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We prove a synthesis of Carleson's interpolation theorem, the
Rudin-Carleson theorem and an interpolation theorem of S. A. Vinogra-
dov.

Let D be the open unit disc in C and let T be its boundary. By A(D)

we mean the set of functions continuous on D analytic on D. H°° is the set

of bounded analytic functions on Z>, and if E is a subset of Γ, Hf is the

set of functions continuous on D U E bounded and analytic on D.

The Rudin-Carleson theorem states that if K is a closed subset of T of

measure zero, then A{D)\K— C(K). This was proved independently by

W. Rudin and L. Carleson [8], [3].

A sequence {zn} C D is said to be uniformly separated if

inf
mΦn

Carleson's interpolation theorem states that H°° | {zn} = /°° if and only if

{zn} is uniformly separated. This was first proved in [2]. Other proofs can

be found in [5] and [10].

Let F C N U {0}. A function f(z) = Σ anz
n E H] is said to be an F

function if an — 0 for n & F. For a definition and properties of the Hp

spaces see [4]. F is said to be of type A(s) if for every r < s there is a

constant K depending on F, r and s only such that \\f\\s < AΓ||/||r for every

F function. If F = {nk} satisfies nk+x/nk > λ > 1, then F is of type Λ(s)

for every s E (0, oo>. Other sets of type Λ(s) exist. See [7]. Let {nk} be of

type Λ(2) and let R be the operator from A(D) -» I2 defined by R(Σ anz
n)

— {ank}. S. A. Vinogradov proved that R is onto. In fact he proved much

more. See [11].

These results do not live their own lives separate from each other. In

[6] E. A. Heard and J. H. Wells proved that if E is an open subset of T

and S is a relatively closed subset of D U E such that S Π E has measure

zero and S Π D is uniformly separated, then H™ \ S — Cb(S), the space of

all bounded continuous functions on S. Vinogradov proved in [11] that if

AT is a closed subset of T of measure zero, g E C(K) and {bk} ELI1, then

457



458 KNUT 0YMA

there is a n / E ^ ( D ) such that/|Λ:= g and R(f) = {bk}. We intend to
prove:

THEOREM. Let E be an open subset of T and assume that S is a
relatively closed subset ofDUE such that S Π E has measure zero, S Π D
is uniformly separated and 0 £ S. Assume F—{nk) is an increasing
sequence of integers of type Λ(2) such that limk_^o0(nk+] — nk) = oc. //
β(S) E Ch(S) and {bk} E /2, there is a function f(z) = 2 anz

n E H™ such
that f\S = β and ank - bk for all k.

REMARK. O ί S represents no loss of generality since we may have
0G{nk).

Before proving the theorem, we are going to develop some back-
ground material. Let S Π D = {zn} and let

inf 1
n 1 -

Then there exists a real number M with the following property: Given
{wn} E ball /°°, we can find a real number a and a Blaschke product B(z)
such that MeιaB(zn) — wn for all n. The zeros {̂ /7} of B(z) can be chosen
to satisfy ψ(zrt, ξn) < δ where ψ(α, b) —\ (α — b)/(\ — ab) \ is the pseudo-
hyperbolic metric on D. This shows that B(z) has analytic continuation
across T\{zn). The result is due to J. Earl [5]. We want to prove that the
mass of the Taylor coefficients of B(z) regarded as an element of H2 is
concentrated on the first coefficients.

LEMMA 1. Let B(z) — Σanz
n be as above. If ε > 0 then there is an

integer N = N(ε) independent of {ξn} such that Σ™=N \ an |
2 < ε.

Proof, ε is now fixed. Let

I ί n I i n ' *Bκ(z) -

Since ψ(£M, zn) < δ, a calculation shows that

Hence l i m ^ ^ Σ ^ ^ l - \ξn\) = 0 uniformly in {£„}. This shows that

^ ( 0 ) ^ o o L S i Π C e ll^»2 = h Bκ(z)=Ή=0°n,κZn Satisfies Σ?=Λ,J flΠιJ,p
< ε/2 for Λ^ = 1 if K is chosen large.

