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Let L be a lens space of dimension at least 5 and with fundamental
group of odd order. In this paper we reduce the computation of τro(Diff L)
to algebraic ΛΓ-theory and homotopy theory. The approach is via parame-
trized surgery theory, as developed by the first author and R. Sharpe.

I. Introduction and statement of the result. In this note, we shall

follow an idea of Browder's [1] and use the braid of groups of [8] (cf. [2])

to describe ττo(Diff L 2 " + 1 ) (n > 2) where L2n+ι is a lens space with

π = πι(L2n+ι) = Zj a cyclic group of odd order.

Let ^ ( L 2 ^ 1 ) = Diff(L 2"+ 1 X [0,1]; L2n+] X 0) be the pseudo-iso-

topy space of diffeomorphism of L2n+ι. Turning upside down, we have an

involution ' —' on π(β(L2n+λ) [6]. The quotient group

^ ( L 2 " + 1 ) / {x - x)

can be described as a cobordism group τro(ίβ(L 2"+ 1)) as follows. An

object a = (W(a), / ) is a diagram

2/7+1

(1) " + 1 X (Z)2,9Z)2,1)

{D\dD\\)

satisfying the following conditions:

(i) 1 is the base point of 3D2 and the upper triangle is commutative

withy a dif feomoφhism and k the standard identification of L 2 " + ι with

L2n+] X 1,

(ii)/is a simple homotopy equivalence,

(iii) the lower triangle is commutative with p0 the projection onto the

second factor, and L2n+X -> dW -> 3D 2 is a smooth fibration.

411
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Two such objects α,, α 2 are cobordant if we have

L2n+X X

(2) (U; V, L 2 n + χ XI) -» L 2 n + I X (D2,dD2,\)XI

xi

satisfying the following conditions:

(i) The upper triangle is commutative with U an s-cobordism be-

tween W{aλ) and W{a2),

(ii) the lower triangle is also commutative such that L2n+λ -> V ^

dD2 X / is a smooth fibration,

(iii) F\ W(at) (i = 1,2) induces the object α, (/ = 1,2).

There is a homomoφhism

defined as follows. Let x E L2n+4(π) be represented by a normal cobor-

dism

(3) / : (£/; JΓ, L 2 w + 1 X Z)2) -> L 2 w + 1 X ( i ) 2 X I; D2 X 1, £>2 X 0)

such that f\Γ\L2n+x X 3D 2 X /) is diffeomorphism and f\L2 X D 2 is

the identity map. We can easily construct an object a = (W9 f\W)

representing r(x) by restricting/ to W and it is easy to verify that the

cobordism [a] E π o ( ® ( L 2 w + 1 ) ) is well-defined. In fact, r may be viewed a

homomorphism analogous to one of the maps in Rothenberg exact

sequence [13] but we are now at the isotopy level. We will show that

Cokerr is the group w1(β(L2 / I" f 1)) of the braid of groups of [8]. Recall

that τr o (β(L 2 " + 1 )) also has a cobordism representation. (See [8, pp.

420-421].)

Let S be the group of simple homotopy equivalences of L2n+λ to

itself and let H be the image of [ L 2 " + 1 X I/L X 37; Top/0] in

[ L 2 " + 1 XI/LX 3/ G/O].

We have the following result.

THEOREM 1.1. Let L 2 / 2 + 1 be a lens space with π = 7Γ1(L2/I+1) -rLι a

cyclic group of odd order. Then,

0 -» τr o (e(L 2 r t + 1 )) θ # -> 770(Diff L2n+λ)
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REMARKS. (1) For related work about real projective spaces, see H.

Schneider and R. Wells, A note on the concordance homotopy group of real

projective space Proc. Amer. Math. Soc. 26 (1977), 367-373.

(2) It follows from [2], [7], [8] that 770(β(L2"+ 1)) is equal to

Wh2(πιL
2n+ι)/{x — x] mod2-torsions. In general, H is not easy to

compute.

II. The braids of groups for L2n+]. Let Aut L2n+ι be the //-space

of simple homotopy equivalences of L2n+ι to itself. We have the following

fibration

(4) ^ ( L 2 " + 1 ) -> Diff L 2 " + 1 -> Aut L 2 π + 1 .

