow 2-subgroups
([4], or more recently [1]) S/(z) L ~ PSL(2, r) or 4,, where r is an odd
prime power. Now S /L is a nontrivial double cover of the perfect group
S/{z)L and so is a homomorphic image of the unique covering group of
S/{z)L.Hence, S/L ~ SL(2, r) or A, where AA7 is the unique nontrivial
double cover of A,. We shall now prove that L = 1.

Let M = O,(L). As M is a group of odd order acting Frobeniusly on
V, M is necessarily a Z-group. Hence, H/C,,(M) is solvable and this
implies M < Z(S). Now H is irreducible on V as it is transitive on V¥,
and since H is faithful on V" we have O,(H) = 1. Hence O, (L) = 1. As L
is solvable and M = O, (L) is central in L we must have M = L. Now
L =7Z(S) N S" so L is isomorphic to a subgroup of the Schur multiplier
of S/L.If L % 1 then |L| = 3 and S/L is either SL(2,9) or A.. In either
of these cases, a Sylow 3-subgroup of S is noncyclic. As every p’-subgroup
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of H acts Frobeniusly on V' we must have p = 3. But then L < Oy(H) = 1,
a contradiction.

Hence L =1 and S =~ SL(2, r) or /f7. We now show S is not isomor-
phic to 4 7.

Suppose S =~ 4. Recall S acts on ¥ in such a way that the subgroups
of p’ order act Frobeniusly. Since a Sylow 3-subgroup of A , 1s not cyclic,
this means p = 3. Let 6§ be any irreducible constituent of the Brauer
character of S afforded by V. Then 1 does not appear as an eigenvalue
under the action of any 3’-element of S in the representation affording 6.
This condition on @ remains valid for |, for all subgroups X of S. A
contradiction will be reached by showing A, has no irreducible Brauer
character satisfying the requirements of 6.

Notice that /i6 =~ SI(2,9) embeds as a subgroup of /17. Using the
notation of Theorem 5.1, the irreducible Brauer characters of SL(2,9) for
p =3 are ¢%", 0 <i, j < 2. The only irreducible Brauer characters of
SL(2,9) satisfying the same condition as 6 are ¢” and ¢'". For ease of
notation, denote these two characters by ¢ and ¢. Hence, 0| is an
integral combination of ¢ and ¢. By standard properties of characters (the
Nakayama relations), § must be a constituent of either ¢*” or ¢*7. Now

oV ; =29+ 2¢ + 9gl)
and
U5 =20+ 2¢ + 9.

This implies 8| ; is a subcharacter of 2¢ + 2¢, and in particular, §(1) < 8
and (1) is even.

Let X be the Frobenius group of order 21. Then X embeds as a
subgroup of A ;- Moreover, X has exactly 3 irreducible Brauer characters
for p = 3, namely the principal Brauer character, and two others of degree
3. As 8| cannot contain the principal character, we have 3|6(1). Combin-
ing this with the above, we have (1) = 6.

Now let X be a Sylow 5-normalizer in 4. Then X contains the central
involution z, and X/( z) is the Frobenius group of order 20. As 3| X], 0|
is an ordinary character of X. The eigenvalue condition on # implies that
0|y is a multiple of the unique faithful character of X and so 4/6(1) = 6.
This contradiction eliminates 147 and shows S = SL(2, r), where r is an
odd prime power.

Case 1. p+|SL(2, r)|.
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By definition of S, H/S is solvable and so has a p-complement H, /S.
Then H, is a p-complement in H. Moreover, H, is transitive on ¥* and so
H,V is a doubly transitive Frobenius group. Theorem 3.1 implies, since H,
is nonsolvable, that one of the following three possibilities holds:

V|= 11>, H, =SL(2,5),
VI=29%, H, =~SL(2,5) X C,,
V] =592 H, =SL(2,5) X Cy.
Thus, S = SL(2,5) in this case, and since S has no automorphism of
order p, H = SC,(S). The group C,(S) is necessarily p-closed and as

O,(H) =1 we have H = H,. Thus, Case 1 leads to one of the last three
possibilities of Theorem 5.4.

Case 2. p||SL(2, r)| but p{r.