-i ~ z



AN INTERPOLATION THEOREM FOR Hf 459

We have

Nκ oo

BΛz) = Σ a .z" + 2 *w **" = P(z) + €,(z)

where ||ε | | | < ε/2 and ||/7||2 < 1.

Since ψ ( ^ _ l 9 £^-i) < S this converges uniformly on D independent of
£κ-x. Choose R such that

Σb«tiκ-ι)z"+ 2 bn(ξκ_t)z» = q(z) + εq(z)
n=0 n=R+l

satisfies llεjl^ < η, Halloo < 1 + ^ where η is to be chosen below. We have

Bκ-\ = (p + ε ^)(ί + ε

g) =pq + *Pq + p*q + *>v

pq is a polynomial of degree Nκ + R. It is not the (Nκ+ /?)-partial sum
of the Taylor series of Bκ_v but deleting coefficients decreases the || | |2

norm. For Bκ_x(z) = ΣCΛz"we therefore have

1/2

= ι ι ^ - i U ) - Σ cnz
n\

l l ^ l l o o "Γ" 1 1 ^ 1 1 2

< V ε/2 ( l + η ) + η + y ε/2 η <

if η is chosen small. Continuing in the same way, the lemma is proved in a
finite number of steps.

We are now going to take a look at Vinogradov's theorem. If
F= {nk} is of type Λ(2), the mapping R: A(D) -» I2: Έanz

n -* {anj is
onto. The open mapping theorem gives that /?(ball A{D)) D cball I2 for
some c > 0. To obtain an estimate for c we need a result of Smirnov. Let
/( | ) be integrable over the unit circle and let

Then Λ e // 1 / 2 and ||Λ||,/2 < A",||/||,. For a proof see p. 35 of [4] or [11].
Since F is of type Λ(2), we have | |/ | | 2 < A"2 | |/||I/2 for every F function in
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H2. Vinogradov proves his theorem by showing that the adjoint mapping

/?*: (Z2)* = I2 -> A(D)* satisfies

\\R*{x)\\>{\/2*KλK2)\\x\\.

This is proved more generally on the first seven pages of [11]. Using a

result of Banach, Lemma 4.13 of [9], we get i?(ball A(D)) D

(1 /2TΓΛΓJ AΓ2)ball I2 if by ball we mean open ball. Our balls are open from

now on.

If F = {nk}°£=ι, consider the set F' = [nk - nκ}f=κ+v Ff is also of

type Λ(2), and it is not difficult to see that the associated constant

K2 < K2. If R' is the operator from A(D) to I2 associated with Ff we see

that Λ'(ball A(D)) D (\/2πKλK2)baΆ I2.

The proof of the theorem will also make use of

LEMMA 2. Let T: X -> Y be a continuous linear mapping between

Banach spaces. Assume there are constants ε < 1 and M such that for all

y E ball B there is x E X such that \\x\\ < M and \\Tx - y\\ < ε. Then T is

onto.

For a proof see [1]. We now prove the theorem. Assume first that

S Π E = 0. Choose an integer K such that/^(z) = Bκ(z)/Bκ(0) = 1 +

ε(z) satisfies Wf^ < 2 and | |ε| |2 < \/4πKxK2. Let Bκ Hf be the sub-

space of H™ consisting of the functions that vanish at zn for n > K. Given

{bk} E ball /2, choose g(z) = Σ anz
n E A(D) such that aΆk = bk for all k

d | | ( ) | | < 2 ^ Λ : L t

gκ(z) - g(z)fκ{z) =

and

\\{bk ~ cnκ}\\2 < \\ε(z)g(z)\\2 < | | ε ( z ) | | 2 • Wgiz)^ < 1/2.

