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Subject to certain restrictions, convolving on the right by a fixed
function defines a bounded linear operator between spaces of measures
or functions over a locally compact group. For non-compact groups we
show that when the range and domain are different, such operators rarely
have closed range. Applications of these results are made to representa-
tion theory for locally compact groups. We also prove a correspondence
theorem for strictly cyclic vectors for Banach algebras and those for
certain closed left ideals.

Preliminaries. Throughout this paper G denotes a locally compact,
non-compact group with left Haar measure dx. Let M(G) denote the
space of finite Borel measures with total variation norm | -||; L,(G),
1 =< p < oo, the equivalence classes of p-integrable functions with norm
Il - ll ;5 L,(G) the essentially bounded measurable functions on G with the
essential supremum norm || - || .; C(G) the bounded continuous functions
on G with the uniform norm also denoted by || - ||_.; C,(G) those fin C(G)
that vanish at infinity; Cy,(G) those fin Cy(G) with compact support. See
Hewitt and Ross for formal definitions of these objects.

For a function f on G and a fixed x in G the left translation of f by x,
written xf, is defined by xf(y) = f(xy) for all y in G. Note that if the
support of fis K, then the support of xfis x 'K. Let f denote the function
f(x) = f(x7"). Continuity of the group operations implies that f has
compact support if and only if f does. If 4 is a set of functions on G, then
A= {f. f€ A). The complex conjugate of f, written f, is defined by
f(x) = f(x).

Convolution between a measure y and a function f, when defined, is
given by the following formula:

pr f(x) = [f(y7'x) du(y).

And when defined between two functions of f and g is given by

gx f(x) = [1(yx)g(y) dy.

We will need to refer to the following convolution formulas and their
associated norm inequalities. See Hewitt and Ross [6, 20.19].
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(1) L(G)*L,(G)CL,(G), p=1 and [g=f|,=<|gllfl-
2) M(G)*L,(G)CLAG), p=1 and |jp=fl, <[ellfl,-
(3) L,(G)*[L,(G)] CGy(G), for1<p<oo,1/p+1/p =1
and g+ £, <llgll, 71l
(4) L(G)* L(G) c C(G) and |g* fl. <lglhllfll-
(5)  L.(G)=[L(G)] cc(G) and |g* Sl <lgllfll-
(6) L,(G)*{L(G)N[L(G)]"} c L(G)

wherep,q>1,1/p+ 1/q— 1/r=1and |g * f|, <|gll,llfll,-

One more convolution formula is needed. It turns out to be an easy
consequence of (3) and (4).

() L(G) * G(G) C C(G) and g+ fllo =gl /-

Proof. Let f € L(G) and g € C,(G). Choose g, f, € Cyo(G) such
that {|g — g,l|,, = 0 and ||f — f£,|l, = 0. Now since for any p, C,(G) C
L,(G) and f, € Cy(G), we have by (3) that g, » f, € Cy(G) for all n. By
4), g+ f€ C(G) and so

®) lgrf—g.*fillo <lg*f—g.*fllo tlg.*f— g *fl.
<llg = gl e +lg.llf — £l = 0.

Therefore g » f € C,(G). The norm inequality follows from (4) since
Co(G) C L_(G).

Next we collect some facts about linear maps and adjoints. Let M be
a normed linear space. We will write M* for the dual space of M. If
¢ € M*, the norm of ¢ will be written as ||@|| ,,». For¢ € M*and m € M
it will sometimes be convenient to write ¢(m) as a bilinear form, ¢(m) =
(m,@). If X and Y are Banach spaces and 7: X — Y is a continuous
linear map the adjoint of 7, denoted by T*, is defined on Y* by
(x, T*y*)= (Tx, y*) for all x € X. It follows from the continuity of T’
that 7*: Y* - X*. A fact that will be used repeatedly is thatif 7: X - Y
is continuous, linear, one-to-one and if the range of T is closed, then T*
maps Y* onto X*. See Hewitt and Ross [7, E.§].

1. Operators from L,(G) into L (G) and C(G). Let f be fixed
function and T the operator obtained by convolving on the right by f. If f
belongs to L,(G), p =1, then (1) implies that 7} is a bounded operator
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from L (G) into L,(G). If f belongs to Cy(G), it follows from (7) that T} is
a bounded operator from L,(G) into Cy(G).