Since p|(r® — r) we have p|(r + ¢) fore = 1 or — 1. Let p® be the full
power of p dividing r + &, and let / be the p’-part of the index |H : S}
Since the normalizer in S of a Sylow p-subgroup, say P, has order
2(r + &), Lemma 2.4(b) and the Frattini argument imply

20r + &)l/p =p* — 1,
where p® = |C,(P)|. By Lemma 2.4(a), |V| is a power of p*, say p*#, and

hence

(r—e)r =p*—1

follows by the hypotheses of Theorem 5.4. Dividing this by the first
equation yields

r* —er =20 whereo = (p"‘)B—1 + o Hp+ 1.

Hence,

:%( 8o + 1+£) and r+£:%(1/80+1+3e).
Now p? divides r + ¢ so p* divides (V8o + 1 — 3¢)(y80 + 1 + 3¢) =
8(o — 1)soa = a.

Suppose 8 = 5. Then

:%( 8o + 1 +e)2%2p2":p2"
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and hence, as p} r, r + & = p>*. Therefore,
p*— 1=2(r+¢e)l/p*=2p*l/p* > p°*,

as a = a. This is a contradiction, so we must have 8 < 4.

Subcase € = —1. As all p’-subgroups of H act Frobeniusly on V, r
must be a prime. Moreover, in the subcase we are in (¢ = — 1), the Sylow
p-subgroup P of S normalizes some Sylow r-subgroup of S, say R, and PR
is a Frobenius group. Since PR acts on V with C(R) = {0}, P must act
semiregularly on a basis for V. Hence

dim¥V = p*dimC,(P) = p“a.

Hence, 8 = p“ and, since p is odd and 8 < 4, we must have § = 3,p = 3
anda = 1. If / > 1 then

pr—1=2(r—1I/3>(r—1)

and, hence, r < p*sor + 1 < p® Then

1= (r+ 1)r(r—3 Dl _ (r-;l)r.2(r; 1)/

<zpp*- (p*— 1) <zp™

This forces the contradiction p** < 2 and so in fact / must be 1. We now
have

20r—1)/3=3*—1 and r2+r=23**+3*+1).

Solving for r and 3% we have r = 13 and 3* = 9. Hence, S =~ SL(2, 13)
and |V| = p*# = 3% Also, H/S is a 3-group (as / = 1). Since all automor-
phisms of S of order 3 are inner, and Oy(H) = 1, we have H = S. Hence,
this subcase leads to possibility (iii) of Theorem 5.4.

Subcase € = + 1. In this case, r is still a prime. If » — 1 is divisible by
an odd prime, say ¢, then S contains a Frobenius subgroup of order #r.
This is impossible as the p’-elements of S act fixed point freely on V.
Thus, r — 1is a power of 2 and r is a Fermat prime.

We also have (r — 1)/2 - r=(p*)f "'+ - +p*+ 1, where 2 <8
=4,

If 8 = 4 then

(r—=1)/2-r=(p*+ 1)(p>**+1).
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As p** + 1 =2mod4, and r is the unique odd prime factor on the
left side of the equation, we must have
pe+1 r—1

> and >

Solving for r and p® we have r = 41 and p* = 9. Hence p = 3 and
a = 1. However 2(r + 1) /p* = p* — 1 implies the contradiction 28/ = 8.

If 3 =3 then (r — 1)/2 - r = p?>* + p® + 1. As the right side is odd,
this implies (r — 1)/2 = 1 and p* = 1, a contradiction.

This leads to 8 =2 and (r — 1)r/2 = p* + 1. Now 2(r + 1)I/p* =
p* — 1 implies p* = 1mod4 so (r — 1)r/2 = p* + 1 =2mod4. Hence
(r—1)/2=2and this leads to r =5, p=3, «a=2,a=1, /=2 and
B =2. Thus [V|=p* = 3* and S ~ SL(2,5) has index in H equal to
twice a power of 3. As in the other subcase, all automorphisms of S of
order 3 are inner, and as Oy(H) =1 we have |H: S|=2. A Sylow
2-subgroup of H must be generalized quaternion and so S is not split in
H. This is possibility (ii) of Theorem 5.4.

=2(p*+1).

r:

Case 3. S =~ SL(2, r) where r is a power of p.