Lemma 2 now proves that R{BKH%) = I2. Let {wn}™=κ E Γ and {bk} E

I2 be given. Choose λ(z) = Σ dnz
n E H% such that h(zn) = wt1 for n > K

and choose j(z) = Σ lnz
n E BκHf such that ltH = bk - dtH for all k. The

function r(z) — h(z) +j(z) = Σ/A7z'2 satisfies K z«) ~ wn ίor n > K and

tΠk — bk for all A:. This proves the theorem for {zn}™=] replaced by

{zn)7=κ The proof will be complete if we can prove that K can be

replaced by K — 1. To obtain this it is enough to find a function

f(z) = Σanz
n £ Bκ H£ such that an = 0 for all A: and f(zκ_λ) = 1.
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Such a function is likely to exist because it is easy to prove that there are
many functions in BKH™ with F coefficients zero. All these functions
could, however, vanish at zκ_, (a black hole). In that case, then for every
f(z) -Σanz

n G Bκ- Hf, f(zκ-x) would be a function of {aΛk} alone.

Let f(z) = Σanz
n £BKH™. Look at f(zκ_x) «-/(z) ^{aHk} G I2.

{ank} -> f{zκ_λ) is now seen to be a well-defined linear functional on I1

since R is onto. This functional is continuous since every x G ball I2

comes from a function of norm < C as an application of the open
mapping theorem shows. Therefore there exists a unique {λ^} G I2 such
that

(*) f(*κ-x) = Σ**Λ* for every/(z) - %anz" G Bκ Hψ.
k

Infinitely many \kΦ0. If this were not so, let λM be the largest. If
/(z) G BKH™. Then z""+ι/(z) would vanish at zκ_v This is clearly
impossible. Since {λk} is unique, the relation (*) is impossible if we delete
some nN from F for which λ ^ ^ O . If we do so, K can be replaced by
K — 1. We may choose nN arbitrary large. Doing so we have pushed the
problem from {zn} to F. We now prove that nN can be replaced.

Let {z*} = {zn}™=K-\ U {0}. Every sequence {wn} G ball/00 can be
interpolated at {z*} by a function of the form MeiaB(z) — Σlnz" as
pointed out above. Choose an integer 0 independent of {wn} such that

(**)

This is possible by Lemma 1.
Choose nN such that \N ¥Ό and ft^-H — nN > Q. Let F' =

{"A -«*}?=*+I and let

® - {/(z) - 2 « π ^ e / ^ : απ = 0 for/i G F'}.

We want to prove that © | {z*} = /°°. Let {wtt} G ball /°° be given. Choose
a and 5(z) as above such that MeiaB{z*) — wn for all n. Choose h(z) —
Σbnz" G A(D) such that bn = /rt for Λ E F and such that ||A(z)|| < \.
This is possible by (**) and the remark following Vinogradov's theorem,
/(z) = MeiaB(z) - h{z) has the following properties: fe<$>, \\f\\ <
M + j , |/(z*) - wn |< i . Lemma 2 now proves that % | {z*} = Γ. nN can
now be replaced: Let {wn} G /°°, {^} G /2. Take /(z) = Σ v " E ^ E
such that f(zn) = vvπ for π >K— 1 and <?„ = 6̂  for Λ̂ . G
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Choose g(z) G 9> such that g(0) = 1, g(z*) = 0 for z* φ 0. Let r(z) =
z"»g(z) = Σtnz". We have: r(zn) = 0 for n >K- 1, ίπ = 0 for « 6
^\{^yv)'^? ~ 1 O U Γ interpolation problem is now solved by the func-

tion/(z) + λr(z) for a proper choice of λ.

The proof is now complete except we assumed S Π E = 0 . Using the

Heard and Wells result, we may assume β\S = 0. Let E' = E\S, G =

{ / £ / / £ : f\s = 0}9 β ' = { / £ / / £ : f\S = 0}. The proof will be com-

plete if we can prove R(6) — I2. By what we have just proved and the

open mapping theorem, R(k ball β r) D ball I2 for some constant k. Now

choose g <Ξ H™ such that g = 0 on S Π T, \\g\\ < 1 and g(z) = 1 + ε(z)

satisfies | |ε(z)| |2 < 1/2Λ. This is possible by Lemma 4 of [6]. Let {bk} G

ball I2. Take/(z) = Σ anz" G & such that | |/ | | < A: and flnA = ftA for all k.

h(z) =f(z)g(z) = Σ ς z w satisfies:/! G 6, p | | < /c,

Lemma 2 now proves Λ(β) = /2 and the proof is complete.
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