In this section we will be concerned with the question of when these
operators have closed range. The two cases, fin L,(G) and f in Cy(G), are
considered together because the main computations in both cases are
similar and can conveniently be combined as the following result.

LemMMA 11. Let f€ L(G), p>1, or C(G), f#0, and let M =
L\(G) * f. Then there exists {@,}5-1 C M* such that ||@,||,» — o and
|, * f |, is bounded.

Proof. Note that implicit in the conclusion of the lemma is that ¢, can
be convolved with f. In general there are functionals in m* for which this
convolution is not defined in the usual way.

We have two cases to consider: case (i). f € L,(G), 1 <p < co; and
case (i), f € Cy(G).

Since Cy(G) C L_(G), the uniform norm on Cy(G) will sometimes be
written as || - ||, where p = co. The conjugate exponents are denoted by p’
wherep’ = p/(1 —p)fl<p<owandp’ = lif p = c0.

For the remainder of this lemma fix an integer n =1 and k£ € M,
where ||k||, = 1.

In case (i) an application of the Hahn-Banach theorem gives us
h € L(G) such that fk(x)l?(x) dx =1 and ||Af| , = 1. In case (i), since
M(G) = C(G)* and L(G) is weak* dense in M(G), see Dunford and
Schwartz [3], there exists k € L,(G) such that [ k(x)h(x) dx = 1.

Choose ko € Cyo(G) such that ||k — k|, < 1/n. Let 4, = support of
ko.Incase(i) k € L,(G)and h € L,(G) so (3) implies that h+ke G(G).
In case (it) k € CO(G) and h € L,(G) so by (7) we also have that
hxke CO(G) Therefore in either case we can find a compact set A, such
that |+ k(x)|<1/2n(n—1) for all x & A,. The same argument as
above, this time applied to 4 and f implies that in cases (i) and (ii), & * f
belongs to Cy(G). So for any fixed p, 1 <p =< oo, there exists g € Cy(G)
such that ||h * f — 8llo <IIfll,/n. Let A, = support of g and let B = 4,
U A, UA,U {e}, where e is the identity element of G. Then B is
compact. Since e€EB, BCBB'and so A4, CBB ! fori=0,1, 2. The
continuity of the group operations implies that BB~' is compact and
hence so is any translation of BB,

Next we choose elements x,,...,x, in G by induction as follows. Let
x, be any element of G. Since G is not compact the set G\ U’._'1 BB~! x, is
not empty for i=2. So let x; € G\ U’ ! , BB x;. We derlve some
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properties of x,,...,x,. Since x; & BB~ 'x, for i <j we have that B~ x; N
B'x,= & for 1<] "And so x“B N x“B @ for all i #j. Therefore
x;'4,, N x4, = @ fori+#j and m = 0, 1, 2. This implies, in particular,
that the supports of the functions x;k, are disjoint.
In case (i), where 1 < p < o0, we get

P n ,
= 2 Ixkoll, = 27n.

)4 i=1

)

2 x;ko
i=1

In case (i), where p = oo, we get

(10) S xiko| = lkoll, <2
i=1

=]

We also have that
(x,k, xm):fﬂ(x)xjk(x)dx
= [ (xx)k(x,x) dx = [ (x)k(x,x7'x) dx
= [RC)R(x"xx7") dx = Box £(x,x7").

The x, were chosen so that x,x;' & BB™' for i # j and, since 4, C BB~
we get for i % j that

I « k(x ‘<1/2n(n— 1).

fx R (x)xk(x) dx|=

Let ¢, = 2/, x;h. Then ¢, € M* and

< > xjk,(pn>
j=1

= f@(x) él x;k(x) dx

=f§

= i h(x)xk(x)dx + 3 x;h(x)x;k(x) dx

i#*j

= fh(x)k(x)dx+ > k(x,x;)

i¥*j

=n—n(n—1)/2n(n— 1) =n/2.

x,.h_(x)“ 21 xjk(x)} dx
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We note here that M is closed under left translation. This fact follows
from the following relation:

x(g*f)=(xg)*f foralix € G,g € L,(G).

