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The purpose of this paper is to extend the recently developed Clarke
theory of generalized gradients to vector valued mappings. For that we
introduce the notion of locally o-Lipschitz mappings and develop a
subdifferential calculus for them. In this process, we have the opportunity
for comparison with analogous resuits obtained in the convex case.

1. Introduction. We know (see [14]) that a convex mapping
majorized in a neighborhood of a point is locally o-Lipschitz in the
interior of its domain. So it is natural to go a step further and ask whether
we can have an analogous subdifferential theory for locally o-Lipschitz
mappings.

In the real valued case, this problem was first introduced and success-
fully solved by Clarke [2]—[7]. After Clarke, others have also contributed
in this or parallel directions, e.g., Aubin [1], Halkin [9], Hiriart-Urruty [11]
—[14], Rockafellar [22], and Warga [27].

In this paper, we construct a similar theory for vector valued map-
pings. Having as our starting point the locally o-Lipschitz mappings, we
define the generalized gradient for such mappings, and using that we
develop a complete subdifferential theory. Although we face serious
analytical difficulties working with vector valued mappings (lack of func-
tional separability results), nevertheless introducing the notion of gener-
alized o-directional derivatives and using the results obtained in [19], we
are able to obtain several new results that will be potentially useful in
solving nonsmooth, nonconvex vector valued extremal problems. Similar
work was done very recently by loffe [16], [17] and Thibault [15]. In the
last section of this paper, we will compare our results with those obtained
in the above-mentioned works.

All through this paper, X will be a Banach space and Y an order
complete Banach lattice. Any additional assumptions will be mentioned
explicitly. The definitions and notational conventions are the same as
those introduced in §2 of [19].

In the next section we introduce the locally o-Lipschitz mappings,
which play an important role in this theory, and we examine several of
their properties.
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In §3 we introduce the notion of the generalized o-directional deriva-
tive and, using that, define the generalized gradient (or generalized subdif-
ferential) of locally o-Lipschitz mappings and study its properties in
detail. We use the results obtained in [19].

In §4 we develop the subdifferential calculus related to generalized
gradients. As we shall see, several of the results of the convex theory (see
[19]) have their analogs in the new theory.

In §5 we give a brief “preview” of the possible applications of this
theory in vector valued optimization problems. In fact, this is the topic of
a forthcoming paper by the author [20].

Finally, we conclude with a discussion of related work.

We should mention that we could have been more general in our
presentation by assuming that X is a locally convex t.v.s. and Y a locally
convex lattice and define f: X — Y to be locally o-Lipschitz if for every
bounded open set U there is a y € K} and a seminorm p such that
[f(x) —f(z)|=<yp(x —z) for all x,z € U. Then most of the results
presented here hold. But we have decided not to go into such generality in
order to avoid unnecessary technical complications.

In the sequence by dcf, we will denote the subdifferential in the sense
of convex analysis (here we deviate slightly from the notation used in
[19].)

Needless to say that beside these ideas is always the ingenuity of F.
Clarke, whose theory of generalized gradients opened new perspectives in
nonsmooth analysis and optimization theory.

2. Locally o-Lipschitz mappings. The class of locally o-Lipschitz
mappings was introduced in [19]. Let us recall the definition.

DEFINITION 2.1. A mapping f: X — Y is said to be locally o-Lipschitz
if and only if for every U open and bounded subset of X thereisay € K7
such that |f(x) — f(z)|=< y||x — z|| for all x, z € U. We denote this class
of mappings by L ( X, Y).

First observe that since Y is a Banach lattice, |f(x) — f(z)|=<
Yilx — z|| implies ||f(x) — f(2)| < |yl llx — z|| for all x, z € U, which
implies that a locally o-Lipschitz mapping is, in fact, locally norm Lipschitz
and therefore strongly continuous.

ProposITION 2.1. If f, g € LY X, Y) then f + g and A f (A € R) also
belong to Li7( X, Y).
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Proof. Let U be a bounded open subset of X and x, z € U. Then
f(x) + 8(x) = f(2) — g(2)|=|f(x) — f(2)] +]g(x) — g(2)]
<ylx =zl + yllx — 2l = (3, + y)lx — 2|
Sof+ g €& Li(X,Y). Also
INf(x) = A=A f(x) = A2 =Ayllx 2],
which implies A f € LT( X, Y). O

PropositiON 2.2. If f€ L (X,Y) and g: X > X is locally norm
Lipschitz then fo g € L} X, Y).

Proof. Let U be an open bounded subset of X. For x, z € U, we have
(1) [(fog)(x) = (feg)2)|=|A(g(x)) — flg(z))|=ylg(x) — g(2)I.
But since g is norm Lipschitz,
(2) lg(x) —s(2)| < klx — 2, keR™.
Substituting (2) in (1) we get

I(fog)(x) = (fog)(2)|=kylx — z].

Hence f o g is locally o-Lipschitz. (]

CorOLLARY. If A €L(X,Z) and f€ L{(Z,Y) then fo A €
LE(X, Y).

DEFINITION 2.2. A sequence of mappings f,: X = Y, n € N, is said to

converge o-pointwise to f if and only if for all x € X, f(x) = f(x).

ProposITION 2.3. If {f,},en C© L{(X,Y) with the same Lipschitz
constant and f, - f o-pointwise, then f € L{7( X, Y) with the same Lipschitz
constant.

Proof. Foralln € N and x, z € U, we have
14,(x) = £(2)] =lx — z].
We know
f(x) = f(2)] =1A(x) = £u(x) + £,(x) = £i(2) +1,(2) = f(2)]
=|f(x) = £, +1A(x) = £(2)] +1£,(2) = /(2)]
=|f(x) = £.(3)] +ylx = 2] +[/(2) = 1(2)]
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since for all n €N, f, € L{7(X,Y). Also, since f, > f o-pointwise, we
know that

f(x) = £,(x)| 0 and |[f(z) = f,(z)| 0.

So
() = f(2) = 0 = Tim [7(x) = £,(x)] + i = 2]
+o— lim [,() = (2)
Sf(x) = f(z)| =ylx — z|| forallx,z € U.
Therefore, f € L{( X, Y) with the same Lipschitz constant. O

COROLLARY. If { f,},en © Li( X, Y) with the same Lipschitz constant
and f, — fthen f € L3(X,Y) wzth the same Lipschitz constant.

By (fV g)(-) we denote the mapping ¢: X — Y defined by ¢(x) =
(fVg)x)=f(x) V g(x). Similarly for (fV g)(-).
Then we have the following result.

