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Let D be a weakly pseudoconvex domain in C” with C*°-boundary
and A be a hypersurface in D which intersects 0D transversally. If 0A
consists of strictly pseudoconvex boundary points of D, then any bounded
holomorphic function in A can be extended to a bounded holomorphic
function in D.

1. Introduction. G. M. Henkin [5] proved that any bounded holo-
morphic function defined on an analytic closed submanifold in general
position in a strongly pseudoconvex domain can be continued to a
bounded holomorphic function in the entire domain. The related results
have been given by the author [1] and J. E. Fornaess [4]. In this paper, we
extend this problem to the weakly pseudoconvex case. Our proof depends
on the integral formula constructed by E. L. Stout [8], and the kernel
function constructed by F. Beatrous, Jr. [3] which was used to obtain a
Holder estimate for solutions to d-problem in weakly pseudoconvex
domains.

2. Let Q be a bounded domain in CV*! with C*-boundary. We
shall denote by O({2) the space of holomorphic functions in . We shall
also denote by H*({2) the space of bounded holomorphic functions on £
and by A({) the subspace of H*({2) of functions which extend continu-
ously to Q.

DeriNITION 1. (R. M. Range [7]) A point A € 9Q2 is a strictly
pseudoconvex boundary point if there are a neighborhood U of A and a
C* function ¢: U — R such that:

@QUNQ={z€ U:¢(z)<0};

(b) 2(3%(N)/3z,0Z,)ww, > 0 forallw € CV*' — (0);

(c) do(A) #+ 0.

The set of strictly pseudoconvex boundary points of £ will be denoted
by S(L). It follows from Definition 1 that S(£2) is an open subset of the
boundary 9{2.
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Let D be a pseudoconvex domain in CV*! with C*-boundary. We fix
a function F € O(D), F 0. Then F is holomorphic in a domain D with
D CD. Weset A={z€ D: F(z) =0} and A=A N D. We make the
following assumptions:

(a) A is a non-empty connected set;

(b) dF 5 0 on 0A;

(c) A meets 9D transversally;

(d) 0A C S(D).

In this setting, we have the following:

THEOREM. Under hypotheses (a)—(d), there exists a continuous linear
extension operator L: H*(A) - H*(D). Moreover if A has no singular
points then L(A(A)) C A(D).

In order to prove this theorem, we use the function ®(¢, z) in the
following proposition which was constructed by F. Beatrous, Jr. ([3],
Theorem 2.1).

PROPOSITION 1. Let k be a positive integer (k = 3). There are a
neighborhood U of 3, a smooth positive function r on U, and a C* function
® on U X D with the following properties:

(i) For each ¢ € U, ®(¢, -) € CK(D) N O(D).

(i) G(§,z) =@, 2)/T($, z) is a non-vanishing C* function on
{(({,z) e UXD:|{ — z|=r(z)}.

(i) ®(¢, 2) =0 if|¢ — z|= r(z2).

(iv) Re T(5, 2) > p(§) — p(2) + r(2)|§ — 2P if I§ — z|= r(§),
where p is the defining function for the domain D constructed by F. Beatrous,
Jr., and

2 =25 L)z -3 deas 0z~ 0z, 8)

Moreover we can extend ®(, z) to a C* function on a neighborhood of
dD X D, holomorphic in z such that ®(¢, z) satisfies ®(¢, z) =
2EVPE, 2)(E, — z)), and ®(8, 2) # 0 if p($) > p(z), where P(§, 2) is a
C g functlon on a neighborhood of 0D X D, holomorphic in z.

Let D,={z € D: p(z) <-¢,} and A,=A N D,, where {¢,} is a
sequence of sufficiently small strictly decreasing positive numbers con-
verging to 0. By E. L. Stout [8], we have the following:
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PROPOSITION 2. If f € H*(A), then the following formula holds for all
z € A, and all sufficiently large v:

W) o) = [ )Nl SOKE.2)

,  ®(f,z)" llgrad F(Q)|  “a. @(S, 2)
where ¥(¢, z) is a C*~ Y0, N — 1) form in a neighborhood of D X D and,
for each § near 9D, coefficients of Y (¢, -) are holomorphic in D. One could
arrange for ¥(¢, ) to be holomorphic on D if D were assumed to have a
pseudoconvex neighborhood basis. &y is given by

N+1 —— N
dr= X (1) Fd{ Ao NG A - NSy,

j=1
where F, = 0F/dz, j=1,...,N + 1, and N\ means the symbol is to be
omitted. Therefore K(§, z) is a C*"'(N, N — 1) form on a neighborhood of
0D X D and for each § near dD, coefficients of K(§, -) are holomorphic in
D.