Then, a point in <3:(L2n+ι) is represented by a pair (φ,φt) where φ E

Diff L2n+ ] and φ, is a path in Aut M connecting φ to Id E Diff L2n+X. Set

the mapping torus of φ. φ, induces a simple homotopy equivalence

F: ( L φ , L 2 " + 1 X l) - + ( L 2 " + 1 XS\L2n+λ X l ) .

Following [12], one can construct a space S ( L 2 " + 1 X (S\ 1)) of simple

homotopy smoothings of L 2 " + 1 X S 1 which are standard on L 2 w + 1 X 1,

and we have the map

- > S ( L 2 Λ + 1 X(S\l))

defined by τ((φ, φt)) = F. We also have a map

where Σ L + = L 2 " + ι X 5 ι / L 2 π + ι X 1. Let us consider the following dia-

gram of fibrations

%{L2n+]) ->

I i

(5) e ( L 2 n + i ) -» <$(L2n+ι) "-*T G/0 Σ Z +

i i i

e2(L2"+l) -». s(L 2 n + 1 χ(s\ι)) ^ (?/oΣL+

where $ ( L 2 " + 1 ) , β ( L 2 " + 1 ) , £ 2 ( L 2 / ί + 1 ) are the homotopy fibres of the

obvious maps. It is easy to see that T7 , (£ 2 (L 2 " + 1 ) ) = L2n+ι+3(π) the
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surgery group of π. We have the following braid of groups of [8]:

where Σ 2 L + = L 2 n + I X Z ) 2 / L 2 " + l X 5 ' andτr o (S(L 2 " + 1 X (S1,1))) is just

the simple homotopy smoothings of L2n+ι X Sι which is standard on

L 2 " + I X 1.

Replacing Dif fL 2 " + 1 by HomeoL 2 " + 1 , § ( L 2 ' I + 1 X (S\ 1)) by

S T o p (L 2 ' I + 1 X (S\ 1)), we have a corresponding braid of groups

[ΣL+,G/Top] L 2 Λ + 2 ( W )

such that (6) is mapped into (7) in the obvious way. It follows from [2]

and [6] that ττo(%(L2n+ι)) = τr 0 (« T o p (L 2 " + 1 )) under the natural map of

the above. Consequently, τr o (e(L 2 " + l )) = τ7 0 (e T o p (L 2 " + 1 )) again under

the natural map of the above.

We shall also prove the following theorem.

THEOREM 2.1. Let L 2 " + l (n > 2) be the lens space with <rr = 77 ,L 2" + I =

Z/, a cyclic group of odd order. Then,

0 -> 7τ 0 ( e ( L 2 n + 1 ) ) -»τr 0(Homeo(L 2"+ l)) -> S -* 0.

REMARK. AS we pointed out after Theorem 1.1,

τr o (e(L 2 " + 1 ) ) = W h ^ L 2 " 4 - ' ) / {x - x) mod2-torsions.
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III. Homotopy calculations. In this section we compute

π/Aut L 2 ' ? + 1) for / = 0,1. Assume as before that T Γ ^ L 2 ' ^ 1 ) has odd order

PROPOSITION 3.1. π^Aut L2tΊ+]) has order 2/2, and the homomorphism

77,(Diff L2n+]) -» ^(Aut L2"+]) is epimorphic. Hence, τη(HomeoL2" + 1) ->

ττ,(Aut L2n+]) is also epimorphic.

Proof. Let us consider the following map of fibrations.

(DiffL 2 " + 1 ,

1

( A u t £ 2 " + I ,

rel*)

rel*)

- Dif fL 2 " 4 1

i

-> A u t L 2 " + l

- L2π+ι

i =

- L2"+ι

We have the following commutative diagram of πλ:

0 - i7i(Diff(L2w+1,*)) - ^,(DiffiL2ll+1) - π{(L2"+]) - 0

i i i =

r,(Au0 - ^(AutίL2'14"1,*)) - τr,(AutL2fJ+]) - ^ , (L 2 ^ ] ) - 0.

In order to prove the proposition, it suffices to show that

is epimorphic and τrj(Aut(L2'7+ \ *)) is a cyclic group of order 21.