ProposiTION 2.4. If f, g € Li( X, Y) then fV g and [ /\ g also belong
to LY(X,Y).

Proof. Again let x, z € U. Then we know from [24] that

[(fVg)(x) = f(Ve)2) =[/(x) = /()| +]g(x) — g(z)i
=yt y)lx =2l
SofV g€ Ly(X,Y). The fact that f A g € LI7( X, Y) follows from
I(f A g)x) = (fAg)2)] =If(x) = f(2)] +lg(x) — g(2)]
(see [24)). O

DEFINITION 2.3. We will call a linear operator 4: X — Y (so)-bounded
if it maps norm bounded subsets of X into order bounded subsets of Y.

Note. Observe that since Y is a Banach lattice, then it is normal and
so every o-bounded subset of Y is norm bounded. Hence, every (so)-
bounded operator A4 is bounded, and so by linearity 4 € £( X, Y), i.e. itis
continuous.
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PROPOSITION 2.5. If A € L(X, Y) is (s0)-bounded then A € Lip( X, Y).
(Clearly the Lipschitzian property is global.)

Proof. By linearity, we can take z € X to be the origin. Then define
(A)E Y by (A)=sup,, =i A(x). This exists from the fact that 4 is
(so)-bounded and from the order completeness of the Branch lattice Y.
Then we have that for all x € X,

x| = (4)|x] > 4 € Lip(X, Y).

i.e. A is global Lipschitz with Lipschitz constant ( 4) € K7 . 0J

REMARK. We saw that since Y is a Banach lattice and therefore
normal, then 4 € L(X,Y) and 4 (so)-bounded imply that 4 € £( X, Y).
The converse however is not necessarily true because in general a bounded
set is not order bounded.

However, if A is (so)-bounded, then A4 is (so)-continuous. So if
x, — x, then A(x,) = A(x).

Now if Y has the diagonal property and (K V) # @, then
A(x,) i>A(x), which means 4 € £( X, Y). So in that case an (so)-bounded
operator is continuous. Finally, if Y has the boundedness property (see
[21]), then Proposition 2.5, we can assume simply that 4 is (so)-continu-
ous.

In the next section, using the class Li3( X, Y), we will start building
the subdifferential theory for the nonconvex case.

3. Generalized gradients for locally o-Lipschitz mappings. Let f =
L3(X,Y). For such a mapping we introduce the following notion (every-
thing takes place locally).

DEFINITION 3.1. For any w, = (z,,A,) = (x,0) in X X R™, we de-
fine
T +A,d) —
P (s d) = T Lo T2 ZI),

n—oo n

Then we call the mapping f °(x; d) defined by
f(x; d) = sup{f°(w,)(x; d): w, > (x,0) in X X R}
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the generalized o-directional derivative of f at x in the direction d. For
simplicity, we usually write

Fo(x:d) = ﬁaf(x+h+)\d)-f(x+h).
A0 A

Let us make some remarks about this definition.

First, it is easy to see that if f is real valued, then f°(x; -) coincides
with Clarke’s generalized directional derivative at the point x (see [2]).

Also observe that for any w, = (z,,, A,) = (x,0) in X X R", we have,
by the Lipschitz property of £,

f(zn + And) —f(zn) < Azzy”dll _
A - A _de“

n n

So |f(z,+AN,d) — f(z,)|/\, is o-bounded (for all » € N) and so
(f(z, +X,d)— f(z,))/A, 1s o-bounded too. Hence

i 4 Aud) /(2

n—0o0 n

exists (i.e. it is finite).

Furthermore, since this is true for all w, = (z,, A,) = (x,0) in X X
R", we conclude that f°(x; d) exists and, in fact, we have the estimate
1/ % d) | ylld])

Finally, another useful way to express f(x; d) is

f%x;d)= inf sup flz+ Mi) — /() :

8020 |x—z)|<e
0<A<$

In the sequel, we will investigate f°(x; d) as a mapping of d € X.

LEMMA 3.1. The mapping f°(x; -): X — Y is sublinear and we have

[f°(x; d)| < y|d| forallx € U.

Proof. The positive homogeneity of f%x; -) results directly from
Definition 3.1. So in order to show sublinearity, we have to show
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subadditivity, i.e.
fO(X; d, +d,) SfO(X; dl) +f0(x; dz)

foranyd,, d, € X.
From the definition we know that

fOxid, + d,) = li—mf(x+h+}\(d' “;dz))_f(x+h)
et
——{f(x+h+}\d, +Ad,) — f(x + h + Ad,)

A

= lim
h—0
A0

f(x+h+Ad,) —f(x+h)
+ : |

— f(x+h+Ad,+A,) = f(x+h+Ad)
< lim

s A

A

0
10
+E-n-f(x+h+}\d,)—f(x+h)
K30 &
=f%x;d)) + fOx; dy).

So, indeed, f°(x; -) is subadditive and, hence, sublinear for every x € U.
As we have already seen, the estimate |f°(x; d)|< y||d|| is a consequence
of the Lipschitz property of f. O

Using this lemma, we obtain the following important result.
PROPOSITION 3.1. f%(x; ) € Lip(X, Y) for all x € U.
Proof. First using Lemma 3.1, we have for d,, d, € X:

(1) fO(x; d) = fx; d+d,—d,) =f°(x; dy) + f°(x; d, —d,)
“’fO(X; dl) -fO(X; dz) SfO(X; d, — dz)‘

Similarly, interchanging the roles of d, and d, we get

(2) fO(Xde)_fO(X;dl)Sfo(x§d2'_d1)-
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Then using (1) and (2) above, we have
1£0(xs d) = O(x; dy) 1= (f°(x; dy) ~ £O(x; dy))
V(= (x5 dy) = £(x; d3)))
= (s dy) = x5 dy)) V (f(x; dy) = fO(x3 d)))
SfO(X; d, — dz) VfO(x; d, — dl)
= (ylld, = dll) v (¥lld, = )
:)’”dl - dz”-

Therefore f%(x; -) € Lip(X, Y) for all x € U. dJ

Note. Since from the above proposition, we have f °(x; -) is o-Lipschitz,
we deduce that it is norm Lipschitz and therefore strongly continuous.

Another way to deduce the continuity of f%(x; -) is the following.
From Lemma 3.1, we know that

fox;d) <y|d|| <yr forde B(0).