We set

_r K, 2) =
H/(z) —/;Ay ot 2)" forz € D,|0A,,

and

L(f)(z) = H(z) = lim H,(z) forz € D|0A.
LEMMA 1. H(z) is holomorphic on D and H(z) = f(z) for all z € A.

Proof. Forz € W € D, , v > p = »,, we have

H,(z) ~ () = [ fOXG, ) . [, 13

aa,-a,) ®(¢, z)Y

K(¢, 2) )
o(¢, 2)"

Since the form 5§(K(§, z)/®(¢, z)V) is bounded for { € A, — A, and
z € W, there exists a constant K such that

|H,(z) — H(z)| =< K?‘éﬁ If(O)IVol(4, — A,).

Hence H,(z) converges locally uniformly on D. Therefore H(z) is holo-
morphic in D. By Proposition 2, H(z) = f(z) for all z € A. Therefore
Lemma 1 is proved.

We want to show that H(z) € H*(D). Let S,o. = {z: |z — z°|< o).
Let z° € 0A. Then there exist a constant ¢, >0 and a biholomorphic
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change of coordinates on a neighborhood of z° such that p is strictly

convex in a neighborhood of D NS0, A N S,00, = {2 € S,0m: 24, = 0}
and 9p(z°)/9z, # 0. Let 0 < 6, < 0,. Let z € S,0., N D,. We write

_ f)K(, 2) (K, 2)
iz _'[aA,,nS:o..,. ®(¢, z)" +'/E;A,,|S:n..,l (¢, )Y

Then

f fOK(, 2)
34,8, 0.0,

ot Z)N =7 §ng, IO,

where y, depends only on D and A. We set

H,,(Z):/ f({)K(f,Z)

,ns50. ®(¢, z)Y

Then it is sufficient to show that | H,(z)|< 7, supecalf(§) ], where v,
depends only on D and A.

We consider the system of equations for (% = (¢0,...,¢v, ) of the
following form for z € S,0.,:

N+1 9p
2 @(go)(gio_zi) =0,
i=1 :
2) O=z  (i=23....N)
§1?f+1 =0

Then we have the following lemma which was proved by G. M. Henkin
[5]. But we give the proof of E. Amar [2] which is simpler than Henkin’s.

LEMMA 2. There exist positive constants 6; (< 6,), Y5 and y,, depending
only on D and A, such that for any o < o, and any z € S,0.,2 there exists a
unique solution {° = {°(z) of system (2) which belongs to the set S,0. N A.
Here the point {° = {°(z) has the following properties:

(3) 2 — ¢ S%[p(z) — (5]

(4) Iz = ¢ 2lzy = vlo(2) = 0(2°)],

%=z foranyz € S0 NA.



EXTENDING BOUNDED HOLOMORPHIC FUNCTIONS 13

Proof. From (2), we have

(ap(g)/aZNH)ZNH
ap(f)/azl

where a({) is C* in a neighborhood of z°. There exists o, > 0 such that
for any { € B(z°, o), z € B(z°, 0,) we have | Va(¢)||zy,,|= 1. We set
by recurrence that

7y =§ — = —al§)zyss

§(0 =z,
§('/) = (gl(j), ZyyeesZpns ZI?H—I)’

S0 =2+ a(§V" )zyy.
If z and ¢ are in B(z°, o;), then

680 = 50 <l vl e = g2 < g - ),

Therefore {/) converges. Then lim, ., { = {° is the soution of (2). The
strict convexity of the function p and equations (2) imply the inequalities:

N+1

(5) p(£°) = p(2) + 1,t° — 2| <2Re 3 ?( (0 —z,) =0,

i=1

(6) 0c") ~plz) + ik~ o =2Re 3 {E()E —2) =0,

i=1

where z € S,0.,2. From (5) we have (3). From (6) we have
1
0 =2 = [o(2) = p(5°)].
Y4
But

2 2 2 2
|§0—z| =|zy 4] +‘§10""le 574/|ZN+1"