Let L 2 " + 1 = L2n+\q^...,qfl) be the quotient of S2n+] by the sub-

group Z, C U(n + 1) generated by

e2πiq0/l

e2iτιqn/l

Let * = (1,0,. ..,0) be the base point and define h: S] X L2n+] -> L 2 " + i

by (eιθ; z o , . . . ,z n ) -> (z,, . . . ,zne
ιθ). We claim that the image of [A] G

^ ( D i f f ί L 2 ^ 1 , *)) in τη(Aut(L2 '? +\ *)) generated a group Z 2 / . For this

purpose let us consider the following commutative diagram

ir,(Diff(L2n + I ,* ) ) - 77,(Diff(S2"+ l,*))

I I

7r,(Aut(L2"+l,*)) - τr,(Aut(52"+l,*)) = Z 2
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by lifting the maps to the universal cover of L 2 " + ι . Since / is odd, the
composite

is epimorphic and the image of [h] is a generator of

πλAut(S2n+],*) = Z 2 .

In order to complete our argument, we consider the first two stages of the

Postnikov system of L2n+ι

K(Z2,2n + 2) ^ E2

K(Z,2n + l)

The /c-invariants are given as follows. k*(τ2n±2) ~ ( β ( τ i ) ) " + 1 where r2n+2

G H2n+2(Z,2n + 2; Z 2 ) , 7 , 6 ^ , 1 ; Z,) are the generators and

β: H\Zh\\ Z7) -> // 2 (Z / ? 1; Z) is the Bockstein homomorphism;

/cJ(τ2/7+3) = Sq 2 ((τ 2 w + 1 ) 2 ) where τ 2 / 7 + 3 is the fundamental generator of

H2n+\Z\ In + 3; Z 2 ) and ( τ 2 π + 1 ) 2 G H2n+\E2; Z 2 ) is the mod2 re-

duction of a class which pulls back to a fundamental class of L2n+ x.

Given a map /: S] X I 2 " + 1 -> K(Zl9 I) such that kj ^ 0,

H2n+\S] X L 2 w + 1 ; Z) acts transitively on the set of all the lifting to E}

and the stability subgroup of a lifting is the image of a certain homomor-

phism

,, u): H°(Sι X L 2 " + 1 ; Z 2 ) -> H2n+ι(S] X L 2 " + 1 ; Z).

(Cf. [14], pp. 448-452 for the notation SΔ(Λ,, w).) Since (Λ, o / ) * = 0

SA(k{, u) = 0 for all w. Recall that π^Aut L 2 π + 1 ) is the set of all homo-

topy classes of maps Sλ X L2n+] -> L2n+] which restricts to the identity

on * X L 2 " + 1 , and this reduces the number of possible liftings to I2,

coming from the variations of the composite map S] C S] X L -> AΓ(Z/51)

and the torsion subgroup of H2n+\S] X L 2 w + 1 ; Z).

On the other hand, it follows from the second Peterson-Stein formula

[11] that all these liftings to Eλ can be further lifted to E2. This time

the set of the liftings is determined by an action of (a quotient of)

H2n+2(Sι X L2n+ι; Z 2 ) = Z 2 . In fact, this action can be geometrically

realized as follows.
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Given g: Sι X L2n+X -> L2n+X a n d O ^ α G π 2 / 7 + 2 L 2 " + 1 = Z 2 , define

gα: S 1 X L 2 " + 1 -» L 2 " + 1 by the composite

s\ χ L2«+l _ S l X £2«+l V ^n + l^jj.n+λ

where Sx X L 2 " + 1 -^ S1 X L 2 w + 1 V S2n+2 is the obvious pinching map.

For [g] E *r1(Aut(L2 n +\ *)), it is easy to see that [ga] = [g] + /[A], where

g: Sx X L 2 " + 1 -» L 2 " + 1 is induced from g, and hence [gα] 7̂  [g]. So, the

action of H2n+2(SX X L 2 π + 1 ; Z 2 ) = Z 2 on the liftings of / to E2 is

effective, i.e., it is an action of H2nJr2{Sx X L2n+]; Z 2 ) itself rather than a

quotient of it.