So f(x; -) is majorized in a neighborhood of the origin, and since it
is sublinear, by Theorem 3.1 of [19] (see also [26]), we deduce that f°(x; -)
is continuous on l§,(0). Now we claim that by homogeneity, it is continu-
ous on all of X. Indeed, if d is any point in X, then there is a A, > 0 such
that for 0 <X < \,, A\d € B,(0). Now at Ad, f°(x; -) is continuous. Again
by Lemma 3.1, f%(x; Ad) = A f%(x; d). So f%(x; -) is continuous on all of
X.

Having the notion of the generalized o-directional derivative, we can
proceed and define the notion of the generalized gradient (or generalized
subdifferential).

DEFINITION 3.2. We define the generalized gradient of f at x to be the
set

Af(x)={4€R(X,Y): A(d) =f°x;d)Vd € X}.

Note again, that if fis real valued, then the above set valued mapping
is the celebrated Clarke subdifferential (see [2], [3], [7]).

If we ignore the topological structures on X and Y, and consider only
their algebraic ones, we get the algebraic generalized gradient of f at x,
which we denote by 0%f(x). So we have

f(x)={A e L(X,Y): A(d) =f%x;d) Vd € X}.
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Observe that from the homogeneity of f°(x; -), we have f%(x; 0) = 0.
Then, for x € U,

(fO)r(x;O’ d) =0 — lim fO(x; }\d) _fO(x’O)

A L0 A
0 .
o — tim M5 d) =f%x;d) VdE X.
A 10 A

Then by Valadier’s [26] Proposition 4, we have
0/ %x;0) = {A € L(X,Y): A(d) < f°(x; d) = (f°)(x;0,d)}
=021 %(x;0) = 3%f(x).

But, as we saw previously, f%(x; -) is strongly continuous, so again
from Valadier (Theorem 6 in [26]), we have

(1) 95 °(x;0) = 3. f(x;0) = 3%f(x)
and
(2) 3./ °(x;0) = 3f(x).

So from (1) and (2), we conclude that 9f(x) = 3°f(x).

So in the sequence, we will no longer distinguish between the gener-
alized gradient and the algebraic generalized gradient (as we did in the
convex case (see [19])), since we see that these two coincide. In fact, we get
the following chain of identifications:

(*) 9°f(x) = 8f(x) = 3./°(x;0) = 9/ °(x; 0).

From () and Valadier’s Theorem 6 and Corollary 7 in [26], we get the
following result.

THEOREM 3.1. (1) 0,/ %(x;0) = 3f(x) = 3%f(x) # @ Vx € U.

(2) f%x; d) = max{A(d): A € f(x)}.

(3) 3f(x) C (X, Y) is a convex, equicontinuous and compact subset of
L (X, Y), if the o-intervals [x, y] are w-compact.

Note. £ ( X, Y) denotes the space £( X, Y)) with the topology of simple
convergence (strong operator topology).

In the sequel we will examine the properties of the multioperator
df(-). For similar results in the real valued case, we refer to the two
excellent survey articles by Ciarke [9] (it contains also some new results),
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and Aubin [1]. Both will be our main references for the remainder of this

section.

The generalized gradient df(-) defines a multioperator from X into
(X, Y).

We recall that a multioperator is closed if and only if its graph is a
closed subset of X X £ (X, Y).

Viewing df(-) as a multioperator, the following result is true.

PROPOSITION 3.2. If Y is weakly sequentially complete then the multiop-
erator 0f(-) is closed.

Proof. The graph of fis the set
Graf= {(x,4) EXXL(X,Y): A(d) = f°x;d) Vd € X}.

But
A(d)=f%x;d) vde X
©0=f%xid) — A(d) o f*(x;d) — A(d) € K}
o(f%x;d) —A(d),p) =0 Vpe(Ky)*VdEX.
So we have

Graf= {(x,a) e XX L(X,Y): (f%x;d) — 4(d), p) =0,
p € (Ky)*,de X}.

Hence, Grdf is the upper level set at zero of the real valued function
(x, 4) = (f°%x; d) — A(d), p) for every d € X and p € (K7 )*. Since
A - (A(d), p) is £(X,Y) continuous, it suffices to show that x —
(f°x; d), p) is upper semicontinuous Vp & (K5 )*, d € X. But for every
¢ > 0, thereis a 8 > 0 such that

sup fz + M}l\)

fz—x|j<8
<82

(This is from the definition of f°(x; -) and Lemma 8 of [26].) Also from
the fact that f € L‘i’;( X, Y), we have

fz + }\C;l) —f(z) sf(z * Ad}f) 1) +yld, — d,f.

_f(z),p S(fo(x;a«’)uv)Jr%-
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Now let v € U be such that ||x — v|| < 5/2 and p < 8, v< 5/2. Then

[z +Ad)) — f(2)

sup
lz—oli<p A
A<v

[z + Ady) — f(z)

= sup A +)’“d] - dz”
Iz = x||<8
A<é/2
ﬁ( wp L2 —f(Z)’p)
llz—oll<p
A<wp
+ Ad,) —
=< sup 1z }\2) /(z) 2|+ (vl - ||, p)
lz—x||<&
A<8/2
+ _
ﬁ( wp HEFAD) f(Z),p) < (e d). p) + ¢
e

by letting [|d, — d,|| < &/(2]| |l - || pl). So
(f%(v;d), p) =(f°(x;d), p) + & for|x — vl|<8/2.

Hence (f°(-; d), p)isus.c.Vd € X, p € (K} )*.
This proves that 9f(-) is a closed multioperator. O

Note. If Y is reflexive then Y is weakly sequentially complete.
Next we have

= f(x+h+A—d))—f(x+h)

—fx; —d) = -
79 *
:E—Ig_f(x+h+>\(—}\d))—f(x+h)
78
_ li_mf(x +h+ (—):)Ad) —f(x +h)
)
10

<f%x; d).
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Also,
(—/)(x: d) = Tim LT TAD) + flx + 7)
’ Y
8
g St h M) — f(x 4 h)
A8 A
— _gim [t At Ad) —f(x Fh)
,;\:lg) A
=f%x; —d)

So we conclude
(—f)(x;d) =f°x; —d) foralld € X.
Hence, if
AE€N—f)x) = A(d) =(~f)(x;d) =/"(x: —d) VdEX
— —A(d)=f%x;d) VdE X
- —A4 €93f(x).
Alsoif A € —0df(x) then
A(—d)=f%(x;d) vde X
—A(d)<f%x; —d) = (—f)(x;d) foralld € X.

So 4 € d(—f)(x). So from the above we deduce the following result.
PROPOSITION 3.3. 3(—f)(x) = —3f(x) for all x € X.