Therefore we have |z, [ = (1/v,)[p(z) — p({®)]. Therefore Lemma 2 is

proved. B
For any z € D, N S,0.,|0A, and any vector w = (wy,...,wy,,) # 0,
we have
) dH,(z + Aw) -/ F§)Z)20(8/02 ) K (8, 2)w,
dA A=0 9A , N S.0.0 (b( ’ Z)N+1

—f NH(B@({ z)/az )wK(§ z)
A, NS oo, (I)(f, Z)N+l .
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LEMMA 3. Let f(§) € H*(A). Then for any point z° € 0A and any point
z € 3(S,0. N D,)| 04, (0 < (05/2)), we have

dH,(¢° + Az —¢9))
dx

<, sup |f($)],
e

A=1

where {° = {%(z) and v, depends only on D and A.

Proof. We set e =|zy, |, where
=(z),...,2y11) €3(S,0. N D,)|34A,.

Then Lemma 2 implies the inequalities

es|§°—z|s{9(z)_—p(§o)}l/zs £

Y3 (Y3Y4)1/2 .

Since T¥H1(3p/38)(E0)(E2 — z;) = 0, it follows that

N§1 (acbé()i z) +za§ (¢° ))(5“0—2,-)

i=1 i

if@uzx 2)| =

S (5260 =320 2) + ol - )50 - =)

i 1

< yee([§ — 2| + ).
Here we have used the equation

P d
a7 (8%2) = 2;,?({0) +0(1¢° - z)).

By (7), we have

:' dH,(z + Nz — %))
dA

dA

A=1 A=0

' dH,(5° + Mz —¢9))

)11z = &°) £(0) 61 — 2] +e)
= = dA .
77,/;/3”0&0&] |®(¢, z) V! dr +y /E;A AS.00 |®(¢, z) V! dA

We can choose coordinates (1,({),...,ny+()) in S,0. such that 7,($) =
p($) — p(z) + iIlm ®(, z). Then

98 =)= w| (1 +lg — ) + a3
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and
172
1§ — Z|2710(t12 + -ty + 52) =y,|¢ — 2,

where we have written 0,($) = t,,_, +V=1¢,, (i = 1,2,...,N + 1). Then
we have

' dF($°+ A(z — ¢°))

IS Y12 Sup |f(§)|
A=1 {eA

dA\
% f deydty - - - dtyy
&
24 .42 =1 2 N/2
AR [(z, 3+, ) + z;]

(24 2+ +i2y+ ) P dty - diyy
]N+l/2

+£f
B+ - +y=1

/=0

[(tl+t§+---t§,v+e2)2+t§

dt2 ¢ 'dtzN

+82/
B+ - +e2y=1

1, =0

(by G. M. Henkin [5])

(6, + 2+ 2y + )+ 2]

=< v,5 sup|f($)].
cen

We want to have

sup ‘HV(ZM = Y)4 SUP |f(§)|»
{eA

z€D,

where v,, depends only on D and A. We shall denote by (d4,), the
o-neighborhood of 9A,. Since the function H,(z) is holomorphic at all
points z € D,|0A,, we have

sup |H,(z)|< sup |H/(z)|+ sup |H,(z)|.
ZE€D, 2E3DY3A,), ZE[(3A,)BA,1ND,

We obtain

sup  |H,(z)|
2€aDI34,),

dt, - - dt
vl e A
t2+"'t2NSl I:(t%+"'t%N+02) +t§] KEA

=Y ?‘eer) lf(§)|
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Let 0 < 160;. We now fix z € [(dA,), — 9A,] N dD,. We take » so large
that one can find z° € 0A such that z € S,02.. Then by Lemma 2, there
exists a solution {® = ¢°(z) of system (2) belonging to the set S,0s N A
and satisfying the inequalities

(8) Y}IZNH‘Z =p(z) — P(fo) =[zZy4 |2/Y4-

Let T,={AEC:z(A)=§"+NMz—¢° €D, N S,s}). T, is a convex
domain containing A = 0. For any A we have

From this we have
20 = ¢ = {p(z(0) = p(c°)).