On the other hand, since dim(Sx X L 2 " + 1 ) = In + 2, the number of

possible liftings o f/ to £ 2 is the order of the group τr,(Aut(L, *)). We just

prove that it is of order 2/. In fact, it is a cyclic group of order 2/

generated by the image of [A] E π1(Diff(L2 w + 1, *)). This proves the

proposition.

Recall that we have defined Aut M as the space of simple homotopy

equivalences of M. Let %(M) be the set of all homotopy equivalences.

Let Zf be the units of Z, (/ odd), and let

be defined by [/] -»/#: ττ,L2"+ 1 -> ir,L 2 l l + 1 . Then, we have the following

result [9].

PROPOSITION 3.2. γ is injectiυe and the image is the set of units k E Z *

such that F Ξ ± 1 mod /. {The + orces1 correspond to the orientation-pre-

serving homotopy equivalences.)

Let us now write L 2 " + 1 = L2n+\rQ,... ,rn) = S2n+λ/Zι where Z, acts

on S 2 " + 1 by τ ( z 0 , . . . , z j - ( e 2 ^ ^ , . . . 9e
2πig*/ιzn) with #/• = 1 mod /.

This gives L2n+ λ a preferred orientation and a generator t of π^L2"*ι = Z/ 9

defined by /(0) = ( ^ ί o / / , 0 , . . . , 0 ) for θ E [0,1]. The diffeomorphism

L(r o , . . . , r r t ) « L(r σ ( 0 ) , . . . , r σ ( r t ) ) preserves orientation and the generator

for σ a permutation of (0,1,...,«); and the diffeomorphism L(rθ9... ,rrt)

« L(/ — r0, r 1 ? . . . ,rπ) preserves the generator but reserves the orientation.

Also if k E Z*, there is a diffeomorphism L(rok,.. .,rnk) » L(r0,... ,rw).

Following [9], we now define Δ(L) = ττ(/r' - 1) E β [ Z J (Z7 is now

written multiplicatively). Then, if a homotopy equivalence / is simple, we

must have/^ΔίL) = ±/"Δ(L) for some u. On the other hand, using the

diffeomorphisms above and Franz's theorem [4], [9], we have the following

proposition.
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PROPOSITION 3.3. If f is a homotopy equivalence such that f*Δ(L) =

±tuΔ(L),fcan be represented by a diffeomorphism. Hence, the image of

is exactly the set of homotopy classes of simple homotopy equivalences, i.e.,

ττo(Diff L2n+ ]) -» ττo(Aut L2n+1) -* 0.

Since the map is factored through 7r()(Homeo L2n+ ] ) , we also have

τr0(HomeoL2 '7 + 1) -> ττo(Aut L2n+]) -> 0.

(Note that S = τro(Aut L 2 " + 1 ).)

IV. Proofs of Theorem 1.1 and Theorem 2.1. In this section, L2nVχ

always denotes the lens space L2n+ι(q0,... ,qn) = S2n+]/Zι with Z7 C

U(n + 1) generated by

We also assume that 7rιL
2n+ι = rLι is of odd order. Let us now begin with

the following lemma.

LEMMA 4.1. The maps

[ L 2 " + 1 X D2/L2n + λ X S 1; G/0] - 77 0(e(L 2 ' 7 + 1)),

[ L 2 w + 1 X D2/L2"+ι X S 1; G/Top] - 7r o (e(L 2 w + 1 )) = τr ( ) (e T o p (L 2 " + 1 ))

trivial.

Proof. It follows from §3 that the map

[L 2 ' ? + 1 X D2/L2n+ι X S 1; G/0] ^ πo(6(L))

is actually factored through

[L2"+ι X D2/L2n+] X 5 1 , Γ/Top] - 770(eT o p(L)) = τr oe(L),

so it suffices to prove the latter is trivial.

[L2n+] XD2/L2n+] X S 1 ; G/Top] is always finite, and we shall

discuss the 2-torsion part and the odd primary part separately.