The next natural step is to compare df(x) with d.(x) in the case where
/1s a convex mapping (we know from [19], Theorem 3.2, that such an fis
locally o-Lipschitz on intdom f).

THEOREM 3.2. If f € Conv(U, Y') where U C X is open and bounded,
then 0f(x) = 9d_f(x).

Note. Conv(U, X) denotes the family of convex mappings from U to
Y.

Proof. It is clear from the definitions that

f(x;d)<f%x;d) Vde X
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(for the definition of f'(x; d), see [19] or [26]). If we show that in fact we
have f(x; d) = f°x; d) for all d € X, then we can see from the defini-
tions of 9, f(x) and 9f(x) that these two multioperators are equal.
Fixing x and A, > 0, we have
flz+Ad) f(x+A,d)
A

—f(z+}\d)_f(x+)\0d)+f(x+}\0d) f(x+}\()d)

(1) Y ) ) X,

—x+dA—A 1 1
_<_yHZ X }\( 0)H+f(x+}\od)[x—xg}

Also

2) f(}\Z) _f(;c) +f(;) _fg\z)

= ) ) +f(x)[% - Xl;J <z = +f(x)[% - AH

Adding (2) to (1), we get
f(z+Nd) — f(x) _ fx+Ad) — f(x)

A A
_ {2z = xll + (A = Ag)il}
o A
1 1
(3= U ) 0]
_ 2yllz = x|l »IA = Aolll4ll
R
1
(3= 1 ) U+ xod) =]
A —Aollldlly . Ap— A
==t

2= Aoyl | 2yl = x)
A A '

So for A > 0 there is a § > 0 such that if |A — Aj|< & and ||x — z|]] < & we
have

2yllz — x|
A

Aoylidll +

flz+Ad) = f(z) _flx+Ad) = fx)
X = A, &y

flz+ (Ao £ 0)d) = f(z) _ flx+Aod) = f(x)
Ao + 0 = Xy &

sup
llx—zl|<8
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Taking the infimum with respect to both A ), § > 0 we have

flz+ Ao+ M)d) —f(2)

inf su
Ag=>0 |§x-z1}|)<8 AO + 8
8>0
+ A d) —
< inf f(x 0 ) f(x) + ey,

Ay>0 A

fO(xsd) =f'(x;d) + ey.

Let €10. Then f%x;d)<f'(x;d). Hence f%x;d)=f(x;d) for all
d € X.Sodf(x) =0,f(x)forallx € X. g

Recall the following definition.

DEFINITION 3.3. A mapping f: X — Y is said to be Gateaux differen-
tiable if and only if

o LA =10
A—0 A

exists and fZ(x, -) € £(X, Y). The mapping fis called continuously Gateaux
differentiable if and only if:

(1) fis Gateaux differentiable.

(2) x = fi(x; -) (X = £( X, Y)) is continuous from X with the norm
topology to £( X, Y)) with the strong operator topology.

Before going on to our next theorem, we need some auxiliary material.

Let Y have a strong unit e (this is the case when (I%; ) # @). Define
lIyll; = inf{k: |y|< ke}. Then we have

LEMMA 3.2. || - ||, is a norm on Y and (Y, || - ||,) is a Banach space.
Furthermore, if 7, is the topology induced by || - ||, then it is stronger than the
topology 7, induced by the original norm || - ||.

Proof. Clearly
Hiyll, =IAlinf{k": |y|< k'e} = inf{|N|k": |[y|< k'e}
= inf{k: |y|=< (k/|A])e)
=inf{k: |A||y|= ke} = || Ay|,-
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Also
wll, + lIyll, = inf{k,:|w|= kie} + inf{k,: |y |= kpe}
=inf{k, + k,: |w|< ke, |y|= k,e}
=inf{k, + ky: |w| Hy|< (k, + ky)e}
=inf{k, + ky:|w +y|=(k, + k,)e}

= llw +ll;-
Finally,
0 =|Iyll, = inf{k: |y|=< ke} <|y|=0 <y =0.
So indeed || - ||, is a norm on Y.
Now let {y,},en C Y be a Cauchy sequence in the norm || - ||,. Then

for some N, > 0 and n, m = N,;, we have

Ve = Vull < & =1y, = Yml< ee,

which implies { y,}, <y order converges to some y € Y. So |y, — y|< ee for
all n = N, which implies ||y, — y||, <& for all n = N,. Hence

yn - y'
So indeed Y is a Banach space with respect to the norm || - ||,. Finally,
from the definition of || - ||;, we see there is {A,},ey € R™ such that
}\n ‘l’”y“l
Now

IyI=Xe =yl =A,llell = Iyl =llyILlell-

Since e is a strong unit, ||e|| = 1, which implies || y|| < || y||,- So indeed 7, is
stronger than 7, as claimed by the lemma. ]

REMARK. From the above lemma, we deduce the following implica-
tions:

(D || - |l,-convergence implies || - |-convergence.
(2) || - |l,-continuity implies || - ||-continuity.

The converse implications actually also hold (for details see [24]).
Also it is easy to see that (Y, || - ||,) is still a Banach lattice.

Then we have the following theorem which relates the generalized
gradient and the Gateaux differential of f and which is an extension to
vector valued mappings of a result of Clarke ([3], [7]).
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TueoreM 3.3. If f € L3 (X, Y) and it continuously Gateaux differentia-
ble for || - ||, then 3f(x) = {fc(x)}

Proof. By the | - ||,-continuity of the Gateaux differential, we have
that for every ¢ >0 there is a 8§ >0 such that “if ||x — z|]| <& the
| fo(x; d) — fi(z; )|, <& for all d € F C Y finite.” (Continuity in the
strong operator topology.)

Now let v € X such that||x — v|| < 8/2 and consider A € (0, 8 /2||d|)).

Define ¢(A) = f(v + Ad). Since f is Gateaux differentiable, it is easy
to see that ¢ is also differentiable. Then we have

iy — g @) —0(N) _ . f(o+ pd) — f(v+ Nd)
¢(}\)~h~n§ =S S p—A

f(v+)\d+(,u— )d) — f(v+ Ad)
y.—»}\ w— A

= fi(v + Ad; d).

Let r = uw — A such that r < §/2||d|].
Using the Mean Value Theorem for Bochner integrals, we have

=00 sy =L [ty de = fots @)

R )—fé(x;d)

= %frfé(v +td;d) dt — fi(x; d)
0
1

rJg

Tfelo + tds d) — f3(x; d)] dr

Now observe that
lo+td— x| <|lv— x|+ t]|d|| <8/2 + (8/2||d|))|d]] = 8.

