ON LOCAL CONVEXITY OF BOUNDED WEAK TOPOLOGIES ON BANACH SPACES

J. GÓMEZ GIL
ON LOCAL CONVEXITY
OF BOUNDED WEAK TOPOLOGIES
ON BANACH SPACES

J. GOMEZ GIL

In this paper we prove that the bw topology on a Banach space E, i.e. the finest topology which agrees with the weak topology on bounded sets of E, is a locally convex topology if and only if the Banach space E is reflexive.

1. Introduction. If E is a Banach space, the bounded weak (bw) topology is the finest topology which agrees with the weak topology on bounded sets. Wheeler in [7, p. 251] proves that the bw topology on c_0 is not locally convex. This result gives a counterexample to a remark of Day [2, p. 42] which said that the bw topology is locally convex always. This fact suggests a question: Under what conditions on E is it true that bw is a locally convex topology?. The theorem of Banach and Dieudonné (2.2) shows that reflexivity is a sufficient condition. In this paper we obtain that reflexivity is also a necessary condition.

2. Notations, definitions and preliminary results. The notations for topological vector spaces are taken primarily from [6], but we employ the definition of polarity found in [4].

DEFINITION 2.1. If E is a locally convex space (lcs), the equicontinuous weak* (ew*) topology on E' is the finest topology on E' which coincides with the weak* topology $\sigma(E',E)$ on equicontinuous sets of E'.

The following result characterizes this topology when E is a metrizable lcs.

THEOREM 2.2. (Banach-Dieudonné.) Let E be a metrizable locally convex space and E' its dual. The ew* topology on E' is the topology of the uniform convergence on precompact subsets of E.

For a demonstration of this theorem we refer the reader to [4] or [6].
As an immediate consequence of this theorem we have that if E is a metrizable lcs, the ew* topology on E' is locally convex.
Other results about ew^* may be found in [1] and [2].

Definition 2.3. If E is a locally convex space, the bounded weak (bw) topology on E is the finest topology on E which agrees with the weak topology $\sigma(E, E')$ on bounded sets.

This definition is equivalent to Day's [2, p. 41]:

"The bw topology is the collection of all subsets U of E satisfying: for each bounded set B of E, there is a $\sigma(E, E')$-open V with $U \cap B = V \cap B$.”

Obviously the last definition is not changed if we choose the bounded sets on a fundamental family of bounded sets in E.

As follows from [1, p. 265], the bw topology is semi-linear, i.e. addition and scalar multiplication functions are separately continuous. Moreover, if E is a Banach space, it can be shown [3, p. 21] that bw is a vectorial topology if and only if it is a locally convex one.

A general result of Collins [1, p. 266], which can be extended to the complex case, makes the following definition valid.

Definition 2.4. The convex bw (cbw) topology on a locally convex space E is the unique locally convex topology with a base of all convex neighborhoods of 0 in the bw topology.

It is easy to see that the cbw topology is the finest locally convex topology which agrees with the weak topology on bounded sets. In [7, p. 251] may be found the following result which characterizes the cbw topology:

Theorem 2.5. If E is a lcs, the cbw topology on E is that of uniform convergence on compact subsets of the completion of $(E', \beta(E', E'))$.

As consequence of this result and Theorem 2.2 we obtain:

Corollary 2.6. If E is a Banach space, the cbw topology is the restriction to E of the ew* topology on E''.

In particular if E is reflexive we have:

Corollary 2.7. If E is a reflexive Banach space, the bw topology on E is a locally convex topology.
A different introduction and other results about this topology may be seen in [3].

If E is a Banach space, we denote by B_1^E, B_2^E, S the closed unit ball of E and E'' and the unit sphere of E, respectively, and we will write, for each $n \in \mathbb{N}$, $B_n = nB$, $B_n'' = nB''$ and $S_n = nS$.

3. The bw topology and local convexity.

Lemma 3.1. Let E be a separable, non-reflexive Banach space. If E contains no subspace isomorphic to l^1, there exists a subset A of E which is bw-closed but is not closed in the restriction to E of the ew* topology on E''.