(1) The 2-torsion part. The 2-torsion of [L2n + ] X D2/L2n+] X S1;

G/Top] is exactly equal to Z 2 generated by the composite
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P™\
[L2n+X X D2/L2n+X X SX]P™\D2/SX) * G / T o p

where K generates τr2(G/Top) = Z 2 . In terms of normal maps, this is

id X (f,b):L2n+x X (T2 - D2) -> L 2 " + 1 X

where (/,&): T2 — D2 ^ D2 has Kervaire invariant 1.

By the exactness of the sequence

7τfiτop(L2"+]) = ττ2(Aut L 2 ' ? + 1 ; HomeoL 2 ' ϊ + 1 )

^[L2n+] X D2/L2n+] X S 1; G/Top] -> πo{e(L))

it suffices to prove that this element can be represented by a fiber-preserv-

ing homotopy equivalence h of L 2 w + 1 X D2, which is a homeomorphism

on L2fl+] X S1. In fact, the map which we shall construct is the identity

on the boundary. (So, it comes from ττ2(Aut L2n+ *).)

Let L2n+X X D2 -» L 2 / 7 + ι be the projection, and change it on a disc in

I n t ( L 2 " + 1 X D2) by a generator of τr 2 / ϊ + 3 (L 2 " + 1 ) = Z 2 . This obviously

gives us an h of the right type, and we only have to prove that it represents

the non-zero element in [L2n+X X D2/L2n+] X S 1; G/Top] ( 2 ). But this

element is recognized by looking at the inverse image of D2 = * X D2 C

L2n+X X D2 and study the induced framing. In our case, it is / times the

generator which is non-trivial since / is odd.

(2) The odd primary part. Here, we use an inductive argument similar

to that of [1]. Let g: (M, 9M) -> ( L 2 " + 1 X D 2 , L2n+X X S1) be a normal

map, homeomorphic on the boundary. In L2n+\ we have a lens space

L2n~λ of codim2 and we let/: (TV, Θ7V) -> ( L 2 " " 1 X Z)2, L 2 ^ 1 X 5 1) be

the induced normal map. Suppose by induction that this map is zero in

πoe
Ύop(L2n~]), i.e., there is a diagram1

- 2 / 7 - 1 XI

(U\ V, L2n~x XI) -> L2n'x X ( D 2 , Sx) X /

]See[8, pp. 420-421].
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where F is a degree 1 map, F-> L2n~λ X Sι X / is a simple homotopy

equivalence, V -* Sι X / is a fibration and F restricts to / on one end

while a homeomorphism on the other.

Now, we can extend this cobordism to a cobordism of a neighbor-

hood of L2n~x X D2 in L2n+ι X D2 with the same properties. By the

usual argument of normal cobordism extension with an obvious modifica-

tion, we may assume that g is a diffeomorphism in a neighborhood of

L2n-\ χ Di τ h e c o m p i e m e n t of a neighborhood of L 2 " " 1 X Z>2 in L 2 " + 1

X D2 is S1 X D2n+2, so our element lies in the image of

^ ( S ^ S 1 X D 2 " ; r e l θ ) ) - + τ r 0 ( e T o p ( L 2 " + 1 ) )

'induces' by the inclusion Sx X D2n C L2n+ι. But, modulo 2-torsion2

which includes the elements from Wh^ , these groups are isomorphic to

LS2n+3(Z) and L| t

w + 3(Z /) of [8] respectively, and the homomorphism is

induced by the reduction Z -» Z7.

If we can get our induction started, this lemma follows from the

following sublemma.

SUBLEMMA 4.2. The homomorphism

is trivial for all odd i.

Proof of the sublemma. From the exactness of

0 -> W h 2 ( G ) / {x - x\x G W h 2 ( G ) }

L

we get

Lf(Z,) ® Z [ i ] - W h 2 ( Z , ) / { x - x\x e Wh 2 (Z ; )}

2Igusa recently pointed out that the Wh^(ττ,M; Z 2 ) component of the description of
ττo(ξP(Λ/)) of [7] may have to be modified. So, our description of the subgroup of
7ro(β(M)) coming from WhJ1" (τr,M Z 2 ) may also be changed accordingly. But there is no
effect on the odd components of 7r o (β(L 2 w + 1 )) which is given by LS2n+3(Zι).