Let P be a Sylow p-subgroup of S and let / be the p’-part of |H : S|.
By (a) and (b) of Lemma 2.4 again, we have

(r—=1I=g—1 and (r+1)(r—1)=¢q"—1,

where g =|C (P) and |V|=¢P. Thusr + 1 =gfF '+ g2+ .. - +g+
1. Now r and g are powers of the same prime p, and so by uniqueness of
representation in base p we have 8 = 2 and r = ¢. This also implies / = 1
and so H/S is a p-group. As O,(H) = 1, we have Cy(S) = Z(S). The
outer automorphism group of S is well known so H/S is cyclic. It remains
to prove V is the standard module for S.

By Lemma 2.4(c) we have [V/[V, P]|=|C,(P)|= q and as B = 2 we
must have [V, P] = C,(P). Hence, every element of order p in S has a
quadratic minimal polynomial in its action on V" and Corollary 5.2 implies
V is the standard module for S.

This completes the entire proof of Theorem 5.4. g

It is possible to show that each of the exceptional cases mentioned in
Theorem 5.4 actually occurs. This is certainly true for the possibilities
(iv)—(vi) since these cases correspond to near-fields. If H = SL(2, 13) then
H has an ordinary complex character of degree 6 which remains irreduci-
ble mod 3 (since the defect is zero). Moreover, all character values lie in
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GF(3) so that, as Schur indices are trivial in characteristic p, H acts on a
vector space V of size 3°. The character of this representation shows that
the elements of order prime to 3 act fixed point freely, and hence, C(v)
is a 3-group for all v € V*. The transitivity of H easily follows from this.

If H is the nonsplit extension of S = SL(2,5) by a cyclic group of
order 2 then either of the two faithful characters of degree 2 of S induces
to an irreducible character of degree 4 of H, which is irreducible mod 3.
Again, all character values lie in GF(3) so H acts on a vector space V of
order 3*. No element of order prime to 3 fixes any vector in V¥ and this
easily implies the transitivity of H on V¥,

THEOREM 5.5. Assume the hypotheses of Theorem 5.4 except that in this
case assume p = 2. Then there exists S < H with S =~ SL(2, q) where q is a
power of 2 and q > 2. Moreover, H/S is a cyclic 2-group, C,(S) = 1, and
V is the standard module for S.

Proof. As in the odd prime case, let S = H* be the last term in the
derived series of H, and let L be a minimal normal subgroup of H
contained in S. As H is nonsolvable, S > 1 so that L exists. Every
subgroup of H of odd order acts Frobeniusly on V' and hence is meta-
cyclic. If |L| is odd, then H/C,(L) is solvable so L =<Z(S) N S’. How-
ever, all Sylow /-subgroups of S/L are cyclic for all odd primes /, so the
Schur multiplier of S/L is a 2-group. This implies the contradiction
L =1, and hence | L| must be even. As O,(H) = 1, L cannot be a 2-group
and hence L is a direct product of isomorphic nonabelian simple groups.
As the Sylow /-subgroups of L are cyclic for odd primes /, we must have
that L is in fact simple.

The simple groups having cyclic Sylow subgroups for all odd primes
are SL(2,2") (n =2), Sz(2*"*") (n=1) and Ja = J,,. The group J,, is
quickly eliminated as J,, contains a nonabelian subgroup of order 21
which then cannot act fixed point freely on V.

Suppose L =~ Sz(q) where ¢ = 22""!. Let P € Syl,(L) so [N,(P)| =
(g — 1)¢*. By Lemma 2.4(a) and (b) we have

(g—1)I=2*—1 and (g*+1)(¢— 1)I=2%—1,

where 2* = |C(P)},|V| = (2*)#, and [ is the odd part of |H : L|.
Dividing the second equation by the first yields

GH1=029"+. . 424 1.

By uniqueness of representation in base 2 we have 8 = 2 and ¢* = 2°.
Hence! = g + 1,|C,(P) = ¢* and |V| = ¢*.
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By Lemma 2.4(c), V>[V, P] = C,(P) > {0} is an N(P)-composi-
tion series for V, and hence [V, P, P] s trivial. This implies P’ centralizes
V, which is a contradiction as a Sylow 2-subgroup of Sz(q) is nonabelian.