Therefore 27_, x;k € M. Now

n

S xk

=1

+ > Xk,

Jj=1

n n
=3 xk — > Xk
Jj=1 /=1 4

o)

In case (i), where 1 < p < oo, we get from (9) that

P P

n
2 xjkO
J=1

P

<1+ 2n"/?7<3n/?,
»

> xk
j=1

Therefore a lower bound for ||, ,,» can be computed as

1 1 \n_ n
Mt_>_|<3nl/Pj§1xjk,q>,,> 2(3n‘/”)5_ -

In case (ii), wherep oo, we get from (10) that HE" 1 X;kll, =3 andsoa

lower bound for ([, ([ 1/« 1S
1 n
<—3' 2 xjk, Py >

J=1

(11) I,

(l)n n
>l —t=— = —
—\3/2 6

Next we compute the norm of ¢, * f. Note that in both cases P, * f
belongs to C,(G) since it is a linear combination of translates of 4 * f.

By (8) we have x;'4, N x;'4, = @ for i # j and so the supports of
the functions x,g are dlS_]Olnt Therefore |27, x,gll., = Igll.- We also
have that

(12) lpall s =

gl <[5 — &= 7], +]n= 7]

An application of (3) when 1 <p < oo and an application of (7) when
p = oo yields|[h * fll,, < ||Al|,|| fll- So from above,

lgllee <71y + 1llrllf -
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In either case,

Putting these inequalities together yields

+

o0

o f|, =

(13)

- n n
(P,.*f—zxig E'Xig
i=1 i=1

(o]

= [2 + “h"p’] ”f”p

Keeping k and k4 fixed for all n, we see that ¢, depends only on ». So
the lower bounds in (11) and (12) hold for each n, while the bound in (13)
is independent of n. This proves the lemma.

Note that when the operator 7 (i.e., convolution on the right by f) is
defined on L ,(G), its range is the set L,(G) * f.

THEOREM 1.1. (i) Let p> 1, f € L(G) and [ # 0. Then L|(G) * f is
not closed in L (G).
(ii) Let f € C(G), f # 0. Then L,(G) * f is not closed in Cy(G).

Proof. (i) The remarks prior to Lemma 1.1 show that 7 is a bounded
operator from L(G) into L,(G) with range L(G) = f. Let M = L(G) * f
and suppose M is closed in L,(G). Since 7} is continuous, £ = 7}“{0} isa
closed subspace of L,(G). Consider the map ®: L (G)/E - L,(G) defined
by ®(g + £) = g = f. Then ® is well defined and one-to-one. We show
that @ is bounded. Let & € £; then

(g + L)l[=llg=*fl, =lg*f—hx*fl,

=(g = 1) * £l <llg = All:ll/1,-

So taking the infimum over 4 in £ we get [|®(g + L)l <|lg + LI I,
Since the range of ® is M, which we assumed to be closed, the open
mapping theorem gives us that ® is a bicontinuous map from L,(G) onto
M C L,(G). As we noted in the preliminaries, the adjoint map of @, ®*,
will then map M* onto (L,(G)/£)* and, since ® is bicontinuous, so is ®*.
Now M is embedded as a closed subspace of L,(G) under the identity
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map i. It follows that the adjoint map, i*, maps (L,(G))* onto M*. But
(L,(G))* is isomorphic to L, (G), 1/p + 1/p" = 1. So we can identify
M* with all those elements of L,(G) which give rise to non-zero function-
als on M. Furthermore, it follows from Dunford and Schwartz [3, II,
4.18b] that (L,(G)/L)* is isometrically isomorphic with the closed sub-
space, £, of L_(G), where 2= {k € L (G): (g, k)=0for all g € £}.
Therefore ®* can be realized as bicontinuous from M* onto £* . For an
arbitrary 4 in L (G) we compute ®*(k). Since ®*(h) € L(G) and
L_(G) is isomorphic to (L,(G))*, we compute how ®*(h) acts as a
functional on L (G). So let g € L,(G) be arbitrary. Then

[o(x)®*(h)(x) dx = (@(g + £), h)= (g« f, h)
= [gx f(x)h(x) dx
= [[g()f(y7'x)h (x) dy dx
= [[e(E () f(x"y) dx dy
= [s0)| [r0)7 ) | &
= fg(y)[h «fO) .