REMARK ON THE ISOTOPY CLASSES 421

Taking product of the geometric problem with S2, we have the following

commutative diagram

Lί+4(Z)ΘZ[i] t l £

- W h 2 ( Z , ) / { x - χ \ x

ψ —

- Wh 2 (Z,)/{* - χ\x G Wh2(Z,)} ® Z [ i ] .

The sublemma follows immediately.

Let us now continue our proof of Lemma 4.1. It remains to show how

the induction gets started.

Let us consider the following commutative diagram localized away

from 2:

[L 5 X D2/Ls X S1 G/pL] -» [L3 X Z)2//-3 X Sι G/Top] «- [5 1 X D4/Sι X S3; G/Top]

| α | α | o

where α's are the maps of (7). For x G [L5 X D 2 / ^ 5 x S 1; G/Top]? we

see that a(x \ L3) is already in the imager of π0Q(S] X D2; rel 3), but the

algebraic identification of τr 0(βT o p(M)) is no longer valid and we can not

apply the algebraic sublemma above directly. However, we can get around

this by multiplying everything with simply connected manifold N of Euler

characteristic 1 or 2'. Observe that a(x) = 0 for x E [L5 X D2/L5 X S 1 ;

G/Top] if and only if a(x X iV) = 0, since the product formula is valid

for L5. So, we can go through the same argument with this problem,

noting that xX N\L3 X N still lies in the image of [Sι X D4 X N/Sι X

S3 X N; G/Top]. Hence, a(x X N\L3 X N) lies in the image of

7r0(βT o p(S f l X D2 X N; rel 3)). Now, we can use the sublemma and get

<x(x X N\L3 X N) = 0. Therefore, a(x X N) lies in the image of

770(eT o p(5 r l X D4 X N; rel 3)) and it is zero by the same sublemma. This

completes the proof of the lemma.

LEMMA 4.3.7ro(^(L 2"+ I)) = 7r o(β(L 2 l I + 1)) Θ H and
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Proof. Consider the map of (6) to (7) and we have the following

commutative diagram

I I -

- [ L 2 " + ι X / / L 2 " + 1 X 9 / ; G / T o p ] - L2w + 2(

T^ T

[Z)2" + 2/9Z)2" + 2; G/Top] - ^, , + z

where θl9θ29θ3 are the surgery maps.

It follows from Lemma 4.1 that

where 77' is the image of vo($(L2n+ι)) in [ L 2 n + I X / / L 2 n + 1 X 9/; G/0].

Consider the following commutative diagram

w o (?(L 2 " + l )) - [L2"+] X //L 2 " + 1 X 37; Top/0]

7ro(s(L2"+] X/ relθ)) - [ L 2 " + l X / X L 2 " + l X 37; G/0] - L2n+1CL,)

W o (S τ °P(L 2 " + 1 X7;rel3)) - [/f2n+1 X 7/L2"+ 1 X 37; G/Top] - L 2 ( I + 2(Z,).

The injectivity of ^2 implies that

^ ( ^ ( L 2 ^ 1 ) ) - [ L 2 π + I X I/L2n+ι X 9/; (?/θ]

^ [ L 2 π + 1 X I/L2n+ι X 37; G/Top]

is trivial and H' is contained in H, the image of [L2n+X X I/L2n+X X 37;

Top/0] in [ L 2 n + ' X 7/L 2 " + ' X 37; G/0]. On the other hand, it is obvious

that H C 77' and the lemma is proved.

Proofs of Theorem 1.1 and Theorem 2.1. Let us look at the exact

sequence

-»ίr,(Diff L 2 " + 1 ) -> 7r,(Aut L2n+]) -»

W O ( ^ ( L 2 B + I ) ) -» π o (DiffL 2 " + 1 ) -»τr o (AutL 2 " + 1 ).

By Propositions 3.1 and 3.2 this reduces to

0 - T Γ O ^ L 2 ^ 1 ) ) - 770(Diff L 2 " + 1 )

-»w o (AutL 2 " + l ) = 5 ^ 0 .
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Similarly, we have

0 -* πo($τ(*(L2n+λ)) -> 770(HomeoL2 w + 1)

->S ->0.

The theorems follow from Lemma 4.3.
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