So from the | - ||,-continuity of f: and the properties of the Bochner
integral (see [10]), we have

l fo +rd) — f(v)

r

= fe(x; a’)“l

(v +1d;d) — fix; d)|, dr

S—’l‘—foredr:e.




NONSMOOTH ANALYSIS 2: NONCONVEX CASE 479

This follows directly from the definition of the || - ||,-norm, and means
that

f(U + I’d) —f(v) _fG/(x; d)

f(o+rd) = f(v) <fi(x;d) + ee.

=¢ge >
.
Then
V f(v+rd)—f(v)sfc’(x;d)+ee
llo—xl|<8/2 4
r<8/2||d||
- A \V f(v+rdr)_f(v)_<_fc’(x;d)+se
lo—x|[<8/2
r<8/2|d||

- fO%x;d) = fi(x; d) + ee.
Let ¢ — 0; then we get that f°(x; d) < fZ(x; d). But we know, in general,
folx;d) = f°(x; d).

So we conclude f%(x; d) = fi(x; d).
Now we know

80f(x) = {4 €L(X,Y): A(d) <f°(x; d)Vd € X}.

Since fi(x; -) € £(X,Y), we can see we always have { fi(x; -)} C 9f(x)
when the Gateaux differential actually exists. Let A € df(x). Then A(d)
= f%x; d) foralld € X ((1)). Also foreveryd € X, —A(d) = A(—d) <
fU%x; —d) = —f%x; d) (since we have f%(x; ) = f'(x;-) € (X, Y)).
So we get A(d) = f%x; d) for alld € X ((2)).

From (1) and (2) we finally get A(d) = f°(x; d) for all d € X and all
A € 3f(x) 50 Af(x) = { f3(x; ). O

Next we examine the generalized gradient of the sum of two locally
o-Lipschitz mappings. In the real valued case, Clarke [2] proved d( f + g)
C df + 0g holds—and with some additional regularity assumptions, he
also proved equality. In turns out that the same is true for our class of
mappings.

First we need a definition which extends a notion of Clarke [7,
Definition 3] to vector valued mappings.

DEFINITION 3.4. We call a mapping f € L{i7( X, Y) o-regular if and
only if f'(x; d) = f%x; d) for all d € X, where f'(x; d) is just the upper
o-directional derivative of f at x in the direction d.
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Then from Theorems 3.2 and 3.3, we see that convex and Gateaux
differentiable mappings are o-regular.
Now we can state and prove our next theorem.

THEOREM 3.4. If f, g € L3( X, Y) then
(af)(x) = adf(x) fora>0
and
o(af+ Bg)(x) C adf(x) + Bog(x) fora,B>0;
if f, g are, in addition, o-regular, then equality holds.

Proof. Let a > 0.

Then
(ot s d) = T S+ M) = 0f(6) _ s +0) = 1(2)]
x10 x10
- Im f(z+>\c;\)—f(2) — of%(x: d).
A70
Then

daf)(x)={4 €L(X,Y): A(d) < (af)(x;d) Vd € X)
={4€L(X,Y): A(d) < af’(x;d)Vd € X}.

So,if 4 € 3(af)(x) then
(1) A/a €3f(x) > 4 € adf(x) - d(af)(x) C adf(x).
Also, if B € adf(x) then

(2) B/a€df(x) - B(d)/a=f"x;d), de X,
> B(d)<af’x;d) - B(d) < (af )(x;d) VdE X.

So B € d(af)(x) and therefore adf(x) C d(af)(x). From (1) and (2), we
conclude

(af)(x) = adf(x) forallx € X.

To prove the other half of the first part of the theorem, we simply need to
show that

o(f+ g)(x) cof(x) +dg(x) forallx € X.
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Recall that f°(x; -) is sublinear and continuous (in fact o-Lipschitz by
Proposition 3.1). So using our generalization of the Moreau-Rockafellar
Theorem (see [19], Theorem 4.1), the following is true:

(3) 3.f°+8°)(x;0) =8./%x;0) +8.8°(x;0) = 3f(x) + dg(x).
On the other hand it is easy to see that
£ ) + 8% ) = (£ + 8)(xs )
(to check that, just us the definition of /°)
4 =3(s0+g°)(x;0) 23/ +g)(x;0) =3(f + g)(x).
From (3) and (4) we deduce that
o(f+ g)(x) C af(x) + dg(x).

This completes the proof of the first part of the theorem. For the second
part, we proceed as follows: If f, g are o-regular, then

(f+g)(x;d)=(f+5)(x;d) VdeX

and
f(x;d)+g(x;d)=f%x;d) +g%x;d) VvdEX.
But
(f+g)(x;d)=f(x;d) +g'(x;d) VdEX
~(f+8)(x;d) =7(x;d) +g%x;d) Vd € X.
So we have

(5) 8/ +g)x;0) =9.7%x;0) + 3,8%x;0) = 3f(x) + dg(x)
and
(6) 0.(£°+ %) (x;0) = 0.(f+ £)°(x;0) = 3(f + g)(x).

From (5) and (6) we conclude
o(f + g)(x) = 3f(x) + dg(x). O

REMARK. It is worth noting an important difference from the convex
case. There we saw that, in general, df(x) + dg(x) C d(f+ g)(x) (see
[19], §4), while here, as we saw in the previous theorem, in general, it is
true that 9( f + g)(x) C 9f(x) + 9g(x).
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4. Generalized subdifferential calculus. Here we develop a calculus
for the generalized gradients. The sources of inspiration are two. The first
and basic one is the existing calculus for real valued functions developed
primarily by Clarke [2], [3], [7], and also Aubin [1] and Hiriart-Urruty [11],
{12], [13]. The second is the calculus developed in [19] for the convex
subdifferential. We would like to know to what extent we can have a
similar theory for the generalized gradients.

We start with the following result.

Let Z be a Banach space and assume Y has the diagonal property.

ProPOSITION 4.1. If f € LY(Z,Y) and A € (X, Z), then
0(foAd)(x)D0f(Ax)o A Vx € X,
if, in addition, f is o-regular at Ax, and R(A) = Z, then
(S A)(x,) = 3f(Ax,) © 4.