It follows that ®*(h) = h * f. But by Lemma 1.1 there exists {g,} C M*
such that |||l — oo and ||®*(¢,)||., is bounded. This contradicts the
bicontinuity of ®* and so contradicts the assumption that M is closed in
L,(G). This proves part (i) of the theorem.

The proof of part (ii) is the same as that for part (i) except that here
M = L (G) * fis a subspace of C,(G). We define £ as in part (i) and we
see that ® maps L,(G)/£ onto M from which it follows that ®* maps M*
to £+. Now if M is assumed to be closed in Co(G), ®* will then be
bicontinuous. Now M* can be identified with those measures in M(G) =
(GCo(G))* which don’t vanish on M and a computation similar to that in
part (i) shows that for p € M(G), ®*(u) = p * f. At this point Lemma 1.1
can be used to contradict the bicontinuity of ®* and therefore the
assumption that M is closed in Cy(G) can’t hold. This proves part (ii) of
the theorem.
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ExaMPLE 1.1. When p = 1 the theorem is not true in general. Let
G = Z, the integers, and let §, be point mass at 0. Then /|(Z) * §, = [,(Z).
For an example of a non-discrete group where the theorem fails to hold
when p =1 is G = Z X T, the integers cross the circle group and f the
characteristic function of {0} X 7. Then it’s easy tosee that L(Z X T') * f
is closed in L,(Z X T) since f is idempotent.

For further discussion of the problem of when p * L (G) is closed see
1. Glicksberg’s paper [4].

2. An application to representation theory. Let m be a continuous
unitary representation of G on a Hilbert space H. See Hewitt and Ross [6,
§21). Then 7 can be extended to a continuous representation of L (G) as
bounded operators on H by the following formula: For f € L,(G), and
&, m € H, n(f) is the operator defined by

(w(1)g )= [7(x)(m(x)yx, ) dx.

It turns out that = is a continuous algebra homorphism of L (G) into the
bounded operators on H. We call a vector £ € H strictly cyclic for « if
{m(g)¢: g € L(G)} = H, and we say that = is algebraically irreducible if
every non-zero vector in H is strictly cyclic for .

When H = L,(G) and 7(x)f = x~'ffor f € L,(G) then 7 is called the
left regular representation of G. It follows that7(g)f = g * fforg € L(g)
and f € L,(G). In Bekes [2] it is shown that no non-zero subrepresenta-
tion of the left regular representation of a locally compact, non-compact
group can be algebraically irreducible. Note that f € L,(G) will be strictly
cyclic for a subrepresentation of the left regular representation if and only
if L(G) = fis closed in L,(G). Therefore a more general result follows
immediately from Theorem 1.1(i) when p = 2:

COROLLARY 2.1. No non-zero subrepresentation of the left regular
representation of a locally compact, non-compact group can have a strictly
cyclic vector.

A characterization of compact groups in terms of the existence of a
strictly cyclic vector is possible.

For compact groups the left regular representation decomposes into a
direct sum of irreducible finite-dimensional subrepresentations. And since
every non-zero vector in an irreducible finite-dimensional representation
is strictly cyclic, a consequence of Corollary 2.1 is the following.



THE RANGE OF CONVOLUTION OPERATORS 265

COROLLARY 2.2. A locally compact group is compact if and only if some
non-zero subrepresentation of the left regular representation has a strictly
cyclic vector.

Cyclic vectors for representations of groups have been studied by F.
Greenleaf and M. Moskowitz in [5].

3. Maps from M(G) into L,(G) and Cy(G). We extend Theorem
1.1 to maps from M(G) into L ,(G), 1 <p < oo or Cy(G). In doing this we
need a result on the correspondence between strictly cyclic vectors for
Banach algebras and those of closed ideals which have bounded ap-
proximate identities. We prove a more general result in that we only
assume the ideal is one sided.

To begin we record a lemma due to Bade and Curtis [1, 1.2].