Proof. It is well known that for each $n \in \mathbb{N}$ the sphere S_n is $\sigma(E'', E')$-dense in the closed ball B_n''. As E is a separable Banach space that contains no subspace isomorphic to l^1 it follows from Rosenthal ([5], Theorem 3) that S_n is $\sigma(E'', E')$-sequentially dense in the ball B_n'', i.e. each $z \in B_n''$ can be approximated in $\sigma(E'', E')$ by a sequence contained in S_n. Hence if $\phi \in E'' \setminus E$ and $\|\phi\| = 1$, there exists for each $n \in \mathbb{N}$ a sequence $(x_{k,n})_{k \in \mathbb{N}}$ contained in S_n and converging to $n^{-1}\phi$ in $\sigma(E'', E')$.

We define $A = \{x_{k,n}: k, n \in \mathbb{N}\}$. For each $m \in \mathbb{N}$ we have

$$A \cap B_m = \{x_{k,n}: k \in \mathbb{N}, n \leq m\} = (\{x_{k,n}: k \in \mathbb{N}, n \leq m\} \cup \{n^{-1}\phi: n \leq m\}) \cap B_m,$$

and since the set $\{x_{k,n}: k \in \mathbb{N}, n \leq m\} \cup \{n^{-1}\phi: n \leq m\}$ is $\sigma(E'', E')$-compact, it is $\sigma(E'', E')$-closed; then the set $A \cap B_m$ is closed in the restriction of $\sigma(E'', E')$ to B_m, but this topology is the same as the restriction of $\sigma(E, E')$ to B_m. This proves that A is bw-closed.

On the other hand, let U be a neighborhood of 0 in the ew* topology; there exists W, ew*-neighborhood of 0 such that $W + W \subseteq U$, and as W is absorbent, there exists $n_0 \in \mathbb{N}$ such that $n_0^{-1}\phi \in W$. By the definition of ew* topology we know there exists a V, $\sigma(E'', E')$-neighborhood of 0 satisfying

$$W \cap B_1^E = V \cap B_1^E.$$

As $(x_{k,n})_{k \in \mathbb{N}}$ converges to $n^{-1}\phi$ in the $\sigma(E'', E')$-topology there exists $k_0 \in \mathbb{N}$ such that $x_{k_0,n_0} - n_0^{-1}\phi \in V$ and then

$$x_{k_0,n_0} = x_{k_0,n_0} - n_0^{-1}\phi + n_0^{-1}\phi \in (V \cap B_1^E) + W \subseteq W + W \subseteq U.$$

This proves that 0 belongs to the closure of A in the ew* topology, and since $0 \in E$, 0 is in the closure of A in the restriction of ew* to E (we denote this topology rew*). Thus A is not closed in rew*. □
Proposition 3.2. Let E be a separable Banach space that contains no subspace isomorphic to l^1. The bw topology on E is locally convex if and only if E is reflexive.

Proof. If E is reflexive we saw in (2.7) that bw is a locally convex topology. Conversely, if E is not reflexive, (3.1) and (2.6) prove that the bw topology is not locally convex. □

Lemma 3.3. Let E be a Banach space and F a closed linear subspace of E. The bw topology of F is the restriction to F of the bw topology on E.

Proof. We denote bw(E) and bw(F) the bw topology on E and F respectively. It is clear that the restriction of bw(E) to F is coarser than bw(F).

On the other hand, if U is bw(F)-open, let V be the union of U and $E \setminus F$. It is sufficient to prove that V is bw(E)-open. If B is a bounded subset of E, as $\sigma(F, F')$ coincides with the restriction of $\sigma(E, E')$ to F, there exists $W, \sigma(E, E')$-open, such that

$$U \cap B = U \cap (B \cap F) = (W \cap F) \cap (B \cap F) = (W \cap F) \cap B,$$

and then

$$V \cap B = (W \cup (E \setminus F)) \cap B,$$

and since $W \cup (E \setminus F)$ is $\sigma(E, E')$-open, V is bw(E)-open. □

Proposition 3.4. Let E be a Banach space that contains no subspace isomorphic to l^1. The bw topology on E is locally convex if and only if E is reflexive.