Proof. We already know from the corollary to Proposition 2.2 that
feAeELy(X,Y). Now

(foA)x+h+Ad)— (fod)x+h)

(fo4)'(x;d) = lim

A
378
_ — f(Ax + Ah + NAd) — f(Ax + Ah)
= 1m Y
h—0
ALO
= f%(Ax; Ad)

(since 4 € £(X, Z), h —» 0 implies Ah — 0).
Next let I' € 9f( Ax). By the definition of df( Ax), we have

T(h) <f%Ax;h) VYhEZ
—>(ToA)d)=T(Ad) = f°(Ax; Ad) VdeE X
>(Tod)d)<(foA)(z;d) VdE X
—»(Tod)€d(foA)x).
So we conclude that 9f(Ax) c A C d( fo A)(x).

Now if fis o-regular at x,, then by the chain rule for o-directional
derivatives obtained in [19], we have

(1) (foA)(xg;d)=(foA)(xg;d)=f(Ax,; Ad).

(Actually there the chain rule was proved using Lemma 8 of Valadier [26]
for f convex. But since by diagonal property o and ru convergence
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coincide and Y is a Banach lattice, then we can see, using Proposition 2.4,
p. 162 of [21], that the chain rule extends to the present case also.)

Let B € 9( f o A)(x,). It is easy to see that ker 4 C ker B. So we have
the following situation:

Z

Y

S RN

Since Im 4 = Z, by the factorization theorem, there is I' € £(Z, Y) such
that B = ' o A. Then by (1) we have

B(d) = (T o A)(d) = T'(Ad) = f%(Ax,; Ad) Vd € X.

Since A is surjective, we conclude that I' € 0f( Ax,). Therefore, we have
0f(Axy) o A D d(fe A(x,)). This fact combined with the first part of the
proposition implies

3(fo A)(xq) = 0f(Ax,) o A. U

PROPOSITION 4.2. If f € LY(X,Y), A € [E(Y)]" and is also invert-
ible, and Y has the diagonal property, then

(Ao f)(x)=Ac3f(x) forallx € X.

Proof. First let us check that the composite map is in fact locally
o-Lipschitz. So we have for x, z € U,

(A0 £)(x) = (4o ) =[A(f(x)) — A(S(2))]
=14( f(x) — £(2))].
Using the positivity of 4 we have
[A(f(x) = f(2))| = A(lf(x) = £(2)]).

Now since f€ LY(X,Y), we have |f(x) — f(z)|= y|lx — z|| for some
y € Ky and for all x, z € U = open and bounded subset of X. Another
use of the positivity of 4 gives up

A(f(x) = f(2)]) = A(y)llx — 2|
~A(f(x) = f(2)| = A(y)llx — ]
—[(Aef)x)— (A f)2)|=A(p)|lx —z|| forallx,z € U.
So indeed, 4 o fis locally o-Lipschitz with Lipschitz constant A( y).
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We now see that

(Ao f)(x+h+Ad)— (Ao f)x+h)

A
:A(f(x+h+}w;)_f(x+h))—»(AOf)O(x;d)
:HIE(AOf)(x+h+)\d)——(A0f)(x+h)

K38 A
:EA(f(x—i—h-F)\d)—f(x-Fh))
838 ?
<limA(r,)
el0
where
s =V flx+h+Ad)—f(x+h)

A

Al <e
A<<e
But since Y has the diagonal property, we know (see [21])
R fo(x;d) =15 f(x; d).
This, by Lemma 2.2 of [19], means r i>f°(x; d). Hencesince 4 € £( X, Y),
we deduce that
(40 f)(x;d)=A(f°(x; d)).
Now let
Bed(dof)x)>B(d)<(dof)(x;d) Vde X
~B(d) <A(f°(x;d)) > B € 4°0f(x)
= 3(4 e f)(x) CA4°df(x).
It is easy to see that the opposite inclusion also holds. So we conclude that
(Ao f)(x)=A03f(x) forallx € X. a

Our next goal is to obtain a formula for the generalized gradient of an
integral operator.

The final theorem will be based on an analogous result which has
been proved for the convex case by Saint-Pierre (see [23]).

The proof of the theorem will follow the lines of the proof of the
corresponding result for real valued functions due to Clarke (see [7],
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Theorem 1). However, to achieve that, we first need to develop some
auxiliary analytical background, which includes an interesting, in its own
sake, generalization of Fatou’s Lemma.

Let (2, Z, u) be a positive measure space, X a separable Banach space
and Y a separable, order complete Banach lattice which has the R-N
property and is w-seq. complete. By that we mean every weak Cauchy
sequence has a weak limit. Recall that all reflexive Banach spaces are
weakly sequentially complete (see [8]).

In the sequel all vector integrals are defined in the sense of Bochner
(see [10]).

LEMMA 4.1. If ¢ € L (R, Y) then

] [#(@) dute)| =

[Jo(@)ldn(«).

Proof. Assume [q|¢(w)|dp(w) < +oo (where +oo is a greatest
element adjoined to Y') or the above inequality is obvious.
By definition, ¢(w) <|¢(w)|. So by Lemma 3.3 of [19], we have

(1) fﬂqb(w)du(w) ngw(w)ldu(w)
and, similarly,
(2) - /Q ¢(w) dp(w) = /ﬂ |p(w) | dp(w).

From (1) and (2) we have
(fgz‘i’(“)"“(“)) v (“/9¢<w>du(w>) = [ 19(e)1dn(e)
e] [ #() du()

< fﬂ |6(w)] dpu(w). O

The next result is an interesting generalization, for mappings taking
values in a Banach lattice, of the well-known Fatou’s Lemma.

PROPOSITION 4.3 (Generalized Fatou’s Lemma) If |f, |<¢ €
L(R,Y)Vn €N and limsup,_, , f(w) exists p-a.e. and is in L(Q,Y),
then

hmsupff ) du(w) fhmsupf(w) du(w).

h— o0 h— 00
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PrOOf. Let gm(w) = \/ n=m fn(w) Then gm(w) \Lhm Supn—«oofn(w) ‘U.-a.e.
By Lemma 3.3 of [19], we know that

(1) [gale)du(e) = [f()dp(e) Vnzm
*fgm )dp(w) =V ff,, ) dp(w)

n=zm

= A fga(@)du(@)= A V[ f(e)dp(e)

menN meN n=zm
= A [g(w)dp(e) = limsup [ /() du(e).
meN n— o0

We will show that the left-hand side of the above inequality is just
fo 8(w) du(w), where g(w) = limsup, ... f(w) p-a.e. We have

N (g (@) —glw)= N g(«) —glw) =0.

meN menN
Since a separable, order complete Banach lattice is order continuous (see
[24]), this implies

Hgm(w) - g((a))” - 0 p-a.c.asm — o — gm —~)g u-a.e.