LEMMA 3.1. Let T be a bounded linear map from X into Y where X is a
Banach space. Suppose there exists ¢ >0 and 0 < a <1 such that given
y € Y, ||yl = 1, there exists x € X, ||x|| = ¢, such that ||Tx — y|| < a. Then
T is subjective.

Let A be a Banach algebra and X a Banach space. Suppose there is a
mapping of A X X into X, the image of (a, x) denoted by ax, such that
foraeC,a,be, x € X:

(i) (aa)x = a(ax) = a(ax);

(i1) (ab)x = a(bx);

(iii) there exists K > 0 such that ||ax|| = K]||al|||x|;
then X is called a left Banach % module (see Hewitt and Ross [7, 32.14]).

A net {hg}sc, in a normed algebra B is called a bounded left
approximate identity if given any b € B, ||hzb — b|| —» 0 and sup;||h;4]| <
0.

LEMMA 3.2. Let A be a Banach algebra and X a left Banach module.
Suppose & is a closed left ideal of N which as a Banach algebra has a
bounded left approximate identity. Let x Eg_)—(. Then Ax is closed if and
only if §x is closed and they are equal.

Proof. By the factorization theorem for left Banach modules, Hewitt
and Ross [7, 32.22], we have ¢ X closed in X and there exists a, € § and
x, € X such that x = a,x,. Let {hz}5c, be a bounded left approximate
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identity for §. Then
fhsx — x“ :”haaoxo - aoxo” = K“haao - ao” ”xo” - 0.

Now suppose that $x is closed in X. Let @ € %. Then ax = lim ahzx
and ah;x € $x implies that ax €%x. But $x = $x 50 ¢x C Ax C ¢x and
equality follows.

Suppose now that % x is closed in X. Let $ = {a € A: ax = 0}. Then
the map a + 9 - ax is a one-to-one continuous linear map of % /9 onto
A x. By the open mapping theorem, there exists a constant ¢ > 0 such that
lla + 9|} < c|lax|| for all @ € A. Let h € {hs}s<, be such that ||[Ax — x| <
1/4Kc. Consider the map 7: a — ahx. Then T is a continuous map of U
into Ax. We show that T is surjective. Let ax € Ux, |lax|| =< 1. Then
lla + || < c so there exists b € ¥ such that |ja + b|| < 2¢. Then

1T(a + b) — ax| =|(a + b)hx — ax| =||(a + b)hx — (a + b)x||
< Klla + b|| |hx — x| < K(2¢)/4Kc = 1/2.

So by Lemma 3.1, T is subjective and therefore %x = $hx. But
Ah C ¢, therefore Ax = Ahx C $x C Ax and equality holds.

We can identify /,(G) as a closed ideal of M(G) by considering a
function f € L,(G) as the finite regular Borel measure f(x)dx. Further-
more, as is shown in Hewitt and Ross [7, 28.52], L,(G) has a bounded
approximate identity. We can now use Lemma 3.2 to extend Theorem 1.1
to M(G).

COROLLARY 3.1. (i) Let f € L(G), 1 <p < o0, f# 0. Then M(G) * f
is not closed in L (G).
(i1) Let f € C(G). Then M(G) * f is not closed in C(G).

Proof. 1t follows from the factorization theorem, Hewitt and Ross [7,
32.22], that L(G) * L,(G) = L,(G) and L(G) * C(G) = Cy(G). Also
since M(G) * L (G) = L,(G) we get that

M(G) = G(G) = M(G) = L\(G) » Go(G) = L\(G) * C(G) = G(G).

We apply Lemma 3.2 with ¥ = M(G), $ = L(G) and in (i) X = L(G),
I <p < oo, and in (ii) X = Cy(G) to conclude that if M(G) * fis closed
then so is L,(G) * f. But this is impossible by Theorem 1.1.

EXAMPLE 2.1. When p = 1 and G = Z, we have M(Z) = [|(Z), so as in
Example 1.1, M(Z) * §, = [,(Z), which is closed.
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4. Maps from L, (G) into C(G). In this section we consider the
closure of the range of operators from L,(G) to C(G), 1 <p < oo. These
operators are of the form T, convolutlon on the right by f, where
/€ L,(G), and f(x) ‘f(x“),p = p/(1 — p). It follows from (3) that 7;
is a bounded operator with domain L,(G) and range Cy(G).