This leads to L =~ SL(2, q) where q is a power of 2 and ¢ = 4. Again
with P € Syl,(L) and / equal to the odd part of |H : L|:

(g—1)i=2—1 and (g+ 1)(g—1)i=(%"—1,

where 2% = |C,(P)| and 2*¥ = |V|. This leads to 8 =2, ¢=2%and [ = 1.
Also [V, P] = C,(P) so Corollary 5.3 applies, and V is the standard
module for L. As /=1 we have L = § and H/S is a power of 2. Also,
O,(H) =150 C,(S) = 1. As in the odd prime case, H/S is cyclic and
the proof of Theorem 5.5 is complete. (]

An immediate consequence of the last two theorems together with the
results of §2 is the following extension of Theorem 4.2 to the nonsolvable
case.

THEOREM 5.6. Let G be a nonsolvable group which has an irreducible
character which vanishes on all but two conjugacy classes of G. Then
0,(G) # 1 for some unique prime p. Moreover, the group H = G/0,(G)
has one of the following forms:

(1) There exists S < H with S ~ SL(2, q) where g > 2 is a power of p,
H /S is a cyclic p-group and C,(S) = Z(S).

(i1) p = 3, H contains a normal subgroup S of index 2 with S =~ SL(2,5)
and Cy(S) = Z(S). S is not split in H.

(ii1) p = 3 and H ~ SL(2, 13).

(iv) p = 11 and H = SL(2,5).

(V) p =29 and H = SL(2,5) X C,.

(vi) p = 59 and H =~ SL(2,5) X C,,.

6. The subgroup O,(G). Under the hypothesis of Theorems 4.2 or
5.6, the group G/O,(G) was characterized. In this section some attention
will be paid to O,(G). The group O,(G) need not be a Sylow p-subgroup
of G, however, the remarks following Lemma 2.4 show that a “small”
homomorphic image of a Sylow p-normalizer always satisfies the same
hypothesis as G. In this subgroup, of course, a Sylow p-subgroup is
normal.

In this special case (that 0, (G) is a Sylow p-subgroup of G) the
structure of O,(G) can be quite complicated. Theorem 6.3 below shows
that no bound can be placed on the derived length, or nilpotence class of
0,(G). The proof of this result generalizes a construction given in [3].

On the positive side, Theorem 6.2 completely characterizes G when
0,(G) is minimal normal in G.
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LemMA 6.1. Let C be a cyclic p-group acting on a vector space V over a
field of characteristic p. Let r be a power of p such that |V| = r'‘\. Then
IC(C)=r.

Proof. We may assume that the underlying field is GF(p). Each
indecomposable summand of ¥ has size at most p!“!, or equivalently, the
size of any Jordan block in the Jordan decomposition for a generator of C
is at most |C| X |C|. Hence, there are at least log,r indecomposable
summands. As there is a one-dimensional subspace of vectors centralized
by C in each such summand, we have |C,(C)| = p'°%" = r. O

THEOREM 6.2. Suppose G has an irreducible character which vanishes on
all but 2 conjugacy classes of G, and let N denote the unique minimal normal
elementary abelian p-subgroup as guaranteed by Lemma 2.1. Then N =
O,(G) if and only if G is a doubly transitive Frobenius group, or |G| = 2.

Proof. If G is a doubly transitive Frobenius group, or |G| = 2 (which
may be regarded as a degenerate Frobenius group) then the Frobenius
kernel is N and the result N = O,(G) follows.

Assume now N = O,(G) and let P € Syl (G). If N is complemented
in G by a subgroup H say, then the group N is complemented in P by
PN H Now [N,PN H]<N, and any linear character A with kernel
containing [N, P N H] is extendible to P. However, by Corollary 2.3, A*
has a unique irreducible constituent, and this constituent vanishes on
P — N. This implies that P must equal N. Thus, H has order prime to p
and is transitive and regular on the nonidentity elements of N. If H # 1
then G = NH is a doubly transitive Frobenius group, while if # = 1 then
G is cyclic of order 2. Thus, the theorem is valid if N is complemented in
G.

Assume first that G/N is solvable. By Theorem 4.2, G/N has a
normal p-complement, say G,/N, and N is complemented in G, by a
subgroup, say H. The Frattini argument yields G = N - N;(H) and
N N N;(H) is centralized by H. Thus, for H # 1, Ny(H) = 1 and N is
complemented in G, which implies by the preceding paragraph that we are
finished. If H = 1 then |[N| = 2 and G is a 2-group. Hence N = 0,(G) = G
and so |G| = 2, completing the solvable case.