From the Dominated Convergence Theorem for Bochner integrals (see

[10]). we get
/ngw)du(m i/ﬁg(u)du(w»

But a weakly sequential Banach lattice is a KB-space in which strong and
o*-convergence are equivalent. Hence we have

Jgnle) du(@) ™ [ (o) due)

But, since { [, g,(w) du(w)}, .y 1S a monotone decreasing sequence, order
and order* convergence coincide. So

[Qg,zwdu(wnfﬁg(w d

Going back to (1), we get
fste = limsup [ ,(@) du(w) = [ limsupf,(w) dp(e)

> limsupfﬂfn(w) dp(w).

So we get the Generalized Fatou Lemma. L]
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Now we are already to formulate and prove the theorem about the
generalized gradient of integral operators. As mentioned earlier, out
proofs follows the proof of Theorem 1 of Clarke [7].

Let f, € L3 (X, Y) p-a.e. such that w — f is weakly measurable and
[f(x)]= ¢(w) E L(Q,Y) forall x € X.

Then we have the following theorem relating the subdifferential of
f(x) = [o f.(x) du(w) with those of £ (x)w € L.

THEOREM 4.1. If the above assumption holds then
f of.(x) du(w);
if, in addition, f,, is o-regular for p-almost all w € §, then

flx) = fﬂ 8/,(x) dp(w).

Proof. We have f(x) = [, f.(x) du(w). Let us calculate its generalized
o-directional derivative. We have

—f(x+h+}\d)—f(x+h)

0 ,d — 1;
fo(x; d) i .
_ g el F R A Ad) dp(e) = fofo(x + h) dp(e)
A
h—-0
ALO

— fx+h+Nd)— (x+h)
= lim w).
\ dp
h—0"Q
A L0

Using the Generalized Fatou Lemma (see Proposition 4.3), we have

fo(x; d) < m fw(x + h+ )\c;\’) ~fw(x + h)d,u(w)
Qp

A L0

= fﬂff(x; d) dp(w).

So

(1) £9(x: d) ngff(x;d)du(w)-
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At this point, note that since X is separable, there is a countable set
D C X such that D = X. Then

f(x+h+Ad)—f(x+h)

M A

heD
lIx—h]l<e
Arational, A<§8

is strongly measurable. So let ¢, |0 and 8, 0. We conclude f%(x; d) is
also strongly measurable.
Now consider the mapping.

M) = fow"(x; d) dp(w).

Because f2(x; -) is convex, continuous and majorized in a neighborhood
of the origin, then, by Saint-Pierre’s result [23], we have

9./M0) = [3,.£2(x;0) du(w).
Q
But recall that

9. £,)(x;0) = 3f,(x).
So from (1)

8f(x) C fgafw(x)du(w)-

This proves the first part of the theorem.
Now assume f, is o-regular for p-almost all w € 2. Then

f(x3d) = fi(x; d) pae.
(2) = [£20x; d) dp(e) = [fi(x: d) dp(e)
- f%x;d) <f'(x;d) (using Proposition 3.1 of [19]).

But we know that in general f'(x; d) < f°%x; d). So it follows from (2)
that

fox;d) =f(x;d) = /Q £9(x; d)d, ().
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Applying Saint-Pierre’s result (see [23]) to the convex continuous map-
pings f° and 1 we get

8.f°(x;0) = /Q 8.£2(x;0) dp(w) — 3f(x) = /Q 8f(x) dp(w). O

Again we go back to X a Banach space and Y a Banach lattice.

It is obvious that for mappings defined on product spaces, we can
have partial generalized o-directional derivatives and therefore partial
generalized gradients.

For such mappings we have the following result.

PROPOSITION 4.4. If Z is a Banach space, f € Li;(X X Z,Y) and is
o-regular at (x, z), then

0f(x,z) CAf.(x,z) ®Af(x, z).

Proof. Let (A, B) € 0f(x,z) CE(X,Y)®L(Z,Y). We have, for
w = (x, z),
f(x +Ahy, z) — f(x, z)

0-{1?3 X :];(W;hl)

= f"(w; (hy,0)) = £°(w; (,,0)).
But
(4 ® B)(h,0) = A(h)) = ['(w; (1,,0)) = [°(w; (h,,0)).
Hence 4 € 9 _f(x, z). Similarly we deduce that B € 9, f(x, z). So the

Proposition follows. O

We conclude this section with some additional useful observations
about generalized gradients. In the sequel let X be a Banach lattice, too.

PROPOSITION 4.5. If f € L( X, Y) is monotone increasing then 9f(x)
CIE(X V)",

Proof. By definition we have

f9(x; d) = Tm f(x+h+Ad)—f(x+h)
’ - A .

h—Q
A—0
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Then using the monotonicity of f, we have, for d € K},
fix+h)sf(x+h+Ad) (A>0)
S>flx+h)—f(x+h+Ad) <0

_)f(x+h)—f(x+h+)\d)

=0
A
_)f(x+h+>\d+}\(—d))—f(x+h+>\d) -0
X <
_)?n—f(x+h+)\d+}\(—d))—f(x+h+}\d) <0

0 A

10
- fO%x; —d)<0-> —f%x; —d) =0.

We know that 9f(x) = 0,/°(x;0). So if 4 € 3f(x), then —f (x; —d) <
A(d) < f°x; d). Hence for d € K}, 0 < A(d). Therefore

f(x) C[L(X,Y)]" vxeEX. O

CoRroOLLARY. If f € LY( X, Y) is monotone decreasing then df(x) C
[E(X,Y)] Vx € X.

This concludes the study of the generalized subdifferential calculus.

In the next section we use the theory developed up to now to get a
necessary condition for the existence of a local minimum. More results in
that direction together with some new interesting properties of locally
o-Lipschitz functions and additional results on the subdifferential calculus
appear in [20].

5. A necessary condition for the existence of local minima. Let X
be a Banach space and Y an order complete Banach lattice. Let S be a
subset of X and f a mapping from S to Y.

In this section we are concerned with the following problem:

“Find x € X, for which there is a neighborhood U such that
forallz € UN S, we have f(x) < f(z)”.

[P]

To get necessary condition for the existence of such a point, we need
to recall some basic geometric objects.