THEOREM 4.1. Let 1 <p < o0, p'=p/(1 —p)and f € L,(G), f # 0.
Then L,(G) * f is not closed in Cy(G).

Proof. The proof is a consequence of Corollary 3.1 (ii). The range of
the map T;of L,(G) into Cy(G) is L,(G) * + f. Suppose T: 7has closed range.
Let £= T" l{0} be a closed subspace of L,(G) so as in the proof of
Theorem 1 1 the map @: L (G)/L - C(G) defmed by®(g+L)=g=f
is a continuous one-to-one map of the Banach space L,(G)/£ onto the
Banach subspace L,(G) * f of Cy(G). The open mapping theorem implies
that @ is bicontinuous. Again as in the proof of Theorem 1.1 (L,(G)/ £y*
is isometrically isomorphic with the subspace £* of L,.(G), where £ = {h
€ L,(G): (g h)=0 for all gEL}. So the adjomt of &, d* is a
blcontmuous map from [L,(G) * f1* onto £ . Now consider the injection
map, i, of L(G) * finto CGy(G). Since L (G) * fis closed, the adjoint of i,
i*, maps M(G) = (Cy(G))* onto [L, (G) f1*, see Hewitt and Ross [7,
E.8). It follows that the composition map ®* o i*(u) is a continuous map
of M(G) onto the closed subspace of L,(G). We compute ®* o i*(p) for a
fixed p € M(G). Since @* o i*(p) € L,(G) and L,(G) = [L,(G)]*, it’s
enough to evaluate ®* o j*(u) acting as a functional on an arbitrary g in
L(G).

[e)®F o= (0)(x) dx = (g + £), i*(n))
= (g=f.ix(w)=(g=F.n)
= [g* f(x) dii(x)
= [[s()F(y~'x) dy dit (x)
= [[ef(x7y) di (x) dy
= fg(y)[ff(x“y) dﬁ(x)} dy

= (g (u+F) () .
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Therefore ®* o i*(p) = p * f a.e. However £ is the range of ®* o j* so
the above computation shows that £-= M(G) * f and this subspace is
closed in L,(G). By Corollary 3.1 (i) this is impossible. Therefore the
original assumption, that L (G) * f is closed in Cy(G) can’t hold. This
proves the theorem.

ExaMPLE 4.1. Formula (4) shows that if f € L_(G) then the operator
T; is a bounded linear operator from L(G) to C(G). If we let f be
identically 1, then for g € L(G), TH(g)x) =g=* I(x) = [g(y)dy.
Therefore the range of T3, L(G) * 1, is {al: « € C} which is closed in
C(G).

Formula (5) shows that if f € L(G) then the operator Tris a bounded
linear operator from L_(G) to C(G). Let G = Z and f = §,, point mass at
0. Then 50 =8, and I_(Z) = ¢(Z) so | (Z) * §, = c(Z) is closed.

5. Maps from L, (G) into L(G). The last convolution formula is
(6). From it we see thatif p,¢>1,1/p+1/9—1/r=1 and f€ L(g)
N [L,(G)] , then T}is a bounded operator from L,(G) into L,(G). We are
interested in whether these operators can have closed range. It will turn
out that if f # 0, the range of 7} is not closed. Before proving this we need
a lemma which is similar in idea to Lemma 1.1, but the details of the
proof are somewhat different. ,

First note that since p, g > 1, wehave 2 — 1/r>1/p+1/q— 1/r
= land sor > 1. Let p’, ¢’ and r’ be the conjugate exponents of p, g and
r respectively. Let f € L(G) N[L(G)], f#0, and let M = L,(G) * f.
Then (6) implies that M C L (G). Also

Ip+1/p+1/q+1/q¢ —1/r—1/r=-1/r—1/r =1

and
l/p+1/9g—1/r=1
imply that
1/p"+1/g" —1/r =0.
So

I/r+1/g=1/p=1/g+(/r = 1/p)=1/9+1/q' = 1.
Therefore by applying (6) we get ¢ * f: € L(G) forallp € L)(G) and

o * 71, <llolI7]a.