Suppose then that G/N is nonsolvable. If p > 2 then any involution u
in G must invert N and hence uC;(N) is the unique involution of
G/Cs(N). Now C;(N) = O,(G) = N, so uN is the unique involution of
G/N. By the Frattini argument again, G = N - C;(u) and since u inverts
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N, NN C;(u) = Cy(u) = 1. N is complemented by C;(u) and we are
finished.

This leads to the case that G/N is nonsolvable, and p = 2. Using
N = 0,(G) and Theorem 5.6, G/N has a normal subgroup S/N isomor-
phic to SL(2, ¢) where g is a power of 2, and N is the standard module for
S/N. In particular |[N/[N, Py = |Cy(Py)| = q where P,=P NS is a
Sylow 2-subgroup of S.

Suppose first that G = S. Then N;(P) = PH where |H| = q — 1 and
H acts fixed point freely on the groups P/N, N/[N, P] and C,(P). Let
x € P — N. By Theorem 2.5(a) we have g = |C; /n(x)| = [Cg(x)l. How-
ever, C;(x) D (x,Cy(P)) and so has order >g. This contradiction
shows that G > S.

Let / =|G: S|. By Theorem 5.6, / is a power of 2 so G = SP, and
Co/n(S/N) = 1. Hence G/N is isomorphic to a subgroup of Aut(S/N)
which contains Inn(S/N). In particular, P,/N splits in P/N, say by C/N,
and the action of C/N on P,/N is that of a Galois group on a field. We
may write ¢ = g/ and identify the action of C/N on P,/N with that of
Gal(GF(q))/GF(q,)) on GF(q}). In particular, C/N acts semiregularly
on a basis of P/N viewed as a vector space over GF(2), and C, ,y(C/N)
has order g,. It follows that the 2-part of the order of C;, ,(C/N) has
order ¢,/. By Lemma 6.1 applied to the group C/N acting on N, where
IN| = ¢ and r = ¢Z, we have |C(C/N)| = ¢Z (in fact equality holds, but
we won’t need this). Let ¢ be a generator for Cmod N. Then |Cy(c)| = ¢2
and as C(¢) = (c,Cy(c)), the order of C,(c) is divisible by lg;. How-
ever, we already saw that the 2-part of the order of C;, y(¢N) was g/,
and this contradicts Theorem 2.5(a). This completes the proof of Theorem
7.2. O

THEOREM 6.3. Let Q be any p-group and let a > 0 be any integer. Then
a group G exists satisfying the following conditions:

(@) G has an irreducible character which vanishes on all but two
conjugacy classes.

(b) G = PH where P < G is a Sylow p-subgroup and H is cyclic of
order p® — 1.

(c) Z( P)H is a doubly transitive Frobenius group of order p*( p* — 1).

(d) Q is isomorphic to a subgroup of P/Z(P).

Proof. The result is clear if Q = 1. Let Q, be a maximal (and hence
normal) subgroup of Q. By induction, assume a group of the form P H
exists satisfying (a)—(d) above for Q. Let E be a group written additively
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which is H-isomorphic to Z(P,) and set E = hom,(E,Z(P,)). Since
multiplicative notation is retained in Z( P,) we have ( f + h)(e) f(e)h(e)
and f(e, + e;) = f(e,)f(e,) for e,e;,e;, EE and f, h € E. Let P‘L‘ =
{x|x: E-P »} SO that Pf is a group under pointwise multiplication
of functions, and POE is isomorphic to a direct product of | E| copies of P,.
Let

W= {x S Poé|x(f) € Z(P,) foreveryf € Eand [] x(f) = 1}
fEE

and set U= Pf/W X E. .

If x€Pf, e €E and f € E define x, , € P} by setting x, (h) =
x(h —f) for h# 0, while x, (0) = f(e)x(—f). For (xW,e) € U and
f € E define

(xW,e) = (x, W, e).

This is well defined since for x, y € Pf and w € W with x = yw we have
X, ;= YesW where w(h) = w(h — f) for all h € E. Hence w € W, and so
X, and y, , lie in the same coset of W. The requirement that f &
hom ,,( E, Z( P,)) implies that the function u > u/ is an automorphism of
U. Moreover, for e € E and f, g € E we have X frg = =(x,/), ,mod W,
and hence the function (u, f) + u’is an action of £ on U.