DEeFINITION 5.1. Let x € cl S. The tangent cone of S at x is the set

Ty(x) = {d € X:d= lim A, (x, — x,) where A, > 0,

h— 00

x, € Sandx, - xo}.
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The major disadvantage of this cone is that it is not convex and so is
not appropriate for using duality techniques, so people were interested in
convex subcones of T¢(x). Then in that direction the best definition was
introduced by Clarke [2], [3].

DEFINITION 5.2. Let x € cl S. The “Clarke tangent cone of S at x” is
the set

ms(x) = {d e X:V{x,},ey CclSVA, 10
3d,s.t.d, > dandx,+ A, d, € Sforalln € N}.

This cone is always convex and, of course, 7¢(x) C Tg(x).

REMARK. Definition 5.2 is not actually the original definition of
Clarke. However, as Rockafellar points out in [22], the two are equivalent
by Proposition 3.7 of [2]. (See also Hiriart-Urruty [14].)

Let M be any closed convex subcone of T¢(x).

Then M% = {4 € £(X,Y): A(d) = 0Vd € M}. We have the follow-
ing necessary condition for the existence of a local mimimum.

THEOREM 5.1. If f € L( X, Y) and x solves [P] then 9f(x) N MY # @ .

Proof. We start by showing f°(x; d) < 0 for every d € T4(x). From
Definition 5.1, d = lim, _ A ,(x, — x), where A, > 0, x, € S and x, — x.
Clearly this means A, 1 o0 so 1/A, 10. Consider the quotient

_ St (0/A)d) ~ f(x)

= (1/x,)
Then
SRR (LYY YIS ERENES
(where x, = x + (1/X,)A,(x, — x))
_ e+ AA)d) = f(x,) | fx,) = f(x)
1/, 1/A, )

Observe that since x is a local minimum (i.e. solves [P]) and eventually
x, € UN S, we have (f(x,) — f(x))/(1/A,) = 0. Also, since f is locally
o-Lipschitz, we have

I/AH - I/Aﬂ

=lld =X, (x, = x)II
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The last quantity tends to zero as n — oo. Using these observations in (x),
we get

limsupg, = 0.
But f°(x; d) = limsup, ., g, > 0. Hence f%(x; d) = 0Vd € Ty(x). Now,
by a result of Kutateladze [18], we have

0 ifxeM,

3, fon = 3.f¢ + 938, whered, (x)= ( v ifx@M

Since 0 € M and f¢(M) = 0, we have
0 €9, (0) - 0 €9,.£(0) + 3,.3,/0)
>0€edf(x)+ (—M3).
Therefore, 0f(x) N M} # &. O

REMARK 1. Since M§ = {4 € £(X,Y): A(d) =0 for all d € M}, it
is very easy to see that 45,,(0) = —M7.

REMARK 2. Since we always have 7g(x) C Tg(x) and 74(x) is closed
and convex, we can let M = 74(x).

6. Discussion of related work. Similar work was recently done by
Hiriart-Urruty and Thibault [15], Ioffe [16], [17] and finally by Thibault
[25]. The one that is closest to our approach is [25]. Thibault introduces a
new class of vector valued mappings which he calls “compactly
Lipschitzian mappings”. This class includes the locally Lipschitz functions
when the range space is R. For those functions he defines a subdifferential
and develops the corresponding calculus. His definition of a compactly
Lipschitzian mapping at a point is the following.

“f: X - Y is said to be compactly Lipschitzian at x € X, if thereis a
mapping K: X - Comp Y = {compact subsets of Y} and a mapping r:
(0, g} X X X Y which have the following properties:

(1) lim, o r(¢, x; v) = 0V € X.

(2) For each v € X there is a neighborhood € of x € X and n € [0, 1]
such that

(f(x+ 1) —f(x))/t € K(x)+ r(x,t;0)
forallx € Q,1 €(0,5].”

Let us see how our definition compares with the above.
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For all x, z € U C X bounded and open
If(x) — f(z)|=yllx — z|| forsomey € K7 .
Then

f(x + tvz) —f(x) c _yllx + f;) - xll’yllx + t;) — x|l

=[=»lioll, yllvl] and r=0.

But[—y|v]|,y|v[] is not in general compact. Because Y is normal, we
can only say that the order interval [—y||v]||, y||v||] is bounded and so by
Alaoglu’s Theorem is w*-compact, if Y is a dual space. But it is far from
being compact for any other stronger topology and in particular for the
norm topology which is of special interest to us. After all, compactness in
the norm topology is a quite restrictive requirement because it implies the
set under consideration has empty interior.

Therefore our definition, although more naive, appears to be some-
what more general than that of Thibault. However, we should point out
that our definition translated in the language of Thibault’s definition
requires that the perturbation function r be identically zero.

Furthermore, our definition ties better with the convex case, because
as we proved in [19] (Theorem 3.2), every convex mapping is locally
o-Lipschitz in the interior of its domain.

Also the generalized directional derivative that Thibault defines is
not, in general, continuous, while ours is even more regular since it is
Lipschitz (see Proposition 3.1). Then using his generalized directional
derivative, Thibault introduces a subdifferential multioperator, which,
however, is not guaranteed to be everywhere nonempty. On the contrary,
our subdifferential operator d(x) is nonempty for all x € X (see Theorem
3.1). In addition, Thibault’s 3f(x) is compact in £(X,Y) under more
restrictive hypotheses. Finally, our theorem about the subdifferential of an
integral appears to be stronger because it does not require Y to have w
compact order intervals (unless Y is reflexive, which is not necessarily the
case in our result), and because we give conditions under which equality
of two subdifferential multioperators holds.

In [15] Hirriart-Urruty and Thibault work with locally norm Lipschitz
mappings and characterize the plenary hull of Clarke’s generalized
Jacobian. Their approach is quite different from ours. However, in con-
nection with this paper, we should point out that it wouldn’t have been a
good idea to work with the family of locally norm Lipschitz mappings
because their definition ignores the lattice structure of the range space. So
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we wouldn’t have been able to give a direct definition of the generalized
directional derivative, but only a weak one (i.e. one using the weak
topology) as in [15]. This, however, is not appropriate for developing a
general subdifferential theory close to the real-valued prototype.

Finally, in closing, we should mention loffe’s very recent work [17].
Although considering vector valued mappings, he uses a quite different
approach and emphasis. He presents a new outlook on nonsmooth analy-
sis that goes outside Clarke’s Theory. He is only considering locally norm
Lipschitz mappings, and all analytical objects that he defines are with
respect to the weak topology.

Acknowledgement. 1 would like to thank the anonymous referee for
his valuable remarks that improved the presentation of the material in this
paper considerably.
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