Proof. If E is not reflexive, there exists a separable nonreflexive subspace F of E. Obviously F contains no subspace isomorphic to l^1. From (3.2) it follows that the bw topology on F is not locally convex and then (3.3) shows that bw is not a locally convex topology on E. This fact and (2.7) prove the theorem. □

Lemma 3.5. There exists a subset A of l^1 which is bw-closed but is not closed in the restriction to l^1 of the ew*-topology of $(l^1)''$.

Proof. For each $n \in \mathbb{N}$, we denote by e_n the sequence of $l^1(0,0,\ldots,1,0,\ldots)$ where the one is in the nth place.
Let A_0 be the set $A_0 = \{e_n: n \in \mathbb{N}\}$. For each $n \in \mathbb{N}$, e_n is a $\sigma(l^1, l^\infty)$-isolated point of A_0, and then A_0 is a $\sigma(l^1, l^\infty)$-closed set which is not $\sigma(l^1, l^\infty)$-compact. Consequently A_0 is not $\sigma((l^1)'', l^\infty)$-closed. Thus there exists a linear form ϕ that belongs to the $\sigma((l^1)'', l^\infty)$-closure of A_0 and $\phi \not\in A_0$. Obviously $\|\phi\| \leq 1$ and $\phi \in (l^1)'' \setminus l^1$.

Now, for each $n \in \mathbb{N}$, we define

$$A_n = \{ne_p - e_q + e_k/n: p, q, k \in \mathbb{N}, p \neq q, p < k, q < k\}.$$

A_n is contained in the sphere of radius $2n + 1/n$ of l^1 and if $n \in \mathbb{N}$, $n \geq 2$, it is not hard to check that A_n is $\sigma(l^1, l^\infty)$-closed.

Let V be a balanced, convex $\sigma((l^1)'', l^\infty)$-neighborhood of 0. As ϕ is an accumulation point of A_0, $\phi + V/3n$ contains an infinite number of points of A_0. If $e_p, e_q, e_k \in (\phi + V/3n) \cap A_0$ with $p < q < k$, we have

$$\left[n(e_p - e_q) + \frac{1}{n}e_k\right] - \frac{1}{n}\phi = n(e_p - \phi) + n(\phi - e_q) + \frac{1}{n}(e_k - \phi) \in \frac{1}{3}V + \frac{1}{3}V + \frac{1}{3n^2}V \subseteq V.$$

Thus $(\phi/n + V) \cap A_n$ is a nonempty set. This proves that ϕ/n belongs to the $\sigma((l^1)'', l^\infty)$-closure of A_n.

Now, we define $A = \bigcup_{n=2}^\infty A_n$. For each $m \in \mathbb{N}$, we have

$$A \cap B_m = \bigcup \{A_n: n \in \mathbb{N}, 5 \leq 2n^2 + 1 \leq mn\}. $$

This set is obviously $\sigma(l^1, l^\infty)$-closed, and thus A is a bw-closed set.

On the other hand, as for each $n \in \mathbb{N}$, ϕ/n belongs to the $\sigma((l^1)'', l^\infty)$-closure of A_n; reasoning as in the last part of the proof of Lemma 3.1 proves that 0 belongs to the closure on ew^* of A, and as 0 does not belong to A, we see that A is not closed in the topology restriction to l^1 of ew^* on $(l^1)''$.

Proposition 3.6. Let E be a Banach space that contains a subspace isomorphic to l^1. Then bw is not a locally convex topology on E.

Proof. From (3.5) we get that the bw topology on l^1 is not locally convex. Hence if E contains a subspace isomorphic to l^1, Lemma 3.3 and the conservation of bw topologies under isomorphisms prove that bw is not a locally convex topology on E.