Hence for A € 97, with z(A) € 0D,, we obtain
lz(A) — 2% <|z(A) — O +¢° — 29

—f( p(z(N) = p(s°)"* + 2

(p(z) = p(s*)"* + 3

o o,

1
M

€ )
VY4717 VYaY17 4

We impose the further restriction that the constant ¢ < 0 /7,77 /4. Then
|z(A) — z°|< 6,/2. Therefore z(A) € S.o.,2. Since the point {(z) satis-
fies system (2) with any z(A) satisfying A € 07, and z(A) € 3D,, it follows
that {°(z(A)) = {°(z) for any A € 97, with z(A) € 3D,. Moreover

IMe _|A] e POy 0
202 Do) — pc) 2N | = 2= 0) — ¢

= (vi(p(z(N)) = 0(2%)))”
:[74(10(2) - p(§0))] = (7374)1/2 .

Therefore [A|= v;v, for any A € 97, with z(A) € aD,. If A € 97, and
z(A) € S,04s, there exists y;g3 >0 such that |A|=vy, Let vy, =
min(y;Y,, ¥,5)- Then

9) A\|=7v,, foranyA € 97T,.

< +fg<
< 2=
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By Lemma 3, we have

(10) dH,({° + tE;(A) ~{°))

< vs sup |f({)]
e

t=1

for any A € 97,. We note that

dH,($° + 1(z(A) — %)) ' _ B+ Nz -8)

dt dA
From (8), (9) and (10), we have

'dH,(g il ) ‘SI_Y;_I sup [/(§)|= 7% sup I/(5)

teA

for any A € 9T, .Since the function dH,($° + Mz — £°))/d) is holomor-
phicin A for all A € T,, it follows that

dH,(¢° + A (z —¢9)) |<£
AS?; dA " Y ?lellz AL
Consequently
0 — 0 — s
1 (2) = O = [ 60 A =€) ad =2 sup L0

From (8), {° € A,. Since H,({°) = f({°), we have
<X
m )= (% 1) sup 1AL

Therefore

sup |H( )|<Yzo sup |1

z€D,

Hence

sup |H(z)| < vy sup IA($)].

zeD

The next step is to show that if f € A(A), then also H(z) = L(f)(z)
€ A(D). In this case we have assumed that A has no singular points.
Therefore by N. Kerzman [6], there exists a sequence { f, }¥-, of functions
holomorphic in a neighborhood of A in A such that || f, — f||, — O when
k - co. By the continuity of L it suffices to prove that each Lf, is in
A(D). Hence we can suppose f is holomorphic in A’ (A C A’ CA C A).



18 KENZO ADACHI

Let z° € 0A and let z € S,0.» N (D, |34,). By Stokes’ formula, we have

_r fQ)K(, 2)
H,,(z)—faA” oo
_ [ JQKG.2) 5(K(§,z>)
faA' o(¢, 2)" fA,_A”f(K); o(5,2)"
P ((9) (I 0 . ( K(§, z) )
',E;A’ o(s, z)" f(A'—Aymszw (©2 o(¢, )"

B = [ K(§, 2)
/(A'—A»lszovzvfmag( ®(¢, z)" ) '

The first and the third term on the left are continuous in z°. Therefore it is
sufficient to show that, if we set

R = f(s“)ég(M),

A ~A,)N S 020 ®(¢, z)N

then F(z) is continuous at z°.

LEMMA 4. Let z € S,0.2 N (D, |3A). Then
} dF,(§° + Mz — ¢°))

=< yeflog ¢ sup |£($)].

) ’\zl} 4=

Proof. We can write

E(z)=[ o) 282

W8NS0 B¢, z)Y

+f f(€) ?l:ll(gj_zj)Bj(gaz)
(8'—A,) NS, 020 o(¢, )V

where A({, z) and Bj(f, z) are (N, N) forms which are continuous in {
and holomorphic in z. Therefore

dF,(¢° + Nz — ¢9))
dx

A=1

€
e _t m
(A'—=A )N S, 020 ‘I’(§, Z)N+1

1§ —zle(l§ — z| +e)

dA
(A’—A,)N S, 020 IQ(K’ Z) |N+2

+Yx
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(by the estimates of G. M. Henkin [5])

< v,¢|log & sup |f({)].
[ 4=

Therefore Lemma 4 is proved.

Using the method of Henkin [5], we have

E(z) = E(2°)| = yys0|log o sup f8)1+ 1aq0 sup lgrad f{t9lp

Therefore F,(z) is continuous at z°. Therefore the theorem is proved.

(1]

(6]
7
[8)
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