By the preceding paragraph, we have an action of £ on U = Pf / W
X E by automorphisms. Let P = E x U denote the resulting semidirect
product using the action. Notice that since H acts on P, (by conjugation),
H acts naturally on Pf by automorphisms (via (x")(f) = x(f)" for
f € E) and W is stabilized by H. Hence, we may define an action of H on
P by setting

(f, (xW,e)" = (f, (x"W, "))

where we have used the action of H on E, but not the action of H on E.
The equation

(xe.f)h = (-xh)e",f

forxePf,e€E, f€e Eand h € H, is readily verified, and this implies
that the action of H on P is an action by automorphisms. Let G denote
the semidirect product H X P with respect to this action. It remains to
check that G satisfies (a) — (d) of Theorem 6.3.

Let A be any nonprincipal irreducible character of Z( P;) and let { be
the unique irreducible constituent of A™ (thus, { ¥ is the character of P, H



382 STEPHEN M. GAGOLA, JR.

which vanishes on all but 2 conjugacy classes of P,H). The character
n = {#{# - - - #{ is an irreducible character of Pf with kernel containing
W, and hence we may regard 7 as a character of P /W. Let ij = n# 1, so
that n is an extension of 7 to U = P /W X E. To prove that § = 4" is
irreducible, it is enough to verify that 9(7) = {0}.

Let f € I(j). Then 5 /(xW, e) = ij(xW, e) for all (xW, e) € U, and
so i(x, W, e) =q(xW,e) or n(x, W)= n(xW).ADropPing the W and
then restricting the equation to the subgroup Z( Py)” of Pf yields

S X(x,,) = ¢(1)FR(x)

foralle € E and x € Z(Po)f, where A = A#A# --- #A (A is the unique
irreducible constituent of 7|z 5 )7). Now let x: E — Z(P,) be the trivial
map. Then dropping the factor of {(1)'!! we have

Mx,;)=1 foralle € E.

But x, ,(h) =1 for h#0 and x, ,(0) = f(e), so the equation above
implies
A(f(e)) =1 foralle € E.

Thus f(E) < ker A. Now, if f # 0 then f is surjective so f(E) = Z(P,) <
| ker A. Thus, fis necessarily 0 and this proves that () = {0}.

As IE | =|E| (an easy consequence of H being abelian) we have
6(1)* = |P: Z(Py))E/W| and so 6 is fully ramified over Z( P,)%/W. Hence,
6 vanishes on P — Z(P,)E/W. As @ corresponds uniquely to A, and A is in
a regular orbit under the action of H on the irreducible characters of
Z(P,)E/W, we have §,(0) = P and hence x = 6 is irreducible.

This implies that Z(P) = Z(P,)®/W and that x vanishes on G —
Z( P). Clearly

x(g) = —|P: Z(P)'/* forg € Z(P)*
and
x(1) = (p* — D|P: Z(P)|'/%.

Thus x is the required character of G, and conditions (b) and (c) of the
theorem are evident from the construction of G. It remains to prove (d).
From the construction of P, P/Z(P) is isomorphic to a group of the
form E x ((P,/Z(P,)) X E) where (P,/Z(P,))" is stabilized by the
action of E, and this action itself is that of a wreath product. Thus,
P/Z(P) contains a subgroup isomorphic to the wreath product
(Py/Z(Py)) ? E which in turn contains (Po/L(Fy)) 1 C, where C, is the



CHARACTERS VANISHING ON CONJUGACY CLASSES 383

cyclic group of order p. Now Q is isomorphic to a subgroup of Q, 1
(Q/Qy) = Qy t C, and this completes the proof. (Elementary properties
of the wreath product which were used may be found in [6]. See especially
pp. 98-99.) O

The hypothesis that H is isomorphic to the multiplicative group of a
field (rather than a general near-field) was used only once in the proof
given above (namely to prove |E| = |E|). It may be interesting to find an
analogue of Theorem 6.3 which applies to general near-fields.

The examples that Theorem 6.3 generates are all p-closed. It is not
hard to produce examples of this directly. Indeed, if F is any finite field,
say |F| = s where s is a power of some prime p, then let

1 a ¢
G=1{l0 1 blla,b,c,dEF,d#0;.
0 0 d

Then

a,b,cEF}

SO =
S - Q

c
b
1

-

is normal in G, Z(P)* is a single conjugacy class of G and x defined by
x(1) =s(s — 1), x(g) = —s for g € Z(P)* and x(x) =0 for x € G —
Z( P) is an irreducible character of G.