Theorem 3.7. Let E be a Banach space. bw is a locally convex topology on E if and only if E is reflexive.
Proof. If E is reflexive, (2.7) gives us the result. Conversely, if bw is a locally convex topology on E, from (3.6) it follows that E contains no subspace isomorphic to l^1 and (3.4) shows that E must be reflexive.

REFERENCES

Received December 22, 1981.

FACULTAD DE MATEMATICAS
UNIVERSIDAD COMPLUTENSE
MADRID-3 (SPAIN)
PACIFIC JOURNAL OF MATHEMATICS
EDITORS
DONALD BABBITT (Managing Editor)
University of California
Los Angeles, CA 90024
HUGO ROSSI
University of Utah
Salt Lake City, UT 84112
C. C. MOORE and ARTHUR OGUS
University of California
Berkeley, CA 94720
J. DUGUNDJI
Department of Mathematics
University of Southern California
Los Angeles, CA 90089-1113
R. FINN and H. SAMELSON
Stanford University
Stanford, CA 94305

ASSOCIATE EDITORS
R. ARENS E. F. BECKENBACH B. H. NEUMANN F. WOLF K. YOSHIDA
(1906–1982)

SUPPORTING INSTITUTIONS
UNIVERSITY OF ARIZONA UNIVERSITY OF OREGON
UNIVERSITY OF BRITISH COLUMBIA UNIVERSITY OF SOUTHERN CALIFORNIA
CALIFORNIA INSTITUTE OF TECHNOLOGY STANFORD UNIVERSITY
UNIVERSITY OF CALIFORNIA UNIVERSITY OF HAWAII
MONTANA STATE UNIVERSITY UNIVERSITY OF TOKYO
UNIVERSITY OF NEVADA, RENO UNIVERSITY OF UTAH
NEW MEXICO STATE UNIVERSITY WASHINGTON STATE UNIVERSITY
OREGON STATE UNIVERSITY UNIVERSITY OF WASHINGTON
Wojciech Abramczuk, A class of surjective convolution operators 1
K. Adachi, Extending bounded holomorphic functions from certain
subvarieties of a weakly pseudoconvex domain 9
Malvina Florica Baica, An algorithm in a complex field and its application
to the calculation of units .. 21
Giuliana Bianchi and Robert Cori, Colorings of hypermaps and a
conjecture of Brenner and Lyndon 41
Ronald James Evans, Determinations of Jacobsthal sums 49
Leslie Foged, Characterizations of \(\aleph\)-spaces 59
Nassif A. Ghoussoub and Paulette Saab, Weak compactness in spaces of
Bochner integrable functions and the Radon-Nikodym property 65
J. Gómez Gil, On local convexity of bounded weak topologies on Banach
spaces ... 71
Masaru Hara, On Gamelin constants .. 77
Wilfried Hauenschild, Eberhard Kaniuth and Ajay Kumar, Harmonic
analysis on central hypergroups and induced representations 83
Eugenio Hernandez, An interpolation theorem for analytic families of
operators acting on certain \(H^p\) spaces 113
Thomas Alan Keagy, On “Tauberian theorems via block-dominated
matrices” .. 119
Thomas Landes, Permanence properties of normal structure 125
Daniel Henry Luecking, Closed ranged restriction operators on weighted
Bergman spaces .. 145
Albert Thomas Lundell, The \(p\)-equivalence of \(SO(2n + 1)\) and \(Sp(n)\) 161
Mark D. Meyerson, Remarks on Fenn’s “the table theorem” and Zaks’ “the
chair theorem” ... 167
Marvin Victor Mielke, Homotopically trivial toposes 171
Gerard J. Murphy, Hyperinvariant subspaces and the topology on \(\text{Lat} A\) 183
Subhashis Nag, On the holomorphy of maps from a complex to a real
manifold .. 191
Edgar Milan Palmer and Robert William Robinson, Enumeration of
self-dual configurations ... 203
John J. Walsh and David Clifford Wilson, Continuous decompositions
into cells of different dimensions .. 223
Walter John Whiteley, Infinitesimal motions of a bipartite framework 233