THE RANGE OF CONVOLUTION OPERATORS 269

LeMMA 5.1. Let p, q and r be as above, f € L(G) N [L(G)], f#0,
and M = L(G) * f. Then there exists {@,},— C L)(G) such that ||@,|| y» —
oo and ||, * fl| - is bounded.

Proof. Fix n. We saw that M C L (G), so pick kK € M, ||\k||, = 1. By
the Hahn-Banach Theorem, there exists 2 € L,.(G), ||A||,, = 1 such that
(k, h)= 1. The remarks before the statement of the lemma show that
h * f € L,(G).

Choose &, and g, in Cy(G) such that

Ik = koll, <1/n and |}k x f =g, <|F],/n.

By (3)h+k € Cy(G). Just as we did in the proof of Lemma 1.1, we can
pick x;,...,x, in G such that:
(1) the supports of the functions x;k,, i = 1,...,n, are disjoint;

(if) |2 * f(x,x7") |[< 1/n(n — 1) for i # j; and

(111) the supports of the functions x,g,, i = 1,...,n, are disjoint.

Sincel/p+1—1/r>1/p+1/q— 1/r =1 we get that r > p and
so r’ <p’. Let s be any number such that r' <s<p’. And let ¢, =
27_, j™'* x;h. Then @, € M and

l< 2 xik’ (pn>
i=1

é j"/“‘ijﬁ(x)xjk(x) dx + 3 (ij)'l/sfxﬁ(x)xjk(x) dx

Jj= i)

=| o) & siktx) s

n

S ) R ()

j=1 i#j

> ﬁ j—l/s _ 2 lh_*le(xixj_l”
j=1 i)
= ~

Jj= Jj=2

Since the supports of the x,k are disjoint, and ||k ,||, = 2 we get

r

<2'n.

r

n
2 x;ko
i=1
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Therefore as in the proof of Lemma 1.1,

> xk
i=1

n

2 x:ko

i=1

=
r

2 xk — 2 x;ko
i=1 i=1

+
r r

<1+ 2n"/"<3n/.

We have 2/, x;k € M since M is closed under left translation. So a lower
bound for ||¢,|| ,,» can be computed by

n

S 7= x(n).

j=

l n
xk, o, )| =
(57 Zken
The fact that 7(n) - oo follows from the integral inequality.

1
Zl/r

M"'2

”(pn' 3nl/r

/zt—l/s dt = !/l
1

and the fact that s > r’ implies 1 /s + 1/r < 1.
Now in L (G),

lglly <[ = 7= g, +[|n = 7,

<Nflla/n +117], < 2)7)

q’

and

@, *f||,,, =

=1+

’

P

n
2 JVxg
j=1

Since the supports of the x ;g are disjoint,

P’

n
2" xg
j=1

n , ~ ;s R ,
= 3 ;7 xell <27|f]L 3 i
p J=1 j=1

i
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Also since p’/s > 1 the series converges. Denote its limit by a. So we get

that
lq)n * fl‘p, <1+ 2”;”‘]0(1/17/.

This bound is independent at n. Therefore keeping k and 4 fixed for all n,
and choosing appropriate x,,...,x, we can construct ¢, with the desired
properties. This proves the lemma.

THEOREM 5.1. Let p, ¢> 1, 1/p+1/qg—1/r=1and f€ L (G) N

[LAG)] ,f7# 0. Then L,(G) * f is not closed in L(G).

Proof. The proof is identical to that of Theorem 1.1 (i) except here
L,(G) and M = L(G) = f C L(G). So if M were closed, ®: L (G)/E -
M would be bicontinuous by the open mapping theorem and then so
would ®*: M* - P+ C L,(G). A similar computation to that in the proof
of Theorem 1.1 (i) shows that when & € L (G), ®*(h) = h * f. But then
Lemma 5.1 shows that there exists {@,}>_, C L,.(G) such that||g,|| ,,« = o0
but [|®*(e,)ll,, 1s bounded. This is impossible if ®* is bicontinuous.
Therefore M can’t be closed.

For an alternate way of stating Lemma 5.1, Theorem 5.1 and formula
(6) the reader is referred to the paper by B. Russo and A. Klein [8].
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