We close this section with two examples which are not p-closed.

Let p and ¢ be the primes 2 and 3 in some order and let R be the ring
Z./p*Z. The natural map SL(2, R) — SL(2, p) is surjective, and the kernel
K is elementary abelian of order p°. Since p is 2 or 3, the group SL(2, p)
has a normal p-complement which is a Sylow g-subgroup, and hence,
SL(2, R) = K - Ng; 5. z)(Q) where Q is a Sylow g-subgroup of SL(2, R).

If p = 2 then the group S = Ng; , £/(Q) intersects K in (—7) and S
itself is the semidirect product of a cyclic group of order 4 with a cyclic
group of order 3. (For example, Q may be generated by (°, ',). Then
(5 =1y has order 4 and inverts Q. The entries are taken mod 4 of course.)
Let M = R ® R so that SI(2, R), and hence S, acts naturally on M, and
let G denote the semidirect product S X M of S with M under this action.
Now let N = Q,(M) (the subgroup of M generated by the involutions of
M ). The subgroup S transitively permutes the nonprincipal characters of
N. Let A be one of these and set P = §.(X). Then P is a Sylow 2-subgroup
of G. Notice that A extends to M as M is abelian. If A is an extension of A
to M then A is necessarily complex valued, and so A is not fixed by —1.
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Hence, 9,,(7\) = M and ¢ = A" is an irreducible character of P, fully
ramified over N and uniquely corresponds with A. As §.(A) = P we have
x = ¢ an irreducible character of G. By construction, x vanishes on
G— N.

Suppose now p = 3. For this case Q is the quaternion group of order
8, and Ng;(, z(Q) is a complement for K in SL(2, R), and hence is
isomorphic to SL(2,3). Let S = (41)X Ng , z(Q) = GL(2, R), and as
before,let M = R® R, N = Q(M)and G = S X M.

The group Ng;(, z)(Q) contains an element of order 3, say g, which
maps onto (}]) under the natural map to SL(2,3). As detg =1 and
g® = I, g must have the form

_ ( l+a 1+8
6 7—a
where a, 8 € 3R.

Let P=(g) and C = (41) so that PC = P X C is a Sylow 3-sub-
group of S, and PCM is a Sylow 3-subgroup of G. Let A be an irreducible
character of N with kernel 0 © 3R. Then A has an extension to a character
A of M with kernel 0 @ R. Notice that X has order 9. As SFG(X) normalizes
ker A =0@® R we have 9,(A) <N,.(0 ® R) = C. Moreover, C per-
mutes fixed point freely the characters of M having order 9, so 9PC(7\) =1
and hence %,.,,(X) = M. Thus, § = A*M is irreducible, and as in the last
case, x = 0¢ is an irreducible character of G vanishing on G — N.

In each of the two examples abgve, 0,(G) is not a Sylow p-subgroup
of G. However, G/0O,(G) does have a normal p-complement, in accor-
dance with Theorem 4.2.

7. Concluding remarks. If G is a group which has an irreducible
character that vanishes on all but two conjugacy classes then O,(G) # 1
for some unique prime p, and the group H = G/0,(G) is determined by
Theorems 4.2 (in the solvable case) and 5.6 (in the nonsolvable case). The
author, however, has no examples to illustrate that the first three cases of
Theorem 5.6 actually occur. The last three cases arise as examples in a
doubly-transitive Frobenius group.

If 0,(G) is a Sylow p-subgroup of G and G/O,(G) is cyclic, then
Theorem 6.3 shows that O,(G) can be arbitrarily complicated. When
G/0,(G) is noncyclic (in particular, when it is nonsolvable) the argument
in Theorem 6.3 breaks down. It may be possible to classify O,(G) in this
case.

Finally, when O,(G) is not a Sylow p-subgroup, then N < O,(G)
necessarily holds where N is the unique minimal normal subgroup of G
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(Theorem 6.2). It is natural to ask if O,(G) can be arbitrarily complicated
in this case. In the last two examples given in §6, 0,(G) is nonabelian of
class 2. As already mentioned in the first paragraph, the author is not
aware of any nonsolvable examples in this case.

I would like to take this opportunity to thank the referee for simplify-

ing the proof of Lemma 4.1.

(1
(2]
B3]
[4]

(5]
(6]

(7]